当前位置:首页 > AC/DC
  • LED驱动电源必须为恒流源?

    LED驱动电源必须为恒流源?

    引言 现在有关这个问题有很多各种不同似是而非的说法,有人说:在LED的伏安特性上,电压定了,电流也就定了。所以采用恒压和恒流效果是一样的。有人说LED并联时就应该采用恒压电源供电,而LED串联时就应该采用恒流电源供电;有人说,因为LED是恒流器件,所以要用恒流源供电;有人说,采用市电供电时就应该采用恒压电源供电,采用蓄电池供电时,就应该采用恒流电源供电。至于为什么这样要求,似乎谁也说不明白。 那么,到底是应该采用恒压电源,还是恒流电源供电呢? 首先来看一下LED到底是什么样的器件。因为LED的亮度是和它的正向电流成正比,而且一些LED的结构决定了它的散热也就是功耗。所以大多数LED会给出额定电流,例如Φ5为20mA,1W的为350mA…等,但这并不等于LED只能工作于这些额定电流,更不意味着LED就是一个恒流器件。例如Cree的1瓦LED和3瓦LED是同一型号,电流从350mA加大到700mA,功率就从1W加大成3W,所以这个LED可以工作在350-700mA之间的任意值。 要深入了解这个问题首先要知道LED的伏安特性。 1、LED的伏安特性 LED的中文名字就是发光二极管,所以它本身就是一个二极管。它的伏安特性和一般的二极管伏安特性非常相似。只不过通常曲线很陡。例如一个20mA的草帽LED的伏安特性如图1所示。 假如用干电池或蓄电池供电,那么因为LED伏安特性的非线性,很小的电压变化就会引起很大的电流变化,上图中电源电压在3.3V时正向电流为20mA的LED,如果用3节干电池供电,新的电池电压超过1.5V,3节就是4.5V,LED的电流就会超过100mA,很快就会烧坏。对于1W的大功率LED也是如此,图2是某公司1W的LED伏安特性,而一个12V蓄电池的电压,在充满电到快放完电的电压可以从14.5V降到10.5V。相差将近20%。从伏安特性上可以看出,电源电压的10%的变化(3.4V-3.1V),就会引起正向电流的3.5倍的变化(从350mA变到100mA)。     图2. 1W大功率LED的伏安特性 2.伏安特性的温度系数 到现在为止,还有很多人以为LED电压定了,电流也就定了,所以采用恒压和恒流是一样的。实际上,LED的伏安特性并不是固定的,而是随温度而变化的,所以电压定了,电流并不一定,而是随温度变化的。这是因为是LED是一个二极管,它的伏安特性具有负温度系数的特点。     图4. 串联电阻只能减小温度的影响,而不能消除其影响 4.几个LED并联,能不能用恒压电源? 由于LED伏安特性的离散性,不但不同厂家生产的同样瓦数的LED伏安特性不一样,就是同一厂家生产的同一型号的LED其伏安特性也是不同的。     图5. 不同厂家和同一厂家生产的LED伏安特性的离散性 很明显,假如用恒压电源3.4V供电,显然流过每个LED的电流都不一样,每个LED的亮度也就不一样。所以不能采用恒压电源供电。 5. 多个LED并联后,采用恒压电源供电,能不能用不同的串联电阻来使电流平衡? 在常温下是可以的,但在温升以后就不能保持了。图6中就显示了这个问题,常温下的LED伏安特性以实线表示,两个LED的伏安特性在斜率上略有区别,在用恒压电源Vo供电时,选用不同的电阻,可以得到同样的正向电流Io。但是当温度升高时,其伏安特性左移,如虚线所示。因为还是原来的恒压和原来的电阻,此时的电流却变成了I1和I2。不等于原来的Io了。     图6. 串联电阻可以在常温下保持其电流不变,但在温升以后就不能保持电流平衡。 6. N个LED串联后,假如用恒压电源供电,其温度效应(由温升而引起的电流增加)将会扩大N倍 这是因为所有LED串联以后相当于各个LED的伏安特性沿电压轴串联     图6. 多个LED串联,相当于多个伏安特性在恒流点叠接,加电以后温度上升,所有伏安特性左移。 温升以后,N个伏安特性都左移,就使电流的增加也加大了N倍。如果采用恒流电源供电,那么温升以后,仍然能够保持电流恒定为Io。 7. 多个LED串联时,采用恒流电源供电时,可以利用伏安特性的温度效应推测其结温的上升度数 在很多应用中(例如日光灯、路灯),往往将很多LED串联,这时候,LED的温度系数效应就更加明显。因为采用恒流电源供电时其效果相当于把每一个LED的伏安特性沿电压轴叠加。假如温升为60度,那么伏安特性将会向左偏移0.12V,如果10个LED串联,所有伏安特性全部左移,总偏移就会达到1.2V。这是相当可观的数字。反过来也可以利用LED的这种特性来测量其结温,例如有一个10串3并的LED组合,在接上恒流电源以后,测得其正向压降从32.3V降低到30.6V。变化达1.7V。那么可以推测其结温升高为1.7/10/.002=85度 8. 恒流供电时,在串并联电路中如何保证每串的电流均衡 假如用恒流电源只供给一串LED,那当然是最理想的了。但是,假如要供给几串并联的LED那如何能保证每串中的电流一样呢?是的,假如用恒流源供给几串并联的LED,由于LED伏安特性的离散性,各串的电流是一定不一样的。但是实际上,由于各串LED不大可能某一串里都是正向电压偏低的,另一串里都是正向电压偏高的。而是会相对均匀分布,所以各串之间的电流不会相差很大。 9.在恒流供电的串并联电路中,如何避免因某个LED损坏所引起的问题 假如只是两串并联,而且其中某一串的一个LED坏了(开路),这时候不但这一串不亮,而且所有的电流都会流到另一串,使得另一串的电流加大一倍,用不了多久也会坏掉。为了避免一个坏了一串不亮,那么可以采用全部并串联的方法,也就是每串中的任何一个都和其他串中的同样位置的LED并联。这样,任何一个坏了(开路),只是这一个不亮,其余的LED仍然都亮。但是假如并联的LED只有两串,其中有一个LED开路了,电流就都流到和它并联的另一个LED中去,它的电流也加大一倍,使得这一个LED寿命不长,很快烧掉;假如烧坏是开路,那么就会导致所有LED全部不亮,但其它的LED损害并不严重,因为没有长期工作于过流状态。为了减小某一个LED损坏以后对其它LED的影响,希望并联的LED串数越多越好。图7中画出了3串5并而且同行相并的图。这时候,某一个LED坏了,总电流分散到其余的4个LED中,总电流在每一行所有并联的LED中分配,正向电压偏低的LED分到的电流就会大一些。但不致造成太大的危害。     图7. LED三串五并 三串五并中的每一个LED都和其它串中同样位置的LED相并联而且只是这一行的电流分到其余4路中去,而其它几行都还是和原来一样。假如LED坏的时候是短路而不是开路,那么这一行的其它几个LED就都不亮了。 当然为了避免这个现象,最好的办法是在每个LED上都并联一个稳压管,而各串之间不要并联。这时候任何一个LED坏了(开路),稳压管就导通,电流的分配关系变化很小。短路则就是少一个LED发光。     图8. 每个发光二极管都并联一个稳压管采用这种方法以后,就不需要再同行并联了。 总结以上叙述可以列表如下:     10.在市电LED路灯中采用恒压开关电源加恒流模块的方法供电 任何市电供电的系统里,都需要一个AC/DC的开关电源。有两种供电方法,一种是在开关电源里加上恒流反馈控制电路,保证输出电流恒定。但是这种方法大多只能单路大电流输出,而且恒流的精度不高。还有一种是,前面采用恒压电源,后面加很多路恒流模块,这种方案灵活性很高,恒流精度也高。

    时间:2018-10-12 关键词: 电源技术解析 控制 AC/DC

  • LED照明的保护电路性能分析

    LED照明的保护电路性能分析

     LED热管理对于正确的色彩再现和安全操作至关重要。虽然设计人员非常重视电源管理以控制过热,但不要忽视过压和过流保护。     随着政府机构,工业和消费者寻求降低能源成本的方法,照明技术已成为人们关注的主要领域。近年来,发光二极管(LED)技术在价格,性能和可制造性方面取得了令人瞩目的进步,优化LED运行的进一步改进预计将推动照明市场的指数增长。然而,尽管该技术越来越受欢迎,但LED制造商继续努力解决这样一个事实:如果没有足够的热管理,热量会降低LED的使用寿命并影响颜色输出。此外,由于LED驱动器是硅器件,它们可能会失败。这意味着可能需要故障安全备份过流保护。 LED技术发展迅速,芯片设计和材料得到改进,有助于开发更明亮,更持久的光源,可用于各种应用。然而,LED灯具需要精确的电源和热管理系统,因为提供给LED的大部分电能转换为热而不是光。 可复位的聚合物正温度系数(PPTC)器件已经证明了它们在各种LED照明应用中的有效性。与传统保险丝一样,它们在超过规定限值后限制电流。但是,与保险丝不同,PPTC设备能够在故障清除和电源循环后复位。 各种过压保护器件,包括金属氧化物压敏电阻(MOV),静电放电(ESD)浪涌保护器件和聚合物增强型齐纳二极管,可与PPTC器件协调使用,有助于提高LED性能和可靠性。 热传导比较 使用60 W白炽灯泡的照明灯具可产生约900流明的光,并且必须通过传导消耗3 W的热量。相比之下,使用典型的DC-LED作为光源来实现相同的900流明将需要大约12个LED。假设VF(正向电压)为3.2 V,电流为350 mA,LED灯具的输入功率可以计算为: 功率= 12 x 3.2 V x 350 mA = 13.4 W 在这种情况下,大约20%的输入功率转换为光,80%转换为热量;取决于与衬底不规则性有关的各种因素和发热,以及声子发射,结合,使用的材料等。在LED产生的总热量中,90%通过传导传递。图1显示,为了从LED的结点散热,传导是转移的主要通道,因为对流和辐射仅占总传热的约10%。例如,LED可以转换接近10.72 W的热量(13.4 W x 0.80)。其中,通过传导将9.648W(10.72W×0.90)的热量从结转移或除去。     图1:各种光源的散热比较。 结温效应 LED的光学特性随温度变化很大。随着结温升高,LED发出的光量减少,并且对于某些技术,发射的波长随温度而变化。如果没有正确管理驱动电流和结温,LED的效率会迅速下降,导致亮度降低和寿命缩短。 与结温相关的另一个LED特性是LED的正向电压(图2)。如果仅使用简单的偏置电阻来控制驱动电流,则VF会随着温度上升而下降并且驱动电流会增加。这可能导致热失控,特别是对于高功率LED,并导致组件发生故障。通常的做法是通过将LED安装在金属芯PCB上来控制结温,以提供快速的热传递。     图2:结温升高时的正向压降。 电源线耦合瞬态和浪涌还可以缩短LED寿命,并且许多LED驱动器易受直流电压电平和极性不当造成的损坏。 LED驱动器输出也可能因短路而损坏或损坏。大多数LED驱动器都包含内置安全功能,包括热关断,以及开路和短路LED检测。但是,可能需要额外的过流保护装置来帮助保护集成电路(IC)和其他敏感电子元件。 LED驱动器输入和输出保护 LED采用恒定电流驱动,正向电压从低于2 V变化到4.5 V,具体取决于颜色和电流。较旧的设计依赖于简单的电阻来限制LED驱动电流,但是根据制造商规定的典型正向压降设计LED电路会导致LED驱动器过热。 当LED上的正向压降降低到明显低于典型值时,可能会发生过热。在这种情况下,LED驱动器两端的电压增加会导致驱动器封装的总功耗增加。 今天,大多数LED应用利用电源转换和控制设备与各种电源(即AC线,太阳能电池板或电池电源)连接,以控制LED驱动器的功耗。使用可复位的PPTC设备可以保护这些接口免受过流和过热损坏。 PPTC器件在正常工作电流下具有低电阻值。在过流情况下,器件“跳闸”进入高阻状态。这种增加的电阻有助于通过将在故障状态下可以流动的电流量减少到低的稳态水平来保护电路中的设备。设备保持在锁定位置,直到故障被清除。一旦电路的电源循环,PPTC器件就会复位并允许电流恢复,从而使电路恢复正常工作。 图3显示了开关模式电源(SMPS)和LED驱动器输入和输出的协调保护方案。如图的左侧所示,PPTC器件(如可复位的PolySwitch™器件)可与电源输入串联安装,以帮助防止因电气短路,电路过载或客户误操作而造成的损坏。此外,放置在输入端的MOV有助于在LED模块中提供过压保护。 PPTC设备也可以放在MOV之后。许多设备制造商更喜欢将可复位PPTC设备与上游故障安全保护相结合的保护电路。在该示例中,R1是与保护电路结合使用的镇流电阻器。 LED驱动器可能容易因直流电压水平和极性不当而损坏。输出也可能因无意的短路而损坏或破坏。有源端口也容易受到包括ESD脉冲在内的过压瞬态损坏的影响。 图3的右侧显示了LED驱动器和灯泡阵列的协调电路保护设计。放置在驱动器输入端的PolyZen器件为设计人员提供了传统钳位二极管的简单性,同时避免了大量散热的需要。该器件由TE Circuit Protection开发,采用独特的聚合物保护精密齐纳设计,可在单个紧凑型封装中提供瞬态抑制,反向偏置保护和过流保护。 如图3所示,驱动器输出上的PolySwitch PPTC器件可以帮助防止意外短路或其他负载异常造成的损坏。为了充分利用PolySwitch器件,它可以热粘合到金属核心电路板或LED散热器上。为了防止ESD事件造成的损坏,TE Circuit Protection的低电容,小型PESD器件等保护器件可以与LED并联放置。     图3:使用PolySwitch PPTC器件和用于SMPS的MOV器件(左)以及用于LED驱动器输入和输出的PolyZen,PolySwitch和PESD器件的协调保护方案(右)。 交流电源LED照明保护 MOV通常用于交流线电压应用中的瞬态过电压抑制。在正常工作条件下,施加到MOV的交流线路电压预计不会超过设备的最大交流均压(VAC RMS)额定值,并且,如果瞬态能量不超过MOV的最大额定值,则短时瞬态事件是钳位到合适的电压水平。然而,持续的异常过电压/限制电流条件(例如中性线损失)可能导致MOV进入热失控状态。 新型热增强型MOV有助于保护各种低功率系统免受过流,过热和过压故障造成的损坏,包括雷击,ESD浪涌,中性线损失,输入电压误差和电源感应。图4显示了TE Circuit Protection的2Pro器件如何帮助为AC电源LED照明系统提供这种集成保护。     图4:典型照明应用使用AC 2Pro设备进行低功率AC/DC反激式转换器保护。 2Pro设备将PPTC技术与MOV组件结合到一个受热保护的设备中,以便在发生过流或过压事件时提供可重置性。该集成器件方法旨在帮助制造商满足行业要求,例如IEC61000-4-5和IEC60950。

    时间:2019-03-06 关键词: 电源技术解析 AC/DC 功率

  • 高压LEDs光源HV45 LEDs模组芯片的结构及工作原理

    高压LEDs光源HV45 LEDs模组芯片的结构及工作原理

    最近几年 LED 照明的迅猛发展,特别是景观照明、北京奥运、上海世博会的大量应用LED 照明灯具,唯美的电光空前的震撼了世人的感官,在全世界普及了LED 照明,LED 照明的节能、高效、长寿、环保理念深入人心。由于目前的LED 照明灯具的成本还居高不下,LED 灯具与荧光节能灯的市场占有率大约分别是5%和95%,LED 照明灯具走进千家万户还需要3—5 年的时间。 目前的 LED 照明大多使用低压LED 光源(LV LED),它的正向工作电压VF 低,一般为3.2±0.2V,正向工作电流IF 大,标称电流为350mA/1W 或700mA/3W。因此,需要特殊的开关恒流源供电,由此导致系统电路功率因数损耗,系统电路纹波增加;传统灯具留给我们的空间很小,LED 光源的驱动电源在狭小空间里很难做好;LED 照明灯具内都必须附加交流转直流(AC/DC)的电源转换系统,在整流后需要有较大的降压才能给低压LED 光源供电,电能损耗很大,整个电源的效率很难提高;系统电路中变压器耦合及电阻精度的误差,以及与驱动IC 的配合度,往往使变压器制造参数与理论值相差很大;驱动电源的纹波去除和电能储能需要铝电解电容器,而铝电解电容器的低寿命又成了LED灯具长寿命难于逾越的鸿沟;LED 光珠无辐射散热功能,需要传导散热,必须使用散热器,因空间有限而散热困难,LED 整灯散热至今还是一个巨大的瓶颈;LED 光珠散热不畅、不及时将导致LED 光珠早期光衰;大量的使用散热器将增加LED 照明灯具的成本和自身重量。。。虽然,诸如此类的种种困难均在我们LED 灯具设计工程师的努力改进之中,但是追求优良的产品性能和产品的成本控制一直是在矛盾之中。 HV LEDs 模组原理 高压 LEDs 光源的成功生产为LED 照明灯具开辟了一个新的视野,开创了一片新天地。高压LEDs 模组光源(HV LEDs),它的正向工作电压VF 相比LVLED 是高压的,可以人为的在生产时设计控制,HV LEDs 是在同一芯片上的模组,它在生产时已完成PN 结的片上串联,因此整个模组的VF 比较高,可设计成25V、35V、45V、50V。。。270V/DC,是LV LED 的十倍、几十倍。正向工作电IF=20mA,与LV LED 的350-700mA 相比,工作电流减少百多倍,HVLEDs 发热量因此大大降低,基本解决LV LED 散热的瓶颈,大大减少散热铝的使用量。系统电路不需要专门的AC/DC 的开关恒流源,有效降低功耗和成本。 以HV45 为例,技术参数比较理想,VF=46.9V、IF=20mA、Pin=0.94W、Flux=126 lm、CIEx=0.3524、CIEy=0.4332、CCT=5000K、Efficacy=134 lm/W。HV45 是一颗在同一芯片上生成的LEDs 模组,芯片结构如图1 所示,图中可见有16 颗LED 的PN 结在同一芯片上串联,是芯片在生产时生成。片中黄色箭头是LED 的PN 结间的互联端,将16 颗LED 的PN 结串联,所以HV45 的VF=46.9V-DC 是16 颗LED 的PN 结的VF 值相加。左下端和右上端分别是整个LEDs 模组的二个引出线端。     图 1 HV45 LEDs 模组芯片结构图 HV LEDs 光源可以是蓝色的、红色的或白色的,按实际需要设计生产。在LED 灯具设计时,可以考虑各种颜色HV LEDs 光源的搭配组合,以求需要的发光效果,LED 灯具设计师的自主空间和产品变换空间相当大。如将四个1W 的蓝光HV45 的HV LEDs 与二个0.7W 的红光HF25B 的HV LEDs 串联,即可设计成5.4W 的光源,VF=270V-DC,IF=20mA,发光效率 105 lm/W@5.4W、3000K,色温指数90。较采用传通的红色荧光粉提高30%的发光效率。高压、超高亮度红光LEDs(HF25B) + 高压蓝光LEDs (HV45) 合成高显色、超高亮度暖白光(图2)。加入红光LED 后的高显色暖白光光谱如图3 所示。     图 2 六个HV LEDs 串联应用     图3 加入红光LED 后的高显色暖白光光谱 HV LEDs 基本结构及关键技术 HV LEDs 基本架构和AC LED 相同,即是将芯片面积分割成多个细小单元PN 结之后串联而成。其特色在于,芯片能够依照不同输入之电压的需求而决定其细小单元PN 结数量与大小等,等同于做到客制化的服务。由于可以针对每颗细小单元PN 结加以优化,因此能够得到较佳的电流分布,进而提高发光效率。 HV LEDs 和一般LV LED 在技术上最主要的差异有叁,第一为开沟槽(Trench),沟槽的目的在于将N 颗的细小单元PN 结独立开来,因此其沟槽下方需要达到绝缘的基板,其深度依不同的外延结构而异,一般约在4~8um,沟槽宽度方面虽无一定的限制,但是沟槽太宽代表着有效发光区域的减少,将影响HVLED 的发光效率,因此需要开发高深宽比的制程技术,缩小制程线宽以增加发光效率。 第二为绝缘层(Isolation),若绝缘层不具备良好的绝缘特性,将使整个设计失败,其困难点在于必须在高深宽比的沟槽上披覆包覆性良好、膜质紧密及绝缘性佳的膜层,这也是单晶AC LED 制程上的关键。 第三个是细小单元PN 结芯片间的互连导线(Interconnect)。一般而言,要做到良好的连结,导线在跨接时需要一个相对平坦的表面,一个深邃的阶梯状结构将使得导线结构薄弱,在高电压、高电流驱动下容易产生毁损,造成芯片的失效,因此平坦化制程的开发就变得十分重要。理想的状态是在做绝缘层时,能一并将深邃的沟槽予以平坦化,使互连导线得以平顺连接。此外,HV LEDs 在应用上和一般低压LV LED 最主要的不同点为,它不仅仅能够应用于恒流(Constant DC)的系统电路中,也可以外接桥式整流器,直接应用于交流环境,非常具有弹性。在HV LEDs 中,外部整流器舍弃AC LED 采用同质氮化镓的做法而改采用硅整流器,不仅使得耗能少,更可防止逆向偏压过大对芯片所造成的影响;HV LEDs 较AC LED 少了内部桥整流的发光区,使发光效率相对较高,耐用度也较好。 HV LEDs 应用技术 HV LEDs 应用技术相比于LV LED 的应用技术而言是十分的简单,HVLEDs 的典型应用方案:AC → 整流桥堆 → 电流调节二极管 → HV LEDs ,没有线路复杂、体积臃肿的驱动电源,没有短命的铝电解电容器,没有大的散热器。整个系统电路,只用了一个整流桥堆,一个电流调节二极管(CRD=CurrentRegulaTIon diode),如图4 所示。 系统电路的整流桥堆将来自电网的交流电(AC)变换成直流电(DC),电流调节二极管(CRD)稳定电流,满足HV LEDs 需要一个恒定的IF 电流要求。 采用高压 LEDs 来开发LED 通用照明灯具产品,由于无AC/DC 电源、无变压器、无电阻等,总体功耗可以大大降低,采用小电流工作从而大幅降低对散热外壳的设计要求。以高压蓝光1W LEDs 为例,它的正向压降高达50V,也即它只需20mA 驱动电流就可以输出1W 功率,而低压LED 正向压降为3V 的1WLED,需要350mA 驱动电流才能输出1W 功率,因此同样输出功率的高压LEDs在工作时耗散的功率要远低于低压LED,这意味着散热铝外壳的成本可大大降低。高压LEDs 可以带来LED 照明灯具成本和重量的有效降低,但其更重要的意义是大幅降低了对散热系统的设计要求,从而有力扫清了LED 照明灯具进入室内照明海量市场的最大技术障碍。 HV LEDs 与LV LED 应用电路不同 HV LEDs 与LV LED 应用电路不同从图5 可以很清楚的比较,LV LED 在LED 照明灯具里必须使用AC/DC 的驱动恒流电源,因为LV LED 的VF=3.2V、IF=350-700mA;HV LEDs 在LED 灯具中的应有只需一个AC/DC 的整流桥堆和一个电流调节二极管,因为它的VF=50-270V、IF=20mA;相比应用成本和应用空间都很小。     图 5 HV LEDs 与LV LED 应用不同 HV LEDs 与LV LED 市场前景 HV LEDs 由于应用技术简单,系统电路使用周边元器件佷少,适用需要低价的家用照明海量市场,很有可能主导未来通用照明市场;LV LED 可以在灯光的颜色、亮度等方面作多种技术设计和调整,适用于商业照明市场,如商场、酒店、宾馆等公共商业场所。 隔离、非隔离电路方案与安全之争 隔离、非隔离电路方案与安全之争在近几年的 LED 照明灯具的电路方案中争论不休。其实自白炽灯发明和进入千家万户点亮照明的百年以来,虽是地道的非隔离方案,但一直是比较安全的,人们不会在白炽灯点亮时用手去摸弄它,除非电工师傅。因此非隔离的电路方案灯具产品也占有很大的市场份额。LEDs 目前的应用电路虽是非隔离电路方案,但是它的应用电路简洁、占用空间很小、生产成本较低,应当是进入千家万户照明海量市场受欢迎的新一代LED 照明产品。 是否需要配套高压恒流源驱动集成电路 针对目前 HV LEDs 的简洁应用电路,是否需要配套高压恒流源驱动集成电路?以便按照LED 需要恒流源才能可靠工作的原理,应当引起我们LED 照明工程师和集成电路设计制造商的关注,LED 照明毕竟是一个世界级的巨大市场。看来是很有必要开发一批适用于HV LEDs 的高压恒流驱动集成电路,以提高HVLEDs 应用电路的恒流精度和稳定性、可靠性,值得集成电路设计公司去创新设计,创造新一代电源集成电路产品。 LED 照明三箭并矢共争繁荣 传统的 LV LED 用恒流源驱动发光的方案、AC LED 用AC LED 光源兼做整流和发光体的方案、HV LEDs 使用整流桥堆和CRD 稳流使高压LEDs 发光的方案,这三种LED 光源产品及其LED 照明灯具产品都将在近三五年内盛行,共争市场繁荣(图6)。世界社会将在分享它们的给人类带来的恩泽。HV LEDs 虽有如上优势,是否会在家用照明海量市场胜出,还需拭目以待。

    时间:2019-04-30 关键词: LED 电源技术解析 AC/DC

  • 30mm超薄! 75 & 120W AC/DC 导轨电源 ——LIxx-20BxxR2系列

    30mm超薄! 75 & 120W AC/DC 导轨电源 ——LIxx-20BxxR2系列

    一、产品简介为解决在工程应用中尺寸匹配的难题,金升阳通过技术方案与技术平台升级,推出75&120W超薄导轨电源——LIxx-20BxxR2系列。该系列产品宽度仅为30mm(120W为35mm),适用于狭窄空间。产品隔离电压高达4KV,EMC性能满足IEC61000标准中4级要求,EMI裸机满足CISPR32 Class A/B的标准,为设备的电磁兼容提供保障。产品符合IEC/EN/UL62368、IEC/EN/UL60335、GB4943以及UL508安规标准,且满足5000米海拔应用。产品集成多种保护功能(输出短路、过压、过温及恒压、恒流保护),具有超高性价比,为工控、新能源、石化冶金、铁路、直流充电桩等内部为导轨安装的控制柜系统提供低压总线电源。二、产品应用:广泛应用于工控、LED、路灯控制、电力、安防、通讯、智能家居等领域。 应用案例参考:数控机床屏显电源应用● 标准导轨式电源占板空间小,便于客户拆卸;● 大功率保证后端多个单元工作;● 4KV高隔离、优异纹波噪声保证整个电源系统可靠性。三、产品特点● 全球通用电压:90-264VAC/127-370VDC● 工作温度范围:-20℃ to +60℃ (120W导轨)● -30℃ to +70℃ (75W导轨)● 隔离电压:4000VAC● 自然风冷● 30mm厚度:适用于狭窄空间,增加机柜利用率● 高可靠性:输入抗过压,300VAC输入持续5S不损坏● 输出短路、过压、过温及恒压、恒流保护功能● 可承受5G振动测试● 满足5000M海拔应用● EMI性能:满足CISPR32/EN55032 CLASS A (120W导轨) 满足CISPR32/EN55032 CLASS B (75W导轨)● 符合IEC/EN/UL62368、IEC/EN/UL60335、GB4943以及UL508安规标准(CE认证中)● 满足IEC61000-3-2谐波要求,可用于照明电路● 符合IEC/EN60335-1(PD3)和IEC/EN61558-1,2-16适合家电应用● 3年保质● 支持三防定制四、产品图片:

    时间:2019-12-23 关键词: AC/DC 导轨电源 lixx-20bxxr2系列

  • iWatt公司推出一款创新的数字AC/DC LED驱动器

    iWatt公司推出一款创新的数字AC/DC LED驱动器

    以数字技术为核心的电源管理集成电路(IC)领先供应商iWatt公司日前推出一款创新的数字AC/DC LED驱动器平台,旨在应对商业与无线固态照明(SSL)系统中成本、性能以及工作寿命等问题。该全新平台的首款器件iW3630,是一个两级Flickerless™LED驱动器,支持高达45W的输出功率,是商业照明中首款内置0V-10V调光接口的SSL LED驱动器。该器件还带有一个用于无线固态照明应用的PWM数字调光接口。 iW3630器件采用高度集成设计,相较于0V-10V应用的同行解决方案,可以节省30%-40%(1)物料(BOM)成本,而且有别于其他解决方案,即使在负载降至满载的20%时,也可保持极高的功率系数(PF)。该方案的总谐波失真(THD)在15%以下,符合严格的全球能效标准,同时内置具有降额功能的过温保护(OTP),以提高系统工作寿命的可预期性和可靠性。 iW3630器件通过集成多种设计功能,降低30%-40%的BOM成本。内置的隔离变压器驱动器可直接与0V- 10V调光系统协调运作,无需增加额外的驱动器电路和昂贵的微型控制器,同时PWM数字接口易于集成到无线照明系统。 对于商业与无线照明应用,内置的降额过温保护功能意味着无需增加额外元件来控制温度。此外,iWatt公司专利的PrimAccurate™原边控制技术,省去了次级调节器和光学反馈隔离器件,而EZ-EMI® 技术可以简化EMI滤波设计,以进一步将外部元件的数量降至最低。结合各种内置功能后,iW3630 LED驱动器仅需70个以内的元件,相比之下,传统SSL LED驱动器通常需要100多个元件。此外,该器件还可减小整体解决方案的尺寸,并提高可靠性。 iWatt公司SSL产品营销总监Hubie Notohamiprodjo先生表示:“我们已经为市场提供了多种SSL LED驱动器。而iW3630进一步扩大了我们的产品范围,是我们首款,也是业界第一款商用调光应用专业驱动器。” iW3630的数字控制架构支持宽泛的输入与输出条件,简化了驱动器设计。这使得一个配置能够支持各种不同长度的LED灯串,以覆盖全部的输出功率范围。iWatt公司对采用iW3630的照明驱动器进行了一次案例分析,结果显示,仅用3个镇流器即可取代现有的9个镇流器,从而减少了量产的型号数量。 iW3630采用iWatt公司的Flickerless技术,使得整个1%-100%调光范围内都不出现闪烁,同时还提供非常稳定的±5% LED电流调整率。该技术结合了由斩波电路组成的功率因数校正(PFC)电路。该电路实现高功率因数且几乎不需要输入端高电压元件。 iW3630芯片内置降额过温保护功能,可以监测驱动器内部温度。当温度达到设定点时, iW3630 LED 驱动器会自动降低LED的电流,降低了功耗,同时使得整个工作温度下降。这样避免出现热失控的风险,确保照明系统中电解电容器的温度不会超出额定值,而且还可预测工作寿命。此外,内置保护功能包括LED开路与短路、输入过压、过流、电流采样电阻短路保护。 iW3630关键特征 • 输入功率:3W – 45W • 内置0-10V调光接口,无需额外的驱动器电路和MCU • 支持PWM数字接口,无线照明系统中无需辅助电源 • 较宽的调光范围:1% – 100% • 采用Flickerless技术,在整个调光范围内避免LED闪烁 • 功率因数大于0.95 • 总谐波失真(THD)小于15% • 高效率,高于85%(一般情况下) • 集成LED降额过温保护

    时间:2013-02-20 关键词: AC/DC iwatt led驱动器 电源新品

  • e络盟提供RECOM的最新AC/DC LED解决方案

    融合电子商务与在线社区、并服务于全球数百万工程师和专业采购人员的e络盟(前身为派睿电子),日前宣布最新加入其众多产品组合的RECOM电源解决方案,一个新的高效恒流LED驱动器系列产品并具备从12瓦到20瓦的功率区间。 亚太地区客户可用的最先进电源解决方案 e络盟与RECOM Asia合作,推出12瓦至20瓦功率区间的全新系列恒流LED驱动器这一增强版的先进电源解决方案,同时进一步地提供最新和最有创新性的解决方案,以满足亚太地区电子设计工程师以及维修工程师的需求。 该驱动器的设计便于使用且无需复杂的电子知识,同时提供输入与输出的螺丝接线端,并有一个附加的5.5mm插座输出。用一个适配插头就可将LED接到该插座上,从而避免了错误接线的可能性,使照明安装更简单安全。该驱动器有超过7万小时的工作寿命,为商务、住宅和工业照明系统的理想之选。RACD12驱动器兼容于所有CREE LED MPL,而RACD20驱动器则最多可驱动15只1瓦LED。 通过e络盟提供的独一无二的服务,照明专业人士将能够获得无与伦比的采购与支持体验。用户可以通过多种渠道,方便而灵活地购买产品,没有最小数量或最低金额的限制,并可实现翌日到货。此外,cn.element14.com还提供7x24的客户服务电话支持以及5x24的本地语言在线技术支持。用户还可以访问并加入element14的在线社区进行研究,同时咨询行业专家,并与全球的设计工程师和电子爱好者展开合作。  

    时间:2010-11-21 关键词: LED 解决方案 最新 AC/DC 提供 recom 电源资讯

  • 东芝新推AC/DC离线式LED控制器

    东芝公司(Toshiba)日前宣布为LED照明设备开发采用单一转换器PFC的AC/DC离线式LED控制器集成电路。产品样品现已推出,并将于7月份投入量产。 新产品为一种隔离型反激式LED电源控制器,旨在满足严苛的设计标准:支持三端双向可控硅调光;通过单一转换器有源PFC实现高PFC并减少外件数量;以及不使用光耦合器和检测器控制变压器二次侧的LED平均电流。在采用标准120-220V AC的情况下,功率因数值大于0.8-0.9,LED输出电流精度为+/-5%. LED照明设备具有功耗低、寿命长等特点,正在取代白炽灯。东芝正在开发可控制大功率LED,支持调光和高PF,并且输出电流精度及效率更高的产品。 新集成电路的主要特性 ●支持三端双向可控硅调光 ●不使用光耦合器和检测器控制LED平均电流 ●由于采用单一转换器PFC,因此可减少外件数量 ●采用压式开关控制主MOSFET,有助于降低噪声和功耗 ●工作电压为8-22V的情况下,LED输出电流精度低于+/-5% ●内置LED开路/短路检测 TC62D902FG于2013年3月已推出样品,100日元/片,2013年7月进入量产 新产品主要规格 晶圆技术:CD0.13-40V 功能:AC/DC离线式LED电源控制器 开关方法:隔离型反激 工作电压:Vac 85-264V 输出:高达20W,驱动3-8个串联LED,高达1A 封装:SOP-8

    时间:2013-04-07 关键词: AC/DC led控制器 电源资讯

  • 漫谈电源︱一百个人对“电源”有一百种不同的理解

    漫谈电源︱一百个人对“电源”有一百种不同的理解

    每个人心中都有一个“电源”的样子。我妈以为电源就是家里的电灯泡。我爸以为电源是手机上的电池板。艾默生的朋友们心中的电源可能就是AC/DC变换器。“电源”这个词有点笼统了。出差住在旅馆里,找不到220V的交流插座,你可能会说这个旅馆里不提供“电源”。在这个语境下,“电源”是指可以用在某个供电设备的输入端的“交流输入电源”。 出差在外,你发现自己的笔记本电脑没有带“电源适配器”,你也会习惯说,带了电脑,但没带“电源”。如果有人问你的职业是什么,你说是做电源的,对方一下子可能就觉得你的职业很一般,不是什么高科技。但电源在你心中却是高科技,因为你在做的是一款高端电源,高端到国内还没有人能够做出来,而问你的人,他脑子里的“电源”只是墙上的220V交流电。你们俩不在一个频道上。电源似乎太过普通,因为它显得无处不在。泛义上说,只要能提供电能的设备、设施都是电源。 狭义上说,做电源的人心中的电源只是开关电源。我要谈的是开关电源。我没有搜索查找开关电源的官方定义。在我的理解中,开关电源就是通过开关管的开通和关断来实现电能的变换。电能的变换则包括:1,AC/DC。将交流变换为直流,通常是将来自电网的220V、两相交流电或380V、三相交流电转换为直流电。小功率AC/DC的交流输入是220V,大功率的交流输入是380V。根据应用行业、场合不同,又被称为AC/DC变换器,整流器,一次电源,通信电源,电源适配器,照明电源等。2,DC/DC。将直流变换为直流,譬如将高压、小电流转换为低压、大电流,根据应用行业、场合不同,可能称为DC/DC变换器,二次电源,模块电源,板上电源,等。3,DC/AC。将直流变换为交流,根据应用行业、场合不同,可能称为UPS,逆变器,并网逆变器,电机控制器,等。4,AC/AC。 将交流变换为交流,通常的产品形式是变频器,用于电机控制方面。上述四种电能的转换,细分出众多的行业!在AC/DC,DC/DC这两个方向对应的行业市场,业内人士称之为“开关电源”,具体的行业有比较高端的一次电源(也叫通信电源,但通信电源的含义似乎更广),一般特指给电信机房供电的48V电源,二次电源,客户定制电源,电力电源,计算机电源,笔记本电脑等各种电器设备的电源适配器,手机充电器电源,充电桩电源,车载充电机(OBC,on-board charger),车载DC/DC变换器,照明电源(又可分为LED电源,电子镇流器,HID电源),等。 而对应于DC/AC,AC/AC的行业市场,人们一般就说是做UPS的,做光伏的(按光伏电池板直流电转换为交流电),做储能的,做变频器的,做电机控制器的。可以想象,上述四种电能转换背后是多么大的商业市场哦!(按语:漫谈电源系列只写给非科班做电力电子的外行朋友的消遣阅读。专业人士不要浪费时间哦。 ) 本系列更多内容:当年的华为电气,折射我的电源情节电源是所有电子产品的心脏电源,离开了电源模块就不是那个电源了所有电子产品60%的故障率来自电源

    时间:2018-10-08 关键词: 开关电源 电源技术解析 变换器 AC/DC 电机控制器 漫谈电源

  • 基于MCU的驱动视频监控系统的设计

    基于MCU的驱动视频监控系统的设计

    在视频监控方面,设计师及其客户长期以来一直被迫选择依赖“哑”大量图像捕获和存档的极其低效的系统,绝大部分记录的内容都没有兴趣,以及感兴趣的内容本身太难以在档案中找到,假设它已被存档。然而,现在,功能强大,高能效且经济高效的处理器,图像传感器和存储设备与日益复杂的软件相结合,为系统开发人员提供了将宝贵的计算机视觉处理功能整合到从消费者监控系统到可穿戴的“生命博客”摄像机。 智能的,事件驱动的视频监控仅在人或其他感兴趣的物体进入框架时记录图像,并且仅在物体保留的情况下记录图像。框架。这种自主智能可能历史上只能用于政府,军队和其他高端客户使用的昂贵,笨重,耗电的设备,现在它可以以消费者友好的价格提供,电池寿命长,并且形式因素小而轻,足以美观地坐在架子上。 您如何利用当今的视觉处理硬件和软件所带来的潜力?以下是基于消费者监控系统案例研究的一些想法: 基本设计可能会在帧中感知到运动并且持续一段固定时间时开始记录。稍微更精细的方法是可变长度记录,直到看到物体运动停止和/或物体从框架中消失为止。 然而,这种方法可能产生大量“误报” “由吹叶子,经过的车辆等引起的。因此,如果温血动物是唯一感兴趣的物体,您可能需要使用红外探测器或其他热传感器来补充可见光摄像机。更一般地说,可用的算法可以让你微调你的对象“触发器”的大小,颜色,距离,移动速率和其他阈值参数。 如果你所关心的人都知道怎么办?面部检测功能可以在这方面提供帮助。你可能甚至有兴趣在一个人进入框架时触发相机...除非那个人是你自己,你的配偶,你的孩子,邮递员等等。为此,你需要更强大的面部识别设施。 OpenCV计算机视觉库 该项目通常以其软件定义和开发计划(并从根本上受其约束)开始。在过去的几十年中,计算机视觉主要是一个学术研究领域;因此,在这个特定领域还没有一个庞大,成熟的行业专业知识库。另外,学术实验往往不能广泛地应用于现实世界的实施,例如,环境照明和天气条件可以在不同的使用情况之间变化,并且偏离研究实验室中发现的更受控制的条件。 幸运的是,像往常一样,开源社区需要资源帮助。 OpenCV(开源计算机视觉)库起源于英特尔的研究部门;该公司在2000年CVPR(IEEE计算机视觉和模式识别,一个着名的计算机视觉会议)上正式将其交给公众。在上半年的测试版中,OpenCV在2006年获得了v1.0“黄金”地位,其次是三年后的v2.0和2015年中期的v3.0(v3.1是最新版本,截至去年12月) )。 OpenCV,根据BSD许可证发布,可免费用于学术和商业用途。它采用优化的C/C ++编写,具有C ++,C,Python和Java接口,支持Windows,Linux,Mac OS,iOS和Android操作系统。特别是对于这个特殊的监控摄像机项目,该库包含超过2,500种算法,包括可用于识别物体以及跟踪物体,以及检测和识别人脸以及对人类行为进行分类的算法。 Microchip Technology的PIC32MZ EF系列MCU 然而,值得一提的是使用OpenCV的一个潜在缺点。该库的以Intel和PC为中心的起源反映在其中包含的大部分基础代码都是基于浮点的事实中,这对于某些仅定点的嵌入式系统设计而言可能是有问题的。说实话,大多数计算机视觉功能甚至不需要浮点精度。因此,一些处理器供应商已经开发了部分或全部OpenCV库的体系结构定制版本,解决了代码的浮点到定点转换以及提供其他优化。但是,如果您自己坚持进行转换,那么这种努力可能会成本和时间过高。 Microchip的新型PIC32MZ EF MCU为OpenCV浮点问题提供了直接的替代解决方案(图1) )。其核心是高性能32位MIPS microAptive处理器,运行频率高达200 MHz,能够处理各种计算机视觉功能。此外,反映了48个成员产品系列中的“EF”后缀,Microchip还在整数CPU旁嵌了一个32位和64位IEEE 754兼容的七级FPU,能够运行浮点OpenCV代码不变     图1:高性能CPU与32位和64位FPU协处理器的组合使Microchip的PIC32MZ EF MCU成为可能使用开源代码时引人注目的候选人。 (图片由Microchip Technology提供) PIC32MZ EF的其他有用方面包括其集成的10/100 Mbit以太网MAC和一系列系统接口(各种类型和数量在某种程度上取决于封装和引脚排列...... MCU系列有多种选择) 。 MAC与外部PHY相结合,可直接支持监控摄像机的网络连接需求(如果有线以太网是您选择的网络技术),或通过外部有线到无线以太网桥间接支持。或者,您可以通过连接到PIC32MZ EF USB 2.0或其他接口端口的外部收发器实现无线蜂窝和/或以太网连接。 图像传感器替代方案 前面提到的MCU接口分集不仅有利于提供网络连接的多样性,而且有利于图像传感器的灵活性。将摄像机连接到PIC32MZ EF的一种简单方法是在设计中集成OmniVision Technologies OVM7690 VGA分辨率摄像机模块,通过8位I/O端口连接到MCU(图2)。这种方法有利于几个关键原因;例如,OVM7690已经包含64°视场(对角线),F/3.0镜头形式的晶圆级光学元件,因此您无需在设计中添加单独的光学子系统。此外,OVM7690嵌入了专用的图像处理器,从而减轻了PIC32MZ EF的图像预处理任务,例如去马赛克,重新缩放,格式转换和曝光控制。   [!--empirenews.page--]       图2:集成的相机模块简化设计(顶部),但它提供的图像虽然赏心悦目,但可能不太适合计算机视觉处理比传统图像传感器的未处理输出(底部)。 (图片分别由OmniVision Technologies和安森美半导体提供) 然而,存在可能的情况,可能迫使您使用传统的图像传感器,例如安森美半导体的VGA分辨率NOIL1SM0300A,结合您自己设计的镜头,并通过其SPI端口连接到PIC32MZ EF。首先,相反,人眼赏心悦目的图像可能被视为对计算机视觉处理算法有害。例如,由图像预处理器自动完成的边缘增强可能会导致使对象与其背景区分开来的任务变得复杂。自动曝光控制,白平衡和黑平衡,色彩校正以及通常由相机模块中内置的图像协处理器默认执行的类似任务也是如此。 例如,您可能还需要不同于传感器模块制造商提供的镜头焦距和/或光圈。然而,无论您使用集成摄像头模块还是独立图像传感器,您都可能会发现具有成本效益的VGA分辨率产品选项就足够了;有时,甚至更便宜的QVGA或CIF分辨率产品甚至都是你需要的。您可能需要在分辨率上超过3 M像素的唯一情况是,如果您试图辨别远处的物体,或者在特别差的环境观察条件下,这两种情况都会受益于更大的源图像细节。如果您的目标客户坚持观看“HD”视频,您也可以选择更高分辨率的图像传感器或相机,无论计算机视觉软件是否需要它。 本地大容量存储 回想一下,该项目的基本目标是仅在相机“看到”感兴趣的事件时记录视频,并且仅在该事件持续的时间内记录视频。在这样做时,该实现最小化了设计所需的闪存或其他存储技术所需的容量(更不用说在该过程中节省宝贵的电池寿命)。尽管如此,512 KB到2 MB的闪存,以及集成在各种PIC32MZ EF MCU系列成员中的128 KB到512 KB的RAM,可能足以满足非易失性代码存储和瞬态数据存储的需要,更高容量的外部存储用于视频剪辑本身仍然是必要的。 您可以随时使用独立的NAND闪存设备(或其中一些),当然,通过I/O总线与MCU配对。但是,您需要开发自己的媒体管理软件,以处理背景“垃圾收集”清理闪存擦除块,这些块已经填满了有效和/或退役的视频数据,例如,以及磨损等级媒体是为了防止某些擦除块与其他擦除块“过热”。此外,这种媒体管理需要由MCU本身处理,从而消耗宝贵的处理器周期,否则可能会用于计算机视觉处理和其他任务。 相反,请考虑使用闪存大容量存储解决方案其中包括自己的媒体管理控制器。选项包括可移动SD卡(以及更小的迷你SD和micro SD兄弟),以及美光科技的BGA封装的e.MMC NAND闪存;这两个选项都通过几个引脚的I/O总线连接到PIC32MZ EF MCU(图3)。根据捕获的帧分辨率,帧速率和压缩格式,例如,Micron的32 GByte e.MMC应该可以存储数十分钟到数小时的视频。此外,通过电子邮件,短信或其他提醒,您可以将新视频的捕获状态(以及可选地,与所有视频本身一起)传达给监控系统所有者;视频将保留在相机中,以供后续查看,存档和/或删除。     图3:带有集成媒体管理控制器的闪存大容量存储解决方案可以释放系统处理器来处理其他任务并简化软件开发工作。 (图片由Micron Technology提供) 结论 该项目描述无疑是无所不包的;例如,仍然需要添加AC/DC和DC步进电源子系统,您可能还需要包括麦克风和ADC,以便与图像一起记录音频。但是,它涵盖了设计的一些关键部分。每个算法越复杂,你组合的越多,你最有可能最终使PIC32MZ EF的CPU和FPU的处理能力过载。话虽如此,新的算法,如用于对象识别的新兴卷积神经网络“深度学习”技术(图4),以及现有算法的优化一直在出现。     图4:卷积神经网络(CNN)和其他“深度学习”方法,一旦经过一系列参考图像的训练,已被证明可以在实质性处理和实际处理的权衡中提供令人印象深刻的物体识别结果。内存要求。 (图片由维基百科提供) 强烈建议在生产前进行大量现场测试;不可避免地,您将遇到在产品开发过程中未考虑的环境条件和使用场景,这将需要进行算法微调。除了实现细微差别之外,将运行开源软件(如OpenCV)的PIC32MZ EF MCU等经济高效的处理器与传感器或相机模块捕获的图像相结合,存储到驻留闪存并通过网络连接进行传输,各种有趣的应用:现有产品的增强和全新的产品类别。

    时间:2019-04-07 关键词: 测试 电源技术解析 AC/DC

  • Power Integrations与高通合作开发针对移动设备的快速充电技术

      全新CHY100 IC可设计出基于Qualcomm Quick Charge 2.0平台的智能AC-DC墙插式充电器;可将智能手机和平板电脑的充电时间最多缩短75% 21ic讯 Power Integrations公司今日宣布推出第一款AC-DC墙插式充电器接口IC – CHY100,移动设备设计师可利用它设计出基于高通Quick Charge 2.0协议的充电器。Quick Charge 2.0于今年早些时候发布,它可以使用户的充电速度比传统技术快75%。 与Power Integrations的AC-DC开关IC结合使用,CHY100 IC集成了所有必需的元件,能够将Quick Charge 2.0平台的功能增加到AC-DC墙插式充电器。CHY100可以检测到支持Quick Charge 2.0的设备(如手机)所发出的指令,然后调整AC-DC墙插式充电器的输出,使设备的电池获得更大的功率输入。当插入不支持Quick Charge 2.0协议的用电设备时,CHY100 IC可自动禁止高压/大功率输出,以确保充电安全。测试表明,采用大容量电池的智能手机使用Quick Charge 2.0充电器充满电只需一个小时的时间 – 与充电时间通常为四小时的传统定压充电器相比,其优势不言而喻。 高通公司产品管理总监Abid Hussain表示:“我们于今年早些时候推出了Quick Charge 2.0计划,最终我们选择Power Integrations作为我们的首席战略合作伙伴。我们感到非常高兴的是,他们能够在不到六个月的时间内交付符合规范、可随时生产的AC-DC墙插式适配器专用IC,使OEM厂商和适配器制造商能够立即实施Quick Charge 2.0。高通的Quick Charge 2.0可以将移动设备的充电时间缩短75%,它将很快成为整个手机和平板电脑行业内的新标准。” Power Integrations首席执行官Balu Balakrishnan补充道:“高通公司的Quick Charge 2.0技术对移动设备用户而言代表着重大的进步。随着移动设备的耗电量越来越大,OEM厂商开始纷纷设计容量更大、更持久耐用的电池。遗憾的是,由于标准型墙插式充电器的功率输出能力有限,使得充电时间变得更长,从而增加了用户停用设备的时间。高通公司的Quick Charge计划有助于解决充电瓶颈,我们很高兴能参与其中。” CHY100 IC适用于智能手机、平板电脑、上网本、数码相机、Bluetooth®附件以及USB功率输出端口等应用。该器件采用SOIC-8封装,基于10,000片的订单量每片单价为0.22美元。  

    时间:2013-07-19 关键词: 移动设备 快速充电 AC/DC 电源资讯

  • HEV 多节电池组设计和注意事项

    HEV 多节电池组设计和注意事项

    使用 TI 数字功率控制器和多节电池器件的HEV 多节电池组的方框图 (SBD)。     设计注意事项 插入式混合电动车 (PHEV) 和电池电动车 (BEV) 是两项快速兴起的技术,可使用功能强大的电机作为动力来源。为了给这些电机供电,在车辆中安装了由数百节电池(总计 300-400V)组成的大型电池组。由于电池的电量有限,PHEV 和 BEV 必须定期再充电,而这通常通过连接到电网来进行。 这些车辆的充电系统包含从 AC 线生成 DC 电压的 AC/DC 整流器,以及生成电池组所需的 DC 电压的 DC/DC 转换器。另外,高级充电系统还可能使用 PLC 调制解调器与电网通信,以便根据电网条件调节充电。在操作和充电过程中还必须仔细监控电池组,以便最大程度地提高能源使用率并延长电池使用寿命。 高性能模拟部件还可提供重要系统的功能和特性,例如传感器反馈、隔离、芯片电源和通信收发器。 bq7xPLxxx 器件系列专为多节电池组而设计。它们可以处理电源工具和电迁移率等较高功率应用中的电压和电流。电池组中串联的电池越多,影响电池组的状况和能源供应的充电状态、阻抗和电容的差异也就越大。bq7xPLxxx 器件包括使电池回到平衡状态的电路。这样可延长电池组的使用寿命并有助于为应用提供尽可能多的能源。每个 bq7xPLxxx 器件均可防止电池过充、过放电、过温和高电压的情况,从而保证电池组和系统的安全。

    时间:2014-01-22 关键词: 电源技术解析 控制 AC/DC 功率

  • 充电桩中剩余电流保护器的选用

    充电桩中剩余电流保护器的选用

    随着近两年来的新能源汽车数量的爆发式增长, 其配套设施充电桩的建设规模也随之扩大。 2010 年—2017 年七年间,我国充电桩数量已经从千余个增长至 21 万个。新能源汽车市场的增长离不开基础充电设施的建设,如何保证充电过程中的用电安全,尤其是防止泄漏电流对生命财产造成危害,是值得关注的问题。 剩余电流保护器(Residual Current Operated Protective Devices, RCD)作为一种漏电保护器,被广泛应用于低压配电系统中,用于防止电击事故、电气设备漏电损坏和电气火灾。同样在电动汽车充电领域,RCD也作为一种基本电气保护装置被广泛应用。 电动汽车充电一共有四种模式,在GB/T 18487.1-2015《电动汽车传导充电系统 第1部分:通用要求》中有明确说明。模式一使用充电连接电缆将电动汽车与交流电网相连,剩余电流保护主要依靠建筑配电箱中的剩余电流保护装置(RCD),由于不能保证所有现存建筑物装置都配有RCD,所以这种方式十分危险,已经被禁止使用;模式二在充电连接电缆上安装了缆上控制保护装置(IC-CPD),IC-CPD内部具有剩余电流检测保护功能;模式三使用专用供电设备,将电动汽车与交流电网直接连接,并且在专用供电设备上安装了控制导引装置,专用供电设备即交流充电桩;模式四将电动  随着近两年来的新能源汽车数量的爆发式增长, 其配套设施充电桩的建设规模也随之扩大。 2010 年—2017 年七年间,我国充电桩数量已经从千余个增长至 21 万个。新能源汽车市场的增长离不开基础充电设施的建设,如何保证充电过程中的用电安全,尤其是防止泄漏电流对生命财产造成危害,是值得关注的问题。 剩余电流保护器(Residual Current Operated Protective Devices, RCD)作为一种漏电保护器,被广泛应用于低压配电系统中,用于防止电击事故、电气设备漏电损坏和电气火灾。同样在电动汽车充电领域,RCD也作为一种基本电气保护装置被广泛应用。 电动汽车充电一共有四种模式,在GB/T 18487.1-2015《电动汽车传导充电系统 第1部分:通用要求》中有明确说明。模式一使用充电连接电缆将电动汽车与交流电网相连,剩余电流保护主要依靠建筑配电箱中的剩余电流保护装置(RCD),由于不能保证所有现存建筑物装置都配有RCD,所以这种方式十分危险,已经被禁止使用;模式二在充电连接电缆上安装了缆上控制保护装置(IC-CPD),IC-CPD内部具有剩余电流检测保护功能;模式三使用专用供电设备,将电动汽车与交流电网直接连接,并且在专用供电设备上安装了控制导引装置,专用供电设备即交流充电桩;模式四将电动汽车连接交流电网或直流电网时,使用了带控制导引功能的直流供电设备,即直流充电桩。在这里,我们主要讨论模式三、模式四充电桩内的剩余电流保护器的选用。 在GB/T 18487.1-2015中要求,交流供电设备的剩余电流保护器宜采用A型或B型,符合GB 14084.2-2008,GB 16916.1-2014和GB 22794-2008的相关要求。如图1所示为充电模式3控制导引电路原理图,在供电设备内部安装了剩余电流保护器。     图 1充电模式3控制导引电路原理图 什么是A型或者B型剩余电流保护器?我国的剩余电流保护装置(RCD)指导性标准GB/Z 6829-2008(IEC/TR 60755:2008,MOD)《剩余电流动作保护器的一般要求》从产品的基本结构、剩余电流类型、脱扣方式等方面作了划分。根据剩余电流类型可将RCD分为AC型、A型、B型。AC型剩余电流保护器:对突然施加或缓慢上升的剩余正弦交流电流确保脱扣的RCD。A型剩余电流保护器:包含AC型的特性并对脉动直流剩余电流、脉动直流剩余电流叠加6mA平滑剩余电流确保脱扣的RCD。B型剩余电流保护器:包含A型的保护特性,此外,还能对1000Hz及以下的正弦交流剩余电流、交流剩余电流叠加平滑直流剩余电流、脉动直流剩余电流叠加平滑剩余电流、两相或多相整流电路产生的脉动直流剩余电流、平滑直流剩余电流确保脱扣的RCD。     目前,由于B型RCD价格过于昂贵,国内大部分的交流充电桩内部安装的都是A型剩余电流保护器。下图所示为交流充电桩内部结构图,使用了A型剩余电流保护装置。     那么A型的剩余电流保护器能满足充电桩的漏电保护要求吗?我们来分析一下充电过程中可能产生的剩余电流类型。     图3电动汽车充电设施与电网及电动车间连接示意图 如图3所示,在使用交流充电桩充电过程中,交流充电桩和车辆耦合器与公共电网相连,桩内如果由于绝缘破坏,可能产生工频交流漏电流。在电动汽车部分,可能产生的漏电流主要来自于车载充电机漏电,充电机一般拓扑主要为AC/DC和DC/DC两部分。如下图所示为一种常见车载充电机的主电路图。     图4 一种车载充电机主电路原理图 AC/DC部分单相输入交流电首先经过EMI滤波,然后在Boost型APFC电路作用下将85~265V的交流电整流成稳定输出的直流400V电压,并为后级提供直流输入。DC/DC部分采用移相全桥LLC主电路将直流电压400V转化成蓄电池可接受的电压。当电路板与设备外壳之间绝缘损坏时,在整流部分可能产生脉动直流剩余电流,在Boost型APFC电路中可能会产生纹波系数很小的直流剩余电流。这里借用Bender的图来详细说明直流剩余电流的产生及危害。     图5 隔离式充电机直流漏电的产生 可以看到,在DC/DC部分推挽全桥变换器当中可能发生直流漏电,我国低压配电系统一般采用TN形式供电,设备金属外壳与工作零线相接,直流漏电会通过车身和PE线反馈到充电线路上,对整个系统电流波形造成影响。通过对等效电路的仿真,发现整个系统的电流波形会改变,如下图所示。 可以看到在后端发生直流漏电之后,也会影响到前级电路,整流过后的脉动直流波形发生畸变,产生尖刺,逐级对后端电路产生干扰,影响到充电效果,甚至影响蓄电池寿命。另一方面,由于TN系统的存在,这种故障不会在车身形成较大电压,对人体危害较小,然而如果连接系统地线缺失或者PE线断开,那么这部分电压就会伤害到人体。实际上国内很多地方尤其农村地区PE线地线的连接都存在问题。现有的A型RCD仅能在检测脉动直流漏电时不受直流6mA电流的干扰,而无法检测到直流漏电并断开保护,当直流漏电大于6mA时,由于直流剩余电流会引起磁芯预先磁化,使脱扣值增大,导致A型RCD无法正常动作,因而必须使用B型RCD进行保护! 同样的在直流充电桩内部是通过非车载充电机将市电转换成高精度直流电给蓄电池充电。直流充电桩漏电保护分为交流侧和直流侧,理论上交流侧也需要增加B型RCD进行保护,直流侧需要加装直流对地绝缘监测装置,检测直流正极和负极对地绝缘检测情况。 在可预见的未来内,随着新能源汽车走进千家万户,充电桩将成为老百姓生活中必不可少的一部分,因而,充电桩内剩余电流保护器的更新换代十分必要,只有安全的用电环境才能让大家放心地享受新能源汽车带来的便利。 Magtron基于iFluxgate技术的SoC芯片整体方案,为B型漏电保护进行了数字化集成,为RCCB从传统的AC型/A型向B型的技术升级,提供了一套高性价比的B型漏电解决方案,为充电设备的用电安全提供了更好的保障。 0次

    时间:2018-07-04 关键词: 交流 电源技术解析 DC/DC AC/DC

  • 分布式供电电源系统的原理电路图

    分布式供电电源系统的原理电路图

    系统由前端转换器和后端转换器组成:前端转换器(Front End Converter)包括带有功率因数校正(PFC)的AC/DC转换器和400/48 V DC/DC转换器,均由若干个模块并联组成。交流输入电压经过整流后,通过PFC转换器得到400V直流电压,然后再由DC/DC转换器将400 V直流电压转换成48 V的直流电压接到母线;后端转换器是一组负载转换器,或称为POL(Pointof Load)转换器,将48 V的母线电压,转换成负载所需的直流电压,如5 V、3 V等。可见在分布式供电电源系统中,AC/DC和DC/DC转换器模块的并联都已得到了广泛应用。  

    时间:2015-07-20 关键词: DC/DC AC/DC 电源DC/DC

  • 一个分布式供电电源系统的原理图

    一个分布式供电电源系统的原理图

    一个分布式供电电源系统的原理框图。系统由前端转换器和后端转换器组成:前端转换器(Front End Converter)包括带有功率因数校正(PFC)的AC/DC转换器和400/48 V DC/DC转换器,均由若干个模块并联组成。交流输入电压经过整流后,通过PFC转换器得到400V直流电压,然后再由DC/DC转换器将400 V直流电压转换成48 V的直流电压接到母线;后端转换器是一组负载转换器,或称为POL(Pointof Load)转换器,将48 V的母线电压,转换成负载所需的直流电压,如5 V、3 V等。可见在分布式供电电源系统中,AC/DC和DC/DC转换器模块的并联都已得到了广泛应用。  

    时间:2016-04-15 关键词: DC/DC AC/DC 电源DC/DC

  • 具备 PFC 的 AC/DC 隔离电源(> 90W)

    具备 PFC 的 AC/DC 隔离电源(> 90W)

    电路图     设计注意事项 具备 PFC 的 AC/DC 隔离电源(大于 90W 时) 具备 PFC 的 AC/DC 隔离电源(大于 90W 时)用于将 AC 电力线转换成隔离稳压 DC 输出,以便为笔记本电脑和其它设备供电。通常,这些操作具有宽范围的 AC 输入,从 85V 到 265V AC(便于与全球源电压兼容)。一般来说,在 12V 至 20V 范围之间只有一个可与大多数电池组兼容的输出。 通常,超过大约 90W 时,使用功率因数校正 (PFC)。 AC/DC 电源的最大好处之一就是高效率。为此,需要采用零电压开关。尤其是,此有源钳位和重置技术具有零电压开关、简易性和少组件等优点。

    时间:2014-05-08 关键词: AC/DC 隔离电源 电源AC/DC

  • 不具备 PFC 的 AC/DC 隔离电源 (< 90W)

    不具备 PFC 的 AC/DC 隔离电源 (< 90W)

    电路图   设计注意事项 不具备 PFC 的 AC/DC 隔离电源(小于 90W 时) 不具备 PFC 的 AC/DC 隔离电源(大于 90W 时)用于将 AC 电力线转换成隔离稳压 DC 输出,以便为笔记本电脑和其它设备供电。通常,这些操作具有宽范围的 AC 输入,从 85V 到 265V AC(便于与全球源电压兼容)。一般来说,在 12V 至 20V 范围之间只有一个可与大多数电池组兼容的输出。 通常,低于大约 90W 时,不使用功率因数校正 (PFC)。 AC/DC 电源的最大好处之一就是高效率。为此,需要采用零电压开关。尤其是,此有源钳位和重置技术具有零电压开关、简易性和少组件等优点。

    时间:2014-05-08 关键词: AC/DC 隔离电源 电源AC/DC

  • 具备 PFC 的 AC/DC 非隔离电源 (> 90W)

    具备 PFC 的 AC/DC 非隔离电源 (> 90W)

    电路图 设计注意事项 具备 PFC 的 AC/DC 非隔离电源(大于 90W 时) 具备 PFC 的 AC/DC 非隔离电源(大于 90W 时)用于将 AC 电力线转换 成 DC 输出。随后此 DC 输出被过滤并调节至符合应用的电压。 通常,功率超过大约 90W 时,将使用功率因数校正 (PFC)。

    时间:2014-05-08 关键词: AC/DC 非隔离电源 电源AC/DC

  • 一个分布式供电电源系统的原理图

    一个分布式供电电源系统的原理图

    一个分布式供电电源系统的原理框图。系统由前端转换器和后端转换器组成:前端转换器(Front End Converter)包括带有功率因数校正(PFC)的AC/DC转换器和400/48 V DC/DC转换器,均由若干个模块并联组成。交流输入电压经过整流后,通过PFC转换器得到400V直流电压,然后再由DC/DC转换器将400 V直流电压转换成48 V的直流电压接到母线;后端转换器是一组负载转换器,或称为POL(Pointof Load)转换器,将48 V的母线电压,转换成负载所需的直流电压,如5 V、3 V等。可见在分布式供电电源系统中,AC/DC和DC/DC转换器模块的并联都已得到了广泛应用。  

    时间:2014-06-16 关键词: DC/DC AC/DC 电源AC/DC

  • 基于罗氏线圈的电流变送器设计与应用

    基于罗氏线圈的电流变送器设计与应用

    近年来,随着现代高压、超高压输电网络的建设,电力系统正朝着大容量、高压大电流方向发展,而用于电流测量的传统的电磁式电流互感器已无法满足其要求,在大电流下铁心磁路下易饱和,对测量结果产生较大的误差。而罗氏线圈互感器,具有测量范围宽、精度高、无磁饱和、体积小等优点,正逐步取代传统的电磁式电流互感器,在电力系统中具有广阔的应用前景。 本文介绍一种基于罗氏线圈的电流变送器的设计,对电网中的大交流电流进行实时测量,该变送器采用XTR115芯片将罗氏线圈产生的电压信号转换电流信号,输出DC4~20mA电流信号。 工作原理及设计 罗氏线圈是将导线均匀的密绕在环形截面非磁性骨架上而形成的空心电感线圈,采用罗氏线圈作为电网中电流测量的传感头,让通有大电流的导线垂直穿过线圈的中心,产生电磁感应,从而感应出被测电流大小的电压信号。将罗氏线圈产生的电压信号接入到信号调理模块上,进行信号处理,最后输出工业标准信号DC4-20mA。电路设计框架图如图1所示。     信号调理电路 信号调理电路实现对输入信号的隔离输入,包括信号滤波、整流电路以及信号积分电路。该电路主要是对罗氏线圈感应输出的电压信号通过RC滤波,再经过电阻分压后接入到采用双电源运放芯片的输入脚上,采用运算放大器构成近似积分器,合理选择选择器件参数,能够保证传感器的测量灵敏度、精度和信号响应带宽。 真有效值转换电路 真有效值转换电路实现电路中AC/DC真有效值转换,将输入的交流信号通过真有效值芯片转化为真有效值的直流电压,能够精确测量各种电压波形的有效值,而不必考虑被测波形的参数以及失真。如图2所示:电路中,Ui信号经过电容C5隔直后输入到真有效值芯片中,其中电容C8,C9的作用是滤掉该电路中的高频干扰,采用双电源工作方式,满足真有效值的工作要求。     放大电路 放大电路的作用是将真有效值转换电路输出的电压信号经过RC滤波电路后进行适当的放大,采用运放芯片,在满足零点输出功耗要求的同时,调节电路中的放大参数,使电路最后输出能达到满度额定值。 信号输出电路 信号输出电路主要采用TI公司生产的精密电流变送芯片XTR115,其具有精度高,芯片功耗小以及非线性误差小等优点,内部产生2.5V基准电压,且内部带有+5V的精密稳压器,可以给外部电路(例如电路中的放大器)单独供电,从而简化了外部电源的设计,如图3所示电路。 采用XTR115芯片设计,要严格控制电流的功耗,保证该变送器自身耗电(包括传感器在内的全部电路)不大于3.5mA,在XTR115前置调零电路,作为变送器的零点调节,使变送器保证零点输出4mA。     抗干扰措施 电流变送器使用电流信号作为传输信号,有较高的抗干扰能力,但由于传输距离较远,加上工业现场的复杂性,在设计上还要考虑电气隔离,抗干扰措施。 本文所设计的罗氏线圈变送器采用电源隔离模块,降低纹波干扰,提高系统可靠性,与此同时,在电源输入端串入一只二极管,进行反极性保护;线路板设计时注意电子器件的布局布线,以减少干扰信号。[!--empirenews.page--] 产品介绍 某公司生产的BR系列罗氏线圈电流变送器严格按照GB/T13850-1998《交流电量转化为模拟量或数字信号的电测量变送器》设计,采用电磁感应原理,对电网中的交流大电流进行实时测量,采用真有效值和线性补偿技术,将其隔离变换为标准的直流信号输出。DC24V安全电压供电,具有高精度、高隔离、高安全性、低功耗等特点,可广泛用于冶金、电镀、焊接等领域。 产品选型 BR-AI罗氏线圈电流变送器     根据输入电流范围选择不同规格的线圈长度(注:可根据客户需要另行定制)。 输入电流范围线圈长度(mm) AC 200A--1000A350 AC 1200A--2000A370 AC 2500A--5000A450 AC 6300A--20000A600 AC 20kA-100kA可定制 ≤2400 技术指标 技术参数指标 输入信号AC 电流 200A~20kA 输出标称值DC 4-20mA 负载电阻≤500Ω 输出纹波输出纹波峰峰值 ≤ 100mV 工作电源DC24V 允许范围21.6 V~26.4V 功耗≤0.5W 准确级0.5级 温度漂移系数≤200ppm 响应时间≤500mS 安装方式支架固定 应用 本产品可以直接将被测主回路交流电流转换成按线性比例输出的DC 4~20mA(通过250Ω 电阻转换DC 1~5V)恒流环标准信号,连续输送到接收装置(计算机或显示仪表)。本产品可测输入信号范围广,最大输入信号可达AC20000A,具有极佳的瞬态跟踪能力,可以用于测量尺寸很大或形状不规则的导体电流。可广泛用于冶金、电镀、焊接等传统测量电流的CT无法正常使用的大电流检测领域。 结束语 本文所设计的罗氏线圈变送器结构紧凑、性能稳定、测量精度高、输出信号线性度好、调试及标定方便、安装方便、产品一致性好。基于以上特点,这种应用电流环变送技术的罗氏线圈变送器在冶金、电镀、焊接等领域具有非常广泛的前景,将大电流转换为小电流,减小了操作人员工作的危险性;它能够有效解决生产设备的实时监测与监控问题,提高生产设备运行的智能性,减少电力改造的成本。

    时间:2017-02-10 关键词: 二极管 AC/DC 电源AC/DC

  • 万用表AC/DC自动转换电路图

    万用表AC/DC自动转换电路图

    如图所示是万用表AC/DC自动转换电路。普通的数字万用表靠手动操作才能完成交、直流测量转换。新型DT860D型数字万用表采用NJU9207F自动量程转换芯片,并配以外围辅助电路实现交流-直流(AC/DC)自动转换测量功能。

    时间:2012-05-05 关键词: 自动 电路图 AC/DC 转换 万用表 电源整流单元

首页  上一页  1 2 3 4 5 6 下一页 尾页
发布文章

技术子站

更多

项目外包

更多

推荐博客