当前位置:首页 > LED驱动
  • LED驱动市场现状及趋势

    在LED照明市场的强劲驱动下,也带动LED驱动市场成长,LED驱动规模逐渐攀升,据市场研究机构预测,LED驱动IC市场营收规模将由2010年的近20亿美元,在2015年达到近35亿美元,期间平均复合年成长率为12%。该机构并指出,LED照明所需的LED驱动IC,会是该市场的成长主力,照明、汽车头灯等LED的新兴应用市场大量涌现,掀起了LED的又一波应用狂潮。 不过StrategiesUnlimited也指出,LED驱动市场规模扩大的同时,可能伴随产品价格的下滑;此外,AC-LED 产品虽使得所需驱动IC数量缩小、甚至不需要驱动IC,但并不会对预测期间的该市场营收产生显著冲击,甚至有助于加速LED照明产品市场渗透率成长。 StrategiesUnlimited估计照明用LED驱动IC市场成长率,在2010~2015年间可达40%;该领域技术所面临挑战包括可调光技术、省电效能、功率因子与价格。 LED驱动电源的使用现状 标准电灯正在经历一场革命。出于保护能源和应对全球气候变暖的考虑,美国一些州和其它一些国家已经禁止使用低能效的白炽灯泡。各种新技术正纷纷被用于替换白炽灯泡,其中紧凑型真空荧光灯(CFL)是主要替代方案。尽管这种CFL灯的功耗仅为白炽灯的20%,但却含有有毒物质汞。相比之下,LED灯可以提供更高效和更环保的解决方案。 LED最初的商业应用出现在上世纪七十年代,但因其光输出极低,应用范围也仅限于指示灯和计算器显示屏等领域。如今,能够产生白光的高功率LED在效率方面不断得以提升,价格也在逐年下降,因此它已成为主流照明应用值得考虑的选择之一。 通过全球LED技术领导厂商对材料、工艺和封装技术的努力改进,高亮度LED的发光效率和性能得到了显著提升,除了传统的背光和显示面板市场外,高亮度LED开始走向室内外普通照明、汽车内外照明、探照灯、交通灯等全新应用。这些都预示着LED驱动电源将有一个广阔的应用前景。 LED驱动电源面临的问题:在LED大放异彩的同时,LED驱动电源器则是LED产业链的发展的保障,LED电源的品质直接制约了LED产品的可靠性,因此,在LED产业链逐步完善的今日,LED驱动电源的成熟也至关重要。由于LED是特性敏感的半导体器件,又具有负温度特性,因而在应用过程中需要对其进行稳定工作状态和保护,从而产生了驱动的概念。LED器件对驱动电源的要求近乎于苛刻,LED不像普通的白炽灯泡,可以直接连接220V的交流市电。LED是2~3伏的低电压驱动,必须要设计复杂的变换电路,不同用途的LED灯,要配备不同的电源适配器。国际市场上国外客户对LED驱动电源的效率转换、有效功率、恒流精度、电源寿命、电磁兼容的要求都非常高,设计一款好的电源必须要综合考虑这些因数,因为电源在整个灯具中的作用就好比像人的心脏一样重要。 但是在市场一片繁荣的背景下,LED产品质量良莠不齐,对驱动电源的要求混乱,市场上LED产品如火如荼的发展态势下,就LED驱动电源企业而言,目前面临几个挑战。首先是驱动电路整体寿命,尤其是关键器件如电容在高温下的寿命直接影响到电源的寿命。其次是LED驱动器应挑战更高的转换效率,尤其是在驱动大功率LED时更是如此,因为所有未作为光输出的功率都作为热量耗散,电源转换效率的过低,影响了LED节能效果的发挥。第三,以大调光比高效率地对LED调光,同时能够保证在高和低亮度时颜色特性恒定。 争夺应用“潜力股”IC架构掀革新 在环保呼声高涨的今天,节能照明技术已经越来越受到大众的重视,欧、美许多国家甚至立法以规范照明管理。LED照明技术以其低功耗、长寿命的优势当之无愧的成为了节能照明技术的“排头兵”。[!--empirenews.page--] 除了演出照明、景观照明、住宅照明、防火照明等传统照明市场之外,汽车前灯照明市场也是LED照明技术发展的大好空间。TonyArmstrong甚至认为:增长最快的LED驱动器集成电路市场是汽车前灯照明,从现在到2011年,年复合增长率将超过150%。一个流行的应用领域是很多汽车和卡车的仪表板背光照明、内部照明和刹车灯。豪华型汽车制造商正在越来越多地采用最新的固态LED照明技术,用这些更轻、更小和更耐用的器件提供内部和外部照明,以提高未来车型的美感。 于是针对各种照明应用,如何提高LED发光效率成为LED驱动厂商们目前最为关注的话题。为了尽快推动LED照明市场的快速增长,各个厂商也相继推出了一系列优秀的LED驱动产品。由于发光二极体(LED)驱动积体电路(IC)架构掀革新。LED驱动IC商已开始部署高功率LED驱动IC方案,将金属氧化物半导体场效电晶体(MOSFET)独立于LED驱动IC封装外,以因应商业照明市场日益高涨的高瓦数照明需求。 LED驱动IC顾名思义,即是应用于在LED上的驱动芯片,主要是用来控制通过LED的电流,以达到使LED发光的效果,受惠于LED的应用面不断扩大,LED驱动IC的发展也不断进步,产业规模持续扩大,成长性值得期待。 LED发光原理是将电能转换为光,也就是对化合物半导体施加电流,透过电子与电洞的结合,过剩的能量会以光的形式释出,达成发光的效果。由于发光亮度由电流大小决定,通过LED的电流越强,亮度就越亮,因此,电流的稳定度将影响LED发光的质量,一般在控制LED电流的方法会采用供应固定电压的方式,并以电阻的方式调整通过LED的电流强度,这是成本最低的解决方案,这样做的缺点是,电阻不但增加功耗,无法达到节电的效果,也会增加热能,降低LED寿命,同时,当电源供应来源的电压产生变化时,无法及时调整通过LED的电流量,因而可能产生LED发光不稳定的现象。 由于控制LED电流的要求提升,LED驱动IC的需求亦应运而生,预估在LED背光源应用大幅成长以及LED大型广告牌分辨率持续提高下,采用可提供精确电流的LED驱动IC将成为市场的主流。 意法半导体技术行销经理吴玉君表示,今年下半年意法半导体LED驱动IC架构将会有新的转变,并带给客户更多的产品组合选择。 意法半导体(ST)技术行销经理吴玉君表示,今年LED照明市场最主要的转变在于客户对于高功率LED照明灯泡类型如抛物面镀铝反射灯的需求上涨,此种聚光灯型经过电路串联后,往往需要30~40瓦的功率才能启动。 吴玉君指出,由于之前居家照明用的球泡灯仅需12瓦左右功率即可运作,因此,MOSFET大多由于空间限制,便与LED驱动IC封装在一起。不过,这样的封装形式不仅限制驱动IC应用的LED灯瓦数,更重要的是若MOSFET导通电阻值(RDS(ON))低,则将以高电流运作,以提高效率,但其若同时与驱动IC放在一起,反而会让灯泡整体功耗变高。 英飞凌(Infineon)电源管理及多元电子事业处资深经理张文贵亦有相似看法,他指出,烛光灯、球泡灯等封装形式较小的LED灯可采整合式方案,至于户外LED照明应用,则因其常有雷击透过电力线传导到接地线,进而对LED路灯照明品质产生干扰的情形,为提高驱动IC可靠度,1,000伏特(V)以上的高压MOSFET将成为重要关键。 张文贵进一步指出,在这样的应用中,若将MOSFET独立于驱动IC外将是较好的安排,原因在于MOSFET与驱动IC于制程上有高低压之分,若将两者放在一起,结果将是MOSFET与驱动IC的功能将无法在电路设计过程中确实优化,厂商还须要加上更多元件补强功能,如此一来,整体电路板成本反而未必能因整合而降低。 吴玉君指出,意法半导体针对LED市场最新趋势,将于今年第四季推出新的脉宽调变(PWM)LED驱动IC,并额外搭配800伏特MOSFET,这样的驱动IC架构将有助于意法半导体抢攻高功率LED照明应用市场,并带给客户更多的设计弹性。[!--empirenews.page--] LED驱动技术发展趋势 从目前市场了解来看,LED日光灯管式结构应用会较好发展。从家居照明来看,合适的照明强度还是需要10W以上节能灯具产品。荧光灯大多在7~15W功率,节能型日光灯在20~40W功率。如果用LED集中设计10W以上的功率,散热会令我们很头痛,也是影响成本的重要因数,显然像灯泡结构式的产品很不适合LED应用。像射灯这样产品不大可能规模量产民用。日光灯管式结构符合LED散热要求,也符合现有灯具接口方式。 厂商从成本考量,大多设计功率在20W以内的LED灯管,从不断增长的LED亮度来说20W符合未来LED照明光源发展要求,待 LM值达到150LM/W时,才是LED照明大呼节能辉煌时代!未来的方式是,先恒压,再线性恒流整合方式。电压保证在一定范围内适应负载需要,按LED 有不同的Vf值3~3.6V之间,那按LED实际数量乘于3V计算出最低值,再按3.6V电压乘于数量计算出最大可能电压值,最终确定电源部分需要调整的电压范围。再线性恒流源后端恒流,可以多路恒流源并联使用,也可以单路多个恒流源增加电流使用。前端电压源部分采样检测恒流源压差,调整合适负载需求电压,从而达到高效、灵活的驱动线路需求。 具体表现为以下四点: 1、针对LED的特点开发一系列恒压恒流控制电子电路,利用集成电路技术将每颗LED的输入电流控制在最佳电流值,使得LED能获得稳定的电流,并产生最高的输出光通量。LED驱动电路在输入电压和环境温度等因素发生变动的情况下最好能控制LED电流的大小。 2、LED驱动电路具有智能控制功能,使LED的负载电流能够在各种因素的影响下都能控制在预先设计的水平上。当负载电流因各种因素而产生变化时,初级控制IC可以通过控制开关使负载电流回到初始设计值上。 3、在控制电路电路设计方面,要向集中控制,标准模块化,系统可扩展性三方面发展。 4、在目前LED光效和光通量有限的情况下,充分发挥LED色彩多样性的特点,开发变色LED灯饰的控制电路。

    时间:2013-09-26 关键词: led照明 LED驱动 电源资讯

  • 2014中国LED芯片市场:LED照明驱动市场劲涨三成

    2014年是中国LED市场的乐观年,IHS报告显示,LED晶粒营收将增长36.6%达到14.75亿元,封装LED营收将增长14.8%达到48.12亿美元。IHS同时预计,在不久的将来中国供应商在国际市场的地位将提升。 IHS表示,目前中国最大的LED公司三安光电,拥有全国超过30%的生产份额,目前仍在扩大产能。作为新的产能扩充方案,其在芜湖项目现已进入到了第二阶段。 其最大的竞争对手晶元光电将于今年直接竞争晶圆产能的领导地位。 同时,木林森被评估为2013年中国最大的LED封装企业,在成千上万的其他中国竞争对手中,木林森占有9%以上的市场份额。 自2013年以来照明一直是中国LED市场增长的主要驱动力,预计今年LED照明在LED所有应用中将占据超过50%的市场份额。由于LED代替铜管灯逐渐被接受、LED一般灯具成本下降、经济持续增长,以及白炽灯逐步淘汰,导致LED灯在中国的普及率提高。 LED晶粒的背光市场2013年比2012年增长了74%。预计随着技术的进步,中国企业的市场份额将持续增长,通过替代来自台湾和韩国进口产品。 IHS指出,虽然中国市场规模十分巨大,但是大部分中国LED企业的国际销量依然很低,他们正在迅速追赶。规模较大的公司正在开发它们自己的品牌,IHS预计,在不久的将来中国供应商在国际市场的地位将提升。

    时间:2014-04-22 关键词: LED LED驱动 电源资讯

  • Micro-LED三种驱动方式对比

    Micro-LED三种驱动方式对比

    Micro-LED是电流驱动型发光器件,其驱动方式一般只有两种模式:无源选址驱动(PM:Passive Matrix,又称无源寻址、被动寻址、无源驱动等等)与有源选址驱动(AM:Active Matrix,又称有源寻址、主动寻址、有源驱动等),此文还延伸有源驱动的另一种“半有源”驱动。这几种模式具有不同的驱动原理与应用特色,下面将通过电路图来具体介绍其原理。 什么是PM驱动模式? 无源选址驱动模式把阵列中每一列的LED像素的阳极(P-electrode)连接到列扫描线(Data Current Source),同时把每一行的LED像素的阴极(N-electrode)连接到行扫描线(Scan Line)。当某一特定的第Y列扫描线和第X行扫描线被选通的时候,其交叉点(X,Y)的LED像素即会被点亮。整个屏幕以这种方式进行高速逐点扫描即可实现显示画面,如图1所示。   这种扫描方式结构简单,较为容易实现。 但不足之处是连线复杂(需要X+Y根连线),寄生电阻电容大导致效率低,像素发光时间短(1场/XY)从而导致有效亮度低,像素之间容易串扰,并且对扫描信号的频率需求较高。 另外一种优化的无源选址驱动方式是在列扫描部分加入锁存器,其作用是把某一时刻第X行所有像素的列扫描信号(Y1, Y2… … Yn)提前存储在锁存器中。当第X行被选通后,上述的Y1-Yn信号同时加载到像素上[3]。这种驱动方式可以降低列驱动信号频率,增加显示画面的亮度和质量。但仍然无法克服无源选址驱动方式的天生缺陷:连线庞杂,易串扰,像素选通信号无法保存等。而有源选址驱动方式为上述困难提供了良好的解决方案。 什么是AM驱动模式? 在有源选址驱动电路中,每个Micro-LED像素有其对应的独立驱动电路,驱动电流由驱动晶体管提供。基本的有源矩阵驱动电路为双晶体管单电容(2T1C:2 Transistor 1 Capacitor)电路,如图2所示。   每个像素电路中使用至少两个晶体管来控制输出电流,T1为选通晶体管,用来控制像素电路的开或关。T2是驱动个晶体管,与电压源联通并在一场(Frame)的时间内为Micro-LED提供稳定的电流。该电路中还有一个存储电容C1来储存数据信号(Vdata)。当该像素单元的扫描信号脉冲结束后,存储电容仍能保持驱动晶体管T2栅极的电压,从而为Micro-LED像素源源不断的驱动电流,直到这个Frame结束。 2T1C驱动电路只是有源选址Micro-LED的一种基本像素电路结构,它结构较为简单并易于实现。但由于其本质是电压控制电流源(VCCS),而Micro-LED像素是电流型器件,所以在显示灰度的控制方面会带来一定的难度,这一点我们在后面的《Micro-LED的彩色化与灰阶》部分中会讨论。刘召军博士课题组曾提出一种4T2C的电流比例型Micro-LED像素电路,采用电流控制电流源(CCCS)的方式,在实现灰阶方面具有优势。 什么是“半有源”选址驱动方式 另外需要提及的是一种 “半有源”选址驱动方式[6]。这种驱动方式采用单晶体管作为Micro-LED像素的驱动电路(如图3所示),从而可以较好地避免像素之间的串扰现象。   三大驱动方式对比 与无源选址相比,有源选址方式有着明显的优势,更加适用于Micro-LED这种电流驱动型发光器件。现详细分析如下: ①有源选址的驱动能力更强,可实现更大面积的驱动。而无源选址的驱动能力受外部集成电路驱动性能的影响,驱动面积于分辨率受限制。 ② 有源选址有更好的亮度均匀性和对比度。在无源选址方式中,由于外部驱动集成电路驱动能力的有限,每个像素的亮度受这一列亮起像素的个数影响。一般来说,同一列的Micro-LED像素共享外部驱动集成电路的一个或多个输出引脚的驱动电流。所以,当两列中亮起的像素个数不一样的时,施加到每个LED像素上的驱动电流将会不一样,不同列的亮度就会差别很大。这个问题将会更加严重地体现在大面积显示应用中,如LED电视与LED大屏幕等。同时随着行数和列数的增加,这个问题也会变得更严峻。 ③ 有源选址可实现低功耗高效率。大面积显示应用需要比较大的像素密度,因此就必须尽可能减小电极尺寸,而驱动显示屏所需的电压也会极大的上升,大量的功率将损耗在行和列的扫描线上,从而导致效率低下。 ④ 高独立可控性。无源选址中,较高的驱动电压也会带来第二个麻烦,即串扰,也就是说,在无源选址LED阵列中,驱动电流理论上只从选定的LED像素通过,但周围的其他像素将会被电流脉冲影响,最终也会降低显示质量。有源选址方式则通过由选通晶体管和驱动晶体管构成的像素电路很好的避免了这种现象。 ⑤更高的分辨率。有源选址驱动的更适用于高PPI高分辨率的Micro-LED显示。 而第三种“半有源”驱动虽然可以较好地避免像素之间的串扰现象,但是由于其像素电路中没有存储电容,并且每一列的驱动电流信号需要单独调制,并不能完全达到上面列出的有源选址驱动方式的全部优势。 以蓝宝石衬底上外延生长的蓝光Micro-LED为例,像素和驱动晶体管T2的连接方式有图4所示的4种。但由于LED外延生长结构是p型氮化镓(GaN)在最表面而n型氮化镓在底层,如图5所示。从制备工艺角度出发驱动晶体管的输出端与Micro-LED像素的p电极连接较为合理,即图4中的(a)和(c)。 图4(a)中Micro-LED像素连接在N型驱动晶体管的源极(Source)。由外延生长(Epitaxial Growth)、制备工艺、及器件老化所产生的不均匀性所导致的Micro-LED电学特性的不均匀性将会直接影响驱动晶体管的VGS,从而造成显示图像的不均匀。而图4(c)中的Micro-LED像素连接在P型驱动晶体管的漏极(Drain),可以避免上述影响,其电流-电压关系图6所示。因此,有P管像素电路驱动Micro-LED较为适宜。      

    时间:2016-10-14 关键词: LED驱动 电源资讯

  • 驱动电源在景观照明中常见的问题

    驱动电源在景观照明中常见的问题

    景观照明是通过对人们在城市景观各空间中的行为、心理状态的分析,结合景观特性和周边环境,把景观特有的形态和空间内涵在夜晚用灯光的形式表现出来,重塑景观的白日风范,以及在夜间独具的美的视觉效果。景观照明大致可分为:道路景观照明、园林广场景观照明、 建筑景观照明。 随着社会经济的发展及人们的生活质量提高,人们对城市环境也提出越来越高的要求,城市景观照明作为一个城市发展的标志也越来越受人们的关注。景观照明是公共照明体系的重要组成部分,好的公共照明体系有助于形成积极的城市形象,不仅美化了城市环境,也体现了城市经济实力和现代化水平。   LED 照明经过多年应用的技术积累,现在已经基本成熟,在照明行业早已大规模的应用,已经步入了高速发展期。LED 景观照明也可以说是一种艺术,是城市的历史底蕴的一种艺术体现方式,点亮艺术,就需要可靠的电气保障,选用符合国家相关法规与标准的 LED 驱动电源,但在实际的应用中尚存在一些问题,如在 LED 驱动电源方面的要求包括高效率、高功率因子、高电流控制精度、高可靠性、安全隔离、符合 EMI 标准、体积小、成本低等,主要表现如下: 一、景观照明系统安全性问题 以人为本,在景观照明场所,应把人身安全作为第一要素,选用的驱动电源必须符合相应的安全标准,在安装施工的过程中,必须严格按照生产厂家的使用说明书,以及相关的操作指引进行规范的操作与施工;当照明线路及 LED 驱动电源发生电气故障时,为防止人身电击、电气线路损坏和电气火灾,应设短路保护、过负载保护及接地保护,用以切断供电电源或发出报警信号。为达到此目的,一般采用熔断器、断路器和剩余电流保护器进行保护。 选用相应的 LED 驱动电源是要注意以下几个方面: ⑴ 、尽量选用具有电气隔离的 LED 驱动电源。 ⑵ 、LED 驱动电源的带电部分与接地端的绝缘电阻大于 2MΩ。 ⑶、 LED 驱动电源的金属外壳部分必须可靠接地,且有明显的标识。   二、LED驱动电源防水失效问题 在户外 LED 景观照明的应用中,要特别注意防水的问题,因为水分的渗透可能引起 LED 驱动电源的短路而损坏。为了严谨做好防水,厂家会使用各种防水部件,无论是外壳的设计还是内部的灌封,一般都会严格按照 IP65 甚至 IP67 的等级要求去做,但是在实际使用中仍然有部分的 LED 驱动电源出现因防水而损坏的现象,其原因如下: ⑴、在景观照明施工现场的施工人员没有经过专业的培训,在安装 LED 驱动电源的时候没有按照说明书的要求操作,出现安装的角度,位置,环境,接线,密封等问题,最终导致使用过程中出现防水问题。 ⑵、选用不符合防水等级要求的劣质 LED 驱动电源,此类劣质 LED 驱动电源的外壳材料粗糙,装配不规整导致缝隙进水,电源内部采用防水性能差的灌封胶,有的出现内部灌半胶甚至不灌胶,导致不能有效的防止 PCB 上的元器件与水接触而损坏。 ⑶、没有按照产品的限制使用条件使用,使用的环境超出产品的防护等级,导致最终产品在使用过程中出现陆续损坏。 三、LED驱动电源雷击浪涌失效问题   雷击是一种常见的自然现象,特别是在雨季尤为常见。据统计其所带来的危害和损失全球每年以数千亿美元来计。雷击分为直接雷击和间接雷击,间接雷击主要包括传导雷击和感应雷击。由于直接雷所带来的能量冲击非常大,破坏力极强,一般电源是无法承受的。所以我们常说的防雷主要是对间接雷击的防护。 雷击所形成的浪涌冲击是一种瞬态波,是一种持续时间为微妙级的瞬变干扰,可以是浪涌电压也可以是浪涌电流。沿着电源线或其它路径(传导雷)或通过电磁场(感应雷)而传送至电源线路。其波形特征是先快速上升然后慢慢下降。这种现象会对电源产生致命的影响,防雷设计对户外 LED 电源来说是必须要考量的。 LED 驱动电源根据相关的国际标准 IEC61000-4-5,输入端口须满足此标准的规定:能承受线与线间 2KV、线与地间 4KV(即差模 2KV、共模 4KV 的标准)的浪涌冲击。同时对 LED 灯具交流电源端口同样有此要求。为了解决这一矛盾,提升产品的可靠性,很多的 LED 户外灯具往往是通过提高 LED 驱动电源的内部防雷等级,或者增加一个独立的浪涌抑制器来解决。 此外,在 LED 驱动电源的正确安装和使用方面也有一些事项值的注意。如电源必须可靠接地,以保证冲击能量有固定路径可泄放;采用专用线路为 LED 户外驱动电源供电,避免周边有大型的机电设备,以避免在机电设备启动或关闭时产生浪涌冲击;合理控制每条支路上灯具(或电源)的负载总量,避免因负载太大开机瞬间产生浪涌冲击;合理配置闸刀,开或关须逐级进行。这些都可有效地避免带来操作浪涌冲击,从而使得 LED 驱动电源能更可靠的工作。   四、LED灯闪问题 首先,确认灯具 LED 的串并数需要的驱动电压与电流,是否在 LED 驱动电源输出参数的标称范围内,如果超出标称范围可能会引起灯闪问题。 其次,确认整个照明回路中的布线压降范围,也就是说测量距离 LED 驱动电源最远的灯珠串的实际电压,再加上布线的压降要在 LED 驱动电源的最高输出电压范围内,如果超出 LED 驱动电源的最高输出电压则会引起灯闪。 再次,确认 LED 驱动电源的工作环境十分符合其说明书的要求,如输入交流电压的范围,过高或者过低的输入电压会触发 LED 驱动电源的欠压与过压保护;工作的环境温度已经散热的环境,工作环境温度过高或者散热环境不理想,如密闭,空气不流通等散热环境都有可能触发 LED 驱动电源的过热保护电路,从而引起灯闪。   最后,确认控制系统或者调光系统与 LED 驱动电源是否匹配,不同的控制系统或者调光系统对 LED 驱动电源有不同的要求,主要是注意控制端口的协议要相符合,调光端口的电压幅值,频率,接口的符合性。 五、LED驱动电源与控制系统匹配性问题 LED 景观照明智能控制系统是为了满足日益增多的城市景观照明的需求和“绿色照明工程”的要求而设计的新型控制系统。它包括PC机接口、主控制器、若干驱动器、连接这些模块的双芯总线以及用于景观功能和参数 设置的专用管理软件。 景观灯控制系统具备无线遥控、遥测、遥信等三遥的功能,采用数字化、智能化、模块化的数据采集终端,与上位机之间采用无线网络连接,总控制室配有集中监控系统,管理人员通过手机和地图界面控制和管理整个城市的景观灯、照明亮化集中控制系统,同时也具有现场手动控制功能。故 LED 驱动电源与控制系统匹配性要注意以下几个问题: ⑴ 、LED 驱动电源与控制系统的接口与通讯协议需要匹配。 ⑵ 、LED 驱动电源与控制系统的安规问题需要符合相关的标准与规定。 ⑶ 、LED 驱动电源与控制系统安装需要符合其使用环境条件的要求。 ⑷ 、系统的防盗问题。 六、LED驱动电源寿命问题 LED 驱动电源的寿命很大程度上影响着 LED 灯具的寿命,因此选用符合寿命要求的 LED 驱动电源,就成为了提升照明系统寿命的关键。 对于 LED 驱动电源本身的寿命来说,影响其寿命的性能主要包括三个方面:即环境特性,部件特性和电力特性,具体表现在如下几个方面: ⑴、实际应用环境的影响:高湿环境、高温环境、多尘环境、强磁环境、震动环境都会对 LED 驱动电源的最终寿命产生影响。 ⑵、LED 灯具温度环境的影响:灯具内温小于 65 度、灯具外壳小于 75 度、电源温度小于 60 度是基本要求。因为不仅电源本身会发热,灯具也会发热,这两种热源如何合理的散发出去是灯具设计工程师必须考虑的问题,一定要防止热量的过度集中,形成热岛效应,影响电源寿命。 ⑶供电电网的影响:不稳定电网的电压输入会对 LED 电源的部件造成冲击,从而影响 LED 驱动的使用寿命脉。 ⑷ 绝缘和安装的影响:产品的正确安装和良好的绝缘会增强 LED 电源的生命力。 ⑸电解电容的影响:当电解电容内部温度变高之后,电解电容器的封口部位会漏出气化的电解液,这种现象会随着温度的升高而加速,一般认为温度每上升 10℃,泄漏速度会提高至 2 倍,也就是说其寿命也会缩短 2 倍。因此可以说电解电容器决定了 LED驱动电源的寿命。 ⑹开关次数的影响:LED 驱动电源内部设有电容器输入型的整流回路,在通入电源时,会产生浪涌电流,此浪涌电流会对电源内部的器件产生冲击,从而影响 LED 驱动电源的使用寿命。   总之,现代城市的美丽夜景,依赖着户外的 LED 景观照明来衬托,体现着城市的文化品位,它需要科学地统筹、精巧地策划和完美设计,以达到人与环境的和谐。同时必须重视在应用过程中控制系统与 LED 驱动电源出现的种种问题,提高其可靠性,使之可以为城市的夜晚带来一道亮丽的风景,因为景观照明被赋予很多积极的寓意,流光溢彩、五彩纷呈间,不仅透露着城镇生机勃发、积极进取的精神,更是象征着对国泰民安、盛世繁华的美好心愿。  

    时间:2017-06-23 关键词: led照明 LED驱动 景观照明 电源资讯

  • LED企业明微电子拟创业板IPO

    深圳市明微电子股份有限公司(以下简称“明微电子”)近期在证监会网站披露招股说明书,公司拟在创业板公开发行不超过1549.33万股,发行后总股本不超过6197.3334万股,保荐机构是招商证券。 据招股书披露,明微电子本次IPO计划募集资金4.57亿元,将投资于新一代LED显示屏驱动芯片研发及产业化、智能照明处理器研发及产业化和集成电路封装项目。 明微电子还在招股书中提到了存货跌价等一系列风险。明微电子相关负责人表示表示,公司存货主要由原材料、在产品、委外加工物资、发出商品和库存商品等构成。报告期各期末,净额分别为7,219.69万元、6,378.32万元和6,875.71 万元,占各年度总资产的比例分别为30.64%、28.37%和26.66%。随着公司业务规模的不断扩大,存货也会随之上升,可能给公司的资产流动性带来一定的不利影响。 在报告期内,明微电子计入当期收益的财政补助分别为1089.94万元、1,213.93万元和890.79万元,对发行人盈利能力影响程度整体减弱。如果公司未来不能获得政府补助或者获得的政府补助显著降低,可能会对公司当期净利润产生不利影响。 截至招股说明书签署之日,明微电子总股本4648万股,公司实际控制人王乐康先生共直接和间接控制表决权合计占本次发行前公司总股本的67.1816%。

    时间:2017-06-30 关键词: ipo LED驱动 电源资讯 明微电子

  • 英飞特全资子公司收到政府补助1202万元

    英飞特7月3日晚间发布公告,近日,公司收到全资子公司浙江英飞特光电有限公司的通知,根据与浙江省桐庐经济开发区管理委员会签订的投资协议,收到浙江省桐庐经济开发区管理委员会兑现的政府补助1,202.21万元。

    时间:2017-07-04 关键词: 补贴 LED驱动 电源资讯 英飞特

  • 茂硕电源又出手了,这次是为了什么?

    7月5日,茂硕电源发布《关于购买股权暨关联交易的公告》称,近日,公司与惠州茂硕能源科技有限公司(以下简称“惠州茂硕”)、新余爱达普投资发展中心(以下简称“新余爱达普”)签订了《股权转让协议书》:惠州茂硕将其持有加码技术有限公司(以下简称“加码技术”) 51%股权以人民币 765 万元的价格转让给公司,新余爱达普将其持有加码技术49%股权以人民币 735 万元的价格转让给公司,公司同意受让股权。 据悉,惠州茂硕是茂硕电源的控股子公司,茂硕电源拥有惠州茂硕89.6%的股权比例,惠州茂硕与新余爱达普共同出资设立加码技术。 《公告》显示,加码技术经营范围为:DC/DC 高效、高密度模块电源、医疗电源、通信电源、开关电源、高频变压器的研发和销售;经营进出口业务。数据显示,加码技术2016年度净利润为—0.23万元,2017年1月—5月(未经审计)净利润为8.72万元。 茂硕电源表示,本次购买股权使得加码技术成为公司全资子公司,是公司对现有下属企业股权架构的调整优化,使得公司更加专注核心业务发展,推动产业布局, 对公司未来发展具有积极影响。 同日,茂硕电源还发布了《关于全资子公司受让股权的公告》。据悉,近日,深圳茂硕电子科技有限公司(以下简称“茂硕电子”)与新余市新众才投资管理中心(有限合伙)(以下简称“新众才”)签订了《股权转让协议书》:新众才将其持有茂硕科技有限公司(以下简称“茂硕科技”)49%股权以人民币735万元的价格转让给茂硕电子,茂硕电子同意受让股权;受让完成后,茂硕科技由茂硕电子的控股子公司成为全资子公司,继续纳入公司合并报表范围内,不涉及合并报表范围变化。 据悉,茂硕电子是茂硕电源的全资子公司,茂硕电子与新众才共同出资设立茂硕科技。茂硕科技的经营范围包括:物联网智能控制系统软硬件、LED 智能驱动电源、DC/DC 模块电源、医疗电源、通信电源、新能源汽车充电桩及储能系统、开关电源、变压器、电感、平衡车的生产。 茂硕电源表示,本次公司全资子公司拟对茂硕科技受让股权事项,是公司对现有下属企业股权架构的调整优化,使得公司更加专注于核心业务发展,推动产业布局,提高公司管理和运营效率。

    时间:2017-07-05 关键词: LED LED驱动 电源资讯 茂硕电源

  • 大联大友尚集团推出LUMILEDS高亮度线性电流解决方案

    大联大友尚集团推出LUMILEDS高亮度线性电流解决方案

    致力于亚太地区市场的领先半导体元器件分销商--大联大控股宣布,其旗下友尚推出LUMILEDS高亮度线性电流解决方案。   图示1-大联大友尚推出LUMILEDS高亮度线性电流解决方案展示板 当该方案在1~4 W操作时,其效率涵盖范围为145~185Lm/W(@85℃)。与中功率(1W)产品相比,大联大友尚的LUMILEDS方案有更高的密集度,于高功率使用时LED数量不会很多,可以减少光学设计与PCB布板难度。而与大功率产品相比,大联大友尚的LUXEON 5050有更高的性价比,并且在高效率操作时本身的可靠度并不亚于高功率产品。   图示2-大联大友尚推出LUMILEDS高亮度线性电流解决方案之热平衡后LED芯片106度 该方案采用高效能线性IC: 1.与交换式电源相比,不需要非常大的体积,并且有更好的PF值,更重要的是解决了电容寿命问题 2.与其他小瓦数线性IC相比,大瓦数的线性IC提供了更简单的布线,电路也更稳定 3.IC本身的温度回授电路使其电路瓦数非常稳定 4.在极大瓦数时不需要将电源外挂于机构壳,进而降低整体机构重量 5.效率:130lm/W@CRI 80 3000K 6.多芯片单一发光面封装 7.更小发光面积 8.热色飘预测 9.3 & 5麦克亚当椭圆颜色分档   图示3-大联大友尚推出LUMILEDS高亮度线性电流解决方案之参考文件 LED根据不同电流可达到热流明148~185lm/W,200W时1瓦仅需0.07 USD、1 USD有1813lm。 电源于大于100W操作时优势逐渐体现,于200W时成本仅需11USD,为一般电源一半。

    时间:2017-08-07 关键词: LED LED驱动 电源资讯 线形电流

  • 多家LED驱动电源企业对比:谁与争锋?

    多家LED驱动电源企业对比:谁与争锋?

    目前,随着LED照明市场不断增长,LED驱动电源市场规模也随之增长,与此同时,LED驱动电源行业内的竞争也在不断加剧,行业价格竞争异常激烈。 受益于世界各国政策支持,节能环保意识的增强,智慧城市、智慧楼宇和智慧家居等建设的开展,全球LED市场发展取得了长足进步,LED照明已广泛应用于工业、商业以及家居照明等领域。 在市场竞争激烈的情况下,LED驱动电源企业表现如何呢?那就随OFweek半导体照明网小编一起看看吧! 茂硕电源 茂硕电源2018年度实现营业总收入13.38亿元,同比下降19.02%;营业利润-2.53亿元,同比下降12.89倍;利润总额-2.71亿元,同比下降10.92倍;归属于上市公司股东的净利润为-2.55亿元,同比下降20.58倍。 其中,SPS消费电子电源销售收入实现全年7.85亿,较去年同期增长1.25%。公司的传统中小功率电源产品(适配器、充电器)从定制品向标准品、衍生品归集,特定领域大功率电源产品(激光电源、数字化集成电源)通过引入高技术人才完成各类目标新应用领域产品的技术预研。 LED电源销售收入实现全年4.22亿,较去年同期增长13.86%。公司LED电源板块以大功率驱动电源为主,产品应用领域主要涵盖了工业照明、道路照明、景观照明、轨道交通照明等领域,公司提出“通用市场保份额,细分市场要利润”的思路,深度挖掘有潜力的细分市场。 茂硕电源表示,面对复杂多变的经营环境和竞争不断加剧的市场形势,公司进一步深化经营体制改革,提升内部成本管控,充分发挥全面预算管理的资源整合功能,提高公司运营效率,开源节流,公司同口径主营业务保持小幅增长,但由于宏观经济及相关行业环境影响,光伏资产、投资等减值导致公司亏损。 英飞特 4月20日,英飞特发布2018年年报,公司2018年1-12月实现营业收入9.65亿元,同比增长26.47%,光学光电子行业已披露年报个股的平均营业收入增长率为23.52%;归属于上市公司股东的净利润7028.17万元,同比增长180.9%。 英飞特表示,净利润增长比例较高的主要原因为公司按照年度经营计划有序推进各项工作,加大市场推广力度,销售规模进一步扩大,主营业务发展态势良好;公司采取积极有效的管理措施,运营管理水平不断提升,较好地控制了各项成本和费用。 2018年,英飞特持续加强销售渠道的建设和完善,并积极拓展新兴市场,不断提升客户服务水平。在销售渠道建设方面,公司重点优化经销商渠道,重点维护和支持优秀经销商。除维护现有渠道之外,公司新增开拓了印度、墨西哥等市场的经销及其他销售渠道,并在非洲、中东、东南亚等新市场的拓展上取得显著进展。在新兴市场方面,公司紧抓机遇,在景观照明、植物照明、UV照明应用领域均取得不错的进展。同时,公司充分利用超大功率照明方面的技术和产品(例如600W、1200W电源产品)优势,在体育场馆等超大功率照明应用场景继续保持着较大市场优势。 截止2018年12月31日,英飞特及子公司共拥有授权专利236项,其中包括22项美国发明专利、1项欧洲发明专利和104项中国发明专利。 伊戈尔 2018年,伊戈尔实现合并营业总收入10.88亿元,同比减少5.27%,归属于上市公司股东的净利润为4158.61万元,同比减少46.52%。 从业务结构来看,“照明电源”、“工业控制用变压器”是企业营业收入的主要来源。具体而言,“照明电源”营业收入为5.3亿,营收占比为48.3%。“工业控制用变压器”营业收入为2.6亿,营收占比为24%。“其他”营业收入为1.7亿,营收占比为15.2%。 利润贡献角度,企业综合毛利率为22.8%,同比下降5.5个百分点。其中,“照明电源”、“工业控制用变压器”、“其他”毛利贡献占比分别为51.8%、29%、10.5%,“照明电源”贡献较大毛利。“照明电源”、“工业控制用变压器”、“其他”毛利率分别为24.4%、27.5%、15.7%。 伊戈尔表示,虽然报告期公司面临着各种挑战和不利因素,但公司仍然坚持在研发上加大资源投入,报告期研发支出约5373.48万元,与上年同期相比增加9.16%。公司坚持为客户提供最有性价比的产品,同时在应用技术研发上保持领先的地位。 朗科智能 2018年,朗科智能实现营业收入1,201,848,500.14元,同比增长1.44%;营业利润45,888,119.33元,同比下降48.53%;利润总额47,876,246.67元,同比下降48.17%;实现归属于上市公司股东净利润44,574,584.04元,较上年同期下降44.40%。 从业务结构来看,“电器控制器”、“智能电源及控制器”是企业营业收入的主要来源。具体而言,“电器控制器”营业收入为8.47亿,营收占比为70.51%。“智能电源及控制器”营业收入为3.18亿,营收占比为26.42%。“其他”营业收入为0.37亿,营收占比为3.06%。 朗科智能表示,报告期内,公司持续进行研发投入和市场推广,扩大了销售规模,增长了营业收入。公司拥有稳定的客户资源,公司产品存在广阔的潜在市场,收入来源稳定。而利润下降的主要原因为上游供应商产能不足,导致原材料价格上涨、人工成本上涨等。 鸣志电器 2018年,鸣志电器实现营业收入1,894,048,056.32元,比上年同期增加265,656,750.14元,同比增加了16.31%;实现营业利润191,609,327.55元,比上年同期增加4,673,099.15元,同比增加2.50%;实现归属于上市公司所有者的净利润166,857,463.23元,比上年同期增加872,136.97元,同比增加0.53%; 鸣志电器业务经营情况如下: 鸣志电器表示,公司进一步加大LED智能电源市场的拓展力度,重点发展海外市场。2018年度,公司智能型LED照明控制与驱动业务海外市场业务部分实现营业收入6,500余万元,较上年增幅超过37%。同时,公司在户外照明控制系统、防水性LED电源、防爆性LED电源、大功率LED电源市场也获得了较好的销售业绩。报告期内,公司LED控制和驱动类业务合计实现营业收入20,464万元,较上年增长了11%,其中智能型照明控制与驱动产品营业收入较上年增长超过 17%。 ...... LED电源板块除了主板上市企业的英飞特、茂硕电源、伊戈尔、鸣志电器、朗科智能等之外,明纬、崧盛、科谷、纽克斯、莱福德、暗能量、中恒派威、东菱、诚联、创联、赛耐比、优特电源等也具备相当的竞争能力。

    时间:2019-07-23 关键词: 电源 LED驱动 电源资讯 智慧楼宇

  • 汽车LED照明趋势及矩阵式全LED前照灯方案

     近年来,凭借光效增高、能耗低、可靠性高、寿命长、尺寸小及环保等众多优势,LED在汽车内部及外部照明中的应用日渐增多,已经从最初不那么紧要的汽车照明应用,如座舱内照明、停车灯及仪表板背光,跨越到了前照灯及组合尾灯等更宽广应用。特别是由于尺寸小,LED能够配合丰富的形状和线条变化,有助提升车灯辨识度,被指定用于众多中高档车的前照灯系统,配合漂亮的外观造型设计。图1所示的是如今典型的汽车LED照明应用。 图1:典型汽车LED照明应用。 汽车LED照明——不仅是漂亮,更助提升汽车主动安全性 LED照明给汽车带来的直观好处,并不限于漂亮造型。根据美国全国公路交通安全管理局(NHTSA)和欧洲委员会(EC)统计,虽然只有25%的驾驶是在夜间和光线不足期间,但却有40%的死亡和重伤事故发生在这段时间。故改善汽车照明,特别是夜间和光线不足条件下的照明,有助提升汽车主动安全性。实际上,为了保护驾驶员/车上人员/路边行人的安全,业界长期致力于开发各种汽车照明方案,如用于改善夜间转弯时照明的自适应前照灯(AFS)方案,及用于改善日间行车安全的日间行车灯(DRL)方案。 与传统上在汽车照明中广泛应用的白炽灯和高强度气体放电灯(HID)相比,LED用于汽车照明有着无可比拟的优点。如LED响应时间短,用于刹车灯可以增加后车的刹车距离,用于转向灯则有更好警示效果。LED的亮度高,但又不像HID那样刺眼,有助降低对向行驶汽车驾驶员眩目的风险。LED灯能耗比白炽灯或HID低很多,有助降低燃油消耗,节省支出。 典型汽车照明应用LED驱动器方案 不同汽车照明应用对LED电流的要求各不相同,故需结合具体应用要求,选择适合的LED驱动器方案。典型LED驱动方案包括电阻、线性恒流稳流器、线性稳压器及开关稳压器等。 其中,电阻是最简单、最低成本的LED限流方案,但能效也最低,且存在LED筛选成本及热失控等问题。恒流稳流器(CCR)性能高于电阻方案,但成本低于线性或开关稳压器方案,适合低电流LED照明应用。线性稳压器支持多条线路并行配置以帮助散热,提供达±2%的稳流精度,无电磁干扰(EMI)问题,成本中等,但能效也较低。开关稳压器广泛使用。这种方案成本更高,技术更复杂,但支持任何类型的输入电压与输出电压关系,且根据输入/输出条件,能效能够高于90%,但存在EMI问题。 图2:典型汽车照明应用及LED驱动器方案 除了这些方案,安森美半导体还推出高集成LED照明管理集成电路(LMIC)。这些LMIC集成了多种LED驱动及控制功能,相当于完整子系统,能够承受高达125℃的环境温度,用于汽车前照灯、组合尾灯及最新的AFS等应用。 全LED前照灯应用要求及高集成度驱动方案 2008年,奥迪R8全球第一次采用全LED前照灯。这全LED前照灯中包含近光灯、远光灯、转向灯及日间行车灯等模块,其中各含不同数量LED。根据研究及咨询服务公司SNE Research的数据,2013年全球汽车市场LED前照灯的渗透率不足5%,但预计到2020年这一比例将超过50%,可见增长前景十分可观。 但全LED前照灯对驱动方案提出更高要求,要求高能效集成驱动器,支持从单个LED到多串LED等不同配置(电压可高达60 V),还要求脉宽调制(PWM)调光,如用于示廓灯。全LED前照灯还要求LED串低EMC辐射,且对散热、诊断及通信接口等多方面提出了要求。 图3:安森美半导体单芯片智能前照灯LED驱动器NCV78663应用电路图。 安森美半导体配合全LED前照灯驱动需求,推出了NCV78663单芯片高能效智能电源镇流器及双LED驱动器系统级芯片(SoC),用于先进的LED前照灯系统。NCV78663采用降压-升压拓扑结构,能够提供高于90%的总能效,是一款高集成度方案,使设计人员能够以单颗SoC控制远光灯及近光灯、日间行车灯、转向指示灯及雾灯。NCV78663极适合于驱动大电流LED(电流可达2 A),支持PWM调光以维持LED色温及平均电流受控。NCV78663通过两个内置独立降压开关通道,以极少数量的外部元件,提供驱动电压达60 V的两串LED的完整驱动方案。每个通道可以根据应用要求来通过SPI接口和/或OTP设置来定制输出电流和电压。这器件在片上提供汽车前照灯诊断功能,还集成了升压控制器,为设计人员提供外部元件数量有限的独特输入电流滤波器。NCV78663既能独立使用,也可以与微控制器结合使用,灵活性极高。这方案源自电池的EMC较低,辐射至LED串的EMC也较低。 安森美半导体的NCV78663全LED前照灯驱动器已经获得奔驰E系列的采用,每辆车在其先进前照灯系统中使用多达6颗NCV78663,还使用多达3颗的安森美半导体NCV70522步进电机驱动器。 安森美半导体最新矩阵式动态智能全LED前照灯方案 近年来,市场上出现了矩阵式动态智能全LED前照灯,如奔驰新一代S级汽车中配备的智能型LED前照灯。此前照灯系统内包含56颗LED,每个LED能够分别点亮、熄灭或是调整亮度。此灯的独特功能如下: ● 防对向车辆炫目:LED根据前雷达和立体摄像机的数据进行点亮、熄灭或者是调整亮度动作,实现自动调整照射范围,保证自己视线的同时,避免造成对方车辆炫目。 ● 绕开前方车辆轮廓:遇到前方同方向行驶车辆时,可绕开前车轮廓,同时完全照亮前车左侧和右侧区域。因此夜间行车时可一直开启远光灯,大幅提升行车安全性。 ● 遇行人快速闪烁:智能头灯可以识别出前方行人,用大灯自动快速闪烁,以提醒行人避开危险,降低夜间意外的可能。 图4:动态智能全LED前照灯之独特功能示意。 这样的矩阵式动态智能全LED前照灯可以采用串联或并联驱动结构。采用并联结构时,各颗LED在电气特性方面的差异对照明系统的性能有显著影响,造成能耗增加及散热问题。串联驱动结构中,LED驱动器提供恒流源,短路开关可以关闭单个LED,从而能够根据需要来改变光束。如果在串联驱动电路中增加伴侣芯片(像素控制器),透过系统划分,这样就有可能避免并联拓扑结构所固有的能耗及热管理问题。 图5a:安森美半导体矩阵式汽车LED前照灯方案示意图。 图5b:安森美半导体矩阵式汽车LED前照灯方案示意图(续)。 安森美半导体的NCV78763降压-升压LED驱动IC在这矩阵式动态智能全LED前照灯中充当电流源,它与集成型像素控制器/伴侣芯片相辅相成。这种模块化方法减少了元件数量,并简化应用流程,因而加速产品上市。 总结: 本文介绍LED在汽车照明中的各种应用,分析LED的应用优势,特别是如今越来越受到重视的帮助提升汽车主动安全性能方面的优势,概览典型汽车照明应用的LED驱动器方案,重点介绍配合最新全LED汽车前照灯要求的安森美半导体NCV78663高集成度LED驱动器方案,特别是它在最新矩阵式智能动态LED前照灯系统中的应用。

    时间:2014-12-29 关键词: 前照灯 LED驱动 汽车led照明

  • 用于降低液晶电视机功耗的LED驱动技术

     据超高能效设备与电器推广(SEAD)项目估计,电视机能耗大约占全球居民消耗电能的3%至8%。由劳伦斯伯克利实验室开展的研究分析认为,如果采用更加高效的LED驱动等先进技术,将可以显著降低电视机的能耗。 几乎毫无疑问的是,采用LED背光照明的液晶显示器(LCD)技术是达到权威机构建议的效率目标的唯一可行方法。等离子电视机的缺点是每个像素都是有源发光体,因此其功耗直接正比于像素的数量。在相同分辨率和亮度条件下,高清等离子电视机的功耗大约是LCD显示器的2至3倍。而广为宣传的OLED技术并没那么快上市,而且这种“极度前沿的”大屏幕技术要求的投资额是非常巨大的。然而,采用目前最先进的TFT-LCD技术和具有“智能”直接LED背光照明及局部调光功能的大显示屏要比OLED便宜许多,而功耗和图像质量相近。 但目前的液晶电视机,包括采用LED背光照明的液晶电视机,仍与它们在今后几年中要达成的效率目标有一定差距。不过最新的LED驱动电路设计技术具有显著的节能效果,在帮助电视机制造商满足严格的功耗要求方面可以发挥较为深远的作用。 不断变化的电视机功耗标准要求 能源之星电视机功耗标准是2008年推出的,这个标准中的电视机功耗指标每年都会不断降低。由于不管多大尺寸的电视机,目前标准允许的最大功耗都是85瓦,因此对大屏幕电视机来说设计挑战会更加艰巨。 虽然能源之星是自发标准,但具有很大的影响力,而且也不是唯一的一种法规。例如加州能源委员会就颁布有自己的标准。他们这个标准比能源之星标准还要严格,并且具有很大的杀伤力——它禁止在加州地区销售不能满足其能效指标的电视机。在欧洲,相关法规也已颁布很多年了,允许对白色家电的能耗进行直接比较(欧盟能源标签),消费者经常把它作为购买决策的基本依据。对电视机、汽车等产品来说这些法规现在都是强制性的。 LED背光照明的工作原理 由于LED背光照明功耗约占液晶电视机整个系统功耗的30%至70%,因此提高背光照明电路效率对改进系统效率有相当大的作用。正如电源系统设计中经常遇到的情况那样,许多不起眼的效率改进措施组合在一起可以实现显著的节能效果。 LED背光照明的实现方式主要有两种(见图1)。在间接或边缘点亮式背光照明方案中,LED放置于屏幕的边缘,并通过导光装置将光线均匀的分布到整个显示器。这种方案在大至40英寸的屏幕中具有很好的光学均匀性,而且背光照明部件的厚度只有5mm至10mm。 图1:液晶电视机可以采用两种LED背光照明方式中的一种。 在直接背照系统中,LED直接布置于LCD的后面,具有低功耗、良好的热设计和优秀的可扩展性能,特别是对屏幕尺寸没有限制。这种屏的厚度通常要比边缘点亮型屏厚,但借助于最新的发光技术,现在这种显示器厚度也可以做到8mm了。直接背光照明的一个重要优点是,它可以实现复杂的局部调光功能,进而降低功耗,提高动态对比度,使最新的电视机设计能与OLED相媲美。 LED背照系统的架构选择 设计师一般会根据最大限度地节省能耗和显著增强图像质量标准来选择LED背照驱动系统的架构。另外,设计师也希望能在本地控制LED串和最低的材料清单(BOM)成本之间取得最佳平衡。 单串和单个DC/DC转换器 这种方案用开关电源(SMPS)给成串放置的背照LED提供电压,并用电流槽来调节流经LED串的电流。为了尽量降低功耗,ILED电流槽处的电压要求比必需电压高一点,以便保证LED能够接收到规定的电流(见图2)。 图2:单串、单个DC/DC转换器的背照系统架构。 常见的设计方法是建立一个从ILED电流槽到开关电源的反馈路径,用于调节开关电源的输出电压。这条反馈路径建立后就允许不同LED之间存在的正向电压(Vf)变化。白色LED的Vf典型值约为3.2V,但不同LED的变化可能高达±200mV。因此,在有10个LED的串中,总的VLED电压值可能在30V至34V范围内。 DC/DC转换器要求的输出电压可以表示为: 假设VSINK为0.5V,那么ILED电流槽必须将VDC-DC调整到30.5V至34.5V范围内,具体取决于实际的LED正向电压。 多串和多个DC/DC转换器 单串的LED很少能够满足要求,因为随着串中LED数量的增加,DC/DC转换器的输出电压也要随之增加。在VOUT/VIN超过某个比值后,开关电源的效率会急剧下降。因此LED背光设计师可以使用多个LED串来避免开关电源输出过高的电压。 最简单的方法是每个串复制单个串单个DC/DC转换器的拓扑(见图3)。这种方法的优势是效率高,因为每个串的电压可以单独调节。缺点是成本高,因为每个串需要自己的DC/DC转换器、MOSFET、线圈、二极管和输出电容。为了节省BOM成本,设计师可以通过使用长串来减少LED通道的数量,即在每个串中使用更多的LED。但这种方法会牺牲系统实现局部调光的能力,而这是另外一种重要的节能技术。因此这种拓扑不管怎样变换都不会特别吸引人。 图3:每个LED串使用单独的DC/DC转换器是一种昂贵的方案。 多个串使用一个DC/DC转换器 多个串加上单个DC/DC转换器的拓扑是降低BOM成本的一种更好方法(见图4)。该方法的缺点是,开关电源的电压必须调节到高过具有最大正向电压的那个LED串,这意味着系统的工作电压要高于具有较低正向电压的那些串所必需的电压,也即意味着ILED电流槽必须从具有较低正向电压的LED串上消耗过多的功率,这会产生必须从电路板散发的过多热量,从而降低能效。 图4:采用一个DC/DC转换器接多个LED串的拓扑时,开关电源的电压无法做到最优。 多串混合架构 整合了多串部件和多个DC/DC转换器的架构可以在效率和BOM成本之间提供最佳平衡。这种混合架构(见图5)有多个DC/DC转换器为LED串组供电。 图5:混合架构可以在BOM成本和能效之间达到最佳平衡。 这种解决方案可以提供最高的总体能效,因为它整合了直接背照系统中的局部调光优势和良好的DC/DC输出电压调节功能,而且还可以通过高效的多个串、多个DC/DC转换器架构提供真正的BOM节省。 调节电流以匹配LED的特性 LED制造工艺会造成不同LED之间的亮度和色温有很大的变化。为了方便用户,白色LED制造商会将每个制造的单元分配到在颜色、亮度和正向电压方面性能相当的LED组或“箱”。但制造商针对每个亮度和色温箱制订的规格只在特定标称工作条件下才有效。这意味着LED电流必须设置为数据手册中规定的标称电流才能产生规定的亮度和颜色。 结果是,只能通过数字PWM控制信号将任何一个LED的电流切换到导通(标称电流)或关断(零电流)状态才能实现调光和亮度控制功能。在模拟调光时,LED将工作在规定的标称电流范围之外,这将导致不可接受的色温变化和不良的LED至LED亮度匹配(见图6)。 图6:来自相同箱的LED亮度只有在标称电流时才能保证匹配(本例中为20mA)。 电流槽特性 由于LED要求完全稳定的恒流电源,因此LED驱动器的主要作用只需是在导通时将电流设为标称值,在关断时将电流设为0A。这样,控制调节精度的反馈环路要求使用特别精密的电流槽(见图7)。 虽然市场上有各种电流槽设计,但电视机背光照明的高精度要求(电流调整率高于±0.5%)需要使用精密运放来设置独立于ILED电压的ILED电流。但在背光照明驱动器应用中,任务更具挑战性,因为即使电流槽的电压降低到非常小时也必须保持电流调整的精度。 这是一个很难满足的要求,但AMS公司提供的四代高精度电流槽LED驱动器——AS369x、AS381x、AS382x、AS385x就是特别针对这种应用设计的。这些器件也采用了偏移补偿式运放。电流槽驱动器要求漏极处于最小电压值(VDS(sat)),以便确保电流槽晶体管在饱和区内具有完整的精度并能够正确地工作。在饱和区内,栅极-源极电压主要用于控制输出电流。 如果想要电流槽高效率地工作,VSET和VDS之间的压降要低,这一点很重要。采用运放并内置偏移抵消功能的LED驱动器可以保持VSET电平低至125mV至250mV。要想使VDS具有超过VDS(sat) 150mV的额外余量,电流槽的总压降必须在400mV左右。对于具有8个LED的串来说(此时Vf?= 8 x 3.2 = 25.6 V),ISINK中的功率损失约为1.5%。当AMS背光LED驱动器中不包含偏移抵消功能时,VSET的值将更高,这将使电流槽的功率损失更多。 图7:电流槽设计;精密电流槽要求使用带偏移补偿功能的精密运放。 用于优化功耗的反馈调节机制 如上所示,从LED驱动器到开关电源建立的反馈路径将漏极电压设置为最低要求值。输出电流槽可以用简单且成熟的电流输出驱动器加上一个外部电容来实现(见图9中的左图),或者使用能够设定启动/释放时间并用数模转换器控制电流输出的数字控制电路来实现(IDAC)(见图8中的右图)。 图8:至开关电源的反馈环路的两种不同实现方法。 这两种解决方案都具有很高的效率,能使用各种带电压反馈环路的开关电源,而且都可以通过将反馈回路从不止一个驱动器连接到同一开关电源来实现,这正是混合架构系统的要求。 然而,第二种数字实现方法具有一些特定的优势。除了同样不要求使用输出电容外,这种数字电路还能让设计师自由地定义反馈系统的启动和释放时间。通过选择快速启动时间以及释放延时和相对缓慢释放的组合,可以显著提高显示器的性能。这种好处在要求快速改变亮度的场合特别明显。在这种情况下,当屏幕从黑暗改变到全亮时,快速启动时间可以消除可觉察的亮度瑕疵。模拟解决方案(见图8)是在很短的暗帧期间逐渐调节LED输出的,因此下一个亮帧达到全亮会有个可见的延迟。 这个现象会让电视观众分心,因为电影和其它视频内容的帧与帧之间有很大的动态范围。这种瑕疵可以用数字调节电路来消除,方法是在释放操作中插入几百毫秒的延时。这样,当亮帧被一系列短的暗帧中断时,第2个亮帧将从全亮时开始,因为驱动器会自动延迟电压下降过程。AMS产品中就使用了能够实现释放延迟的数字反馈算法。 LED驱动器IC中集成的另外一个有用功能是快速串行外设接口(SPI)。在直接背照电视机中,LED被安排在大量相对短的串中,因此小尺寸的显示屏可以通过调暗光线达到节能的效果。通常这种安排在16x16的场矩阵中包含256个通道,每个通道可以通过脉宽调制(PWM)单独配置。但利用可变PWM宽度和延时产生256个PWM信号是一个极耗处理器资源的任务,即使是最快的微控制器也会不堪重负。 因此这些背光照明系统都是使用集成在LED驱动器IC中的PWM发生器,这样就可以通过简单的SPI数据传输来配置亮度。在具有多个驱动器IC的架构中(如每个IC有16个通道,总共16个IC有256个通道),LED通道可以通过建立SPI信号菊花链并将VSYNC帧中使用的数据传输到前一帧进行配置。 在这种方案中,通过SPI的数据传输速度可以达到20Mb/s,或在400Hz帧速率时达到50kb/帧。这个速度足够快到以同步实际帧的速度改变每个场的调光效果。因此只需很少的微控制器开销就可以实现理想的局部调光功能。 边缘照明系统的智能调光功能 这种局部调光技术只能用在直接背照系统中,不过在边缘照明系统中也可以实现一些特定的智能调光技术。尤其是PWM调光,它能在不改变白色LED的色温条件下改变亮度。与让边缘照明LED永久设为一个特定的亮度值不同,这时的亮度可以通过改变脉冲宽度来动态改变。 还有一种节能技术叫动态亮度调节(DLS)。采用这种技术后,LCD的白色/亮度值可以在某些场合增加,从而允许降低背光LED的功率输出。 使用环境光线传感器(ALS)是另外一种降低功耗的方法。如果放置电视机的室内光线相当暗,可以减小背光灯亮度(见图9) 图9:使用智能LED驱动器和智能ALS传感器的节能方法。 电视机制造商正在研究更为复杂的方法。举例来说,照相机开始进入显示器设计中,它能让消费者在电视机上使用视频电话服务,如Skype。这些照相机还可以用来检测是否确实有人在看电视。如果电视机开着,但房间里没人,可以自动将背光灯降低到最低亮度。 甚至还可以实现定制的能耗模式。虽然你可能喜欢在降低背光照明亮度的能源友好生态模式下观看电视,但家里的其它成员可能喜欢高亮观看。 总之,通过实现目前先进的高效LED驱动技术可以达到显著的节能效果。由于更加严格的法规在不断降低新款电视机允许消耗的最大功率,这种技术的重要性将越来越突出。

    时间:2015-03-15 关键词: 液晶电视 LED驱动 led背光

  • 几种车用LED驱动方案的比较

     因为LED灯具有很高的应用灵活性,所以在进行汽车设计时,设计人员可利用LED高可塑性将车辆的灯光作为该汽车品牌外观亮点。而且LED灯发光效率高,使用寿命长,这也从技术角度解释了为什么这种光源越来越受到汽车厂家的青睐。汽车上都有很多种类的灯由LED光源扛起了大梁,包括方向灯、尾灯、近光灯和刹车灯,这些LED灯担任的角色不同,功能不同,对为其驱动的电源也提出了不同的要求,并且驱动电路的拓扑结构必须尽可能地完全满足LED灯对驱动电源的要求。此外,LED灯的性能也在不断地发展。一方面,驱动电流仅为10mA级LED灯产生的亮度能持续增强,另一方面,单个LED需要的电流已经达到了数安培,这都给LED的控制提出了不同的要求。现在没有,也不可能存在一种通用的拓扑结构能满足所有LED光源的要求,而且可以兼顾低成本和高效率。这就不难理解,IC设计人员在选择和协调驱动方案时,涉及的可能使用的驱动方案越多,他们就越要关注各个方案的特点与应用要求的匹配情况。 基础数据从技术上说,设计用于控制车辆照明LED的控制电路考虑到很多方面。这种电路的设计从几个不同的方向都取得了进展:一方面,驱动电流在50毫安以下的LED灯的亮度能在不断增强,另一方面,驱动电流达到数安培的单个LED获得了长足的发展。在本文中,我们将比较七个可能用于控制车辆照明LED的拓扑结构,并解释它们的性能和各自应用领域。IC设计人员可以在对各种拓扑结构介绍的基础上,根据应用要求的特点,在多种拓扑结构中选择成本与工艺要求相匹配的那一种。但是,这些拓扑结构中并不存在一种低成本同时又高效率的,适用于所有应用领域的通用拓扑结构。 只有在得到良好的散热,并且驱动电流稳定的前提条件下,LED灯才能正常运行并达到它的最大使用寿命。在近几年来,随着OLED(有机发光二极管)技术已经进入到这个领域,LED灯对上述基本使用条件的要求更为苛刻了,这是因为,相对于较早出现的,以LED技术制造的LED灯,以OLED技术制造的LED灯对高电流密度更为敏感。此外, OLED驱动方式中所采用的亮度调节方式为模拟驱动方法,即,通过模拟控制电路,而不是通过数字脉冲宽度调制技术(PWM)改变灯的发光强度。 如远光灯和近光灯,这种发光时功率较高的LED灯需要几乎强制性的时钟控制功率系统。以电子方式控制的,高效的开关转换器可以减少LED灯工作过程中出现的功率损耗。相对于传统的白炽灯,LED灯和电子器件对高温工作环境更为敏感,所以,在设计转换器工作环境时,为确保转换器高效运行,需要将转换器安装在足够大的空间内,也就是说,从冷却技术方面考虑,足够大的安装空间确保转换器能够稳定工作。     限制和要求 在设计车辆照明电路过程中,设计人员遇到的最典型的挑战是,要为不同种类的LED灯提供相当宽的驱动电压范围,并且不同LED灯要求的输入电压和输入电流之组合各不相同。通常情况下,向LED模块驱动的电压下限在4V左右,而向LED模块驱动的电压的范围会受到汽车启停系统(Start-Stop-System)的影响;位于极性保护电路后的电子器件的驱动电压下限往往只有3V。因为LED灯输出功率被设置为恒定,这就导致当其驱动电压较低时,输入电流持续升高。 前灯典型应用l DC/DC电源管理 l 步进电机控制器 l 远光灯/近光灯 l 雾灯 l 日间行车灯 l 方向灯 l 带总线接口的LIN控制器 elmos Semiconductor公司推出的 E522.xx系列控制器可满足针对车辆前部照明所需的各种LED灯,并符合解决方案设定的限定条件和要求。 为了抵消这种电流升高的效应,在LED灯控制电路的设计任务书中往往要求设计出一种合适的降低输入电流额定值的电路装置(例如,一种可以设在灯具中,在灯的驱动电压较低时,能够实现线性降低灯输入电流额定值的电路装置)。模拟连续驱动电路装置可以实现连续向LED供电,避免出现照明中断的情况。上述措施不仅仅在技术上解决了问题,而且在设计极性保护电路的最大电流时以及EMC(电磁兼容性)滤波元件的最大电流时,使用上述措施也有利于降低解决方案的成本。 一般来说,如果串联连接的LED工作电压大于等于2V,乃至所需的电压达到55V以上时,以集成电路(IC)驱动方案对其进行驱动是无法产生足够的驱动电流的。此外,对上述串联LED进行驱动,电路中的电流可以被调整而实现的电流范围应该满足以下条件,即,经模拟调整实现的最大电流与经模拟调整实现的最小电流之间的比应大于10:1。一般情况下,经调整后电流的极值为1.5A,在试验研究中,模拟输出的电流的极值已经达到了大于3A小于6A的这个范围内,此时,用于实现点光源的单个二极管的光通量大于1000流明。 现在的问题是,哪种拓扑结构和哪种LED相匹配呢?下面的例子给出了一些用于特定应用领域,实现成本也合适的拓扑结构以及这些拓扑结构潜在的应用领域。选择这些例子的出发点是体现应用程序开发人员的愿望,也就是编制出一个拓扑结构为一个特定的组合,即,在照明设备上获得的恒定电流和电压的组合。如何设计这样的拓扑结构,有很多种思路。 线性拓扑结构电源集成电路转换器适合于电流和功率比较小的LED灯,比如,转向灯、尾灯、雾灯,还有低成本的日间行车灯。这些电源集成电路的总成本比较小,而且典型的电源集成应用起来非常简单。原则上,电源集成电路工作期间对外的辐射量很小,所以几乎不需要为电源集成电路配EMC(电磁兼容性)滤波器。本文不讨论用于交换解决方案所需的电感式存储器的相关问题。 在选择对LED进行驱动的驱动方案时,选择哪种方案往往除了受到LED电路的限制之外,还要受到驱动器内的电流大小的限制。在车辆中常用的线性驱动器的电流极限值一般大于40mA小于70mA。电路设计人员必须针对此限制条件采取措施,以确保驱动器模块的温度不至于升至保证电路安全运行的极限值以上。当今业内已经开发出了相应的温度管理方案,能够确保在驱动器内的电流极限值能够大于150mA。elmos 半导体公司推出的E522.80/81/82/83LED控制器就是作为可行的温度管理方案的一个很好的例子,该系列LED控制器中内置了三个独立的电流源,在并联输出的情况下,向LED驱动的总电流可达450mA。     E522.81线性横流LED评估板 例如E522.80/81/82/83系列线性控制器可以作为电源集成电路型控制器控制如转向灯,尾灯等工作电流和功率比较小的LED灯,即,工作电流大约在大于40mA且小于70mA这个范围之内的LED灯。 此外,elmos Semiconductor公司还支持多颗芯片级联使用,当任何一串灯出现故障的时候进行故障诊断。在不同国家里针对处理单个LED故障设定了不同的处理目标和行业规则,这些目标和规则包括对故障公差的规定以及关于不完整的光源完全停止工作的规定和处理目标。如果设有一个本地的控制器,则PWM信号可以将可能存在的硬件缺陷精确地识别出来,并将识别得到的信息发回给控制器。 Boost-to-GND-拓扑结构Boost-to-GND拓扑结构是一种典型的拓扑结构,它也被称作升压电路或者Step-Up升压转换器。它是一种效率很高且一般情况下EMC(电磁兼容性)非常友好的拓扑结构。然而,只有在所有的工作状态下,负载电压都大于输入电压时,才可以使用这种拓扑结构。所以在车辆照明电路中几乎不会使用这种拓扑结构。因为在这种拓扑结构中的驱动处设置了电感存储器,所在Boost升压转换器的输入电流大致维持不变,因此,这种拓扑结构相对于其他拓扑结构更容易被过滤。当这种拓扑结构的负载处于其可以使用的负载范围之内时,且考虑到Jumpstart的要求(在较长的一段时间内驱动电压在不高于28V的水平),则电路的电压在大于30V且小于60V的区间内。因为LED灯对温度条件要求非常高,所以从技术角度考虑,在上述电压区间内几乎不能在LED灯的电路中使用Boost拓扑结构。 最后但同样重要的一点是,如果输出电压超过了60V,则必须采取专门的措施,以确保人员在触碰相关电子器件不会被电击伤。当涉及带有更大的正向电压OLED stack时,Boost转换器的作用再一次扮演了更为重要的角色。例如,elmosE522.31/32/33/34就是作为LED控制使用的Boost转换器的解决方案。 Boost-to-Battery-拓扑结构这种拓扑结构的基本原理和典型的Booster拓扑结构的基本原理类似,在这种拓扑结构中,LED负载的基点不是接地,而是驱动电压。Boost-to-Battery拓扑结构也可以被简称为Boost-to-Bat-拓扑结构,任意规格的输入电压在经过这种拓扑结构之后可以输出任意规格的输出电压。因此,从技术的角度上分析,它是一个Buck-Boost拓扑结构。     Boost-to-Battery拓扑结构也可以被简称为Boost-to-Bat-拓扑结构,任意规格的输入电压在经过这种拓扑结构之后可以输出任意规格的输出电压;然而,必须在这个拓扑结构中配置一个差分式电流检测放大器。 Lowside开关将在第一相中的电流负载在电感器中,在第二相中(即Lowside已经被断开的状态),存储在电路中的能量通过空转二极管被传回到输出端。 使用这种拓扑结构必须满足一个前提条件,即,在拓扑结构中设置一个差分式电流检测放大器,上述差分式电流检测放大器通过一个宽共模电压范围能实现精确的测量。Elmos出品的LED驱动器E522.31/32/33/34中包括了一个特殊的放大器,可以在大于4V小于55V的范围内进行测量,其测量的失调电压小于3mV,测量的温度范围为小于150 °C。此外,上述驱动器还可以提供外部频率同步,以及一个任意可用的内部扩频调制( frequencyspread modulation),如果对LED控制装置提出了很高的EMC(电磁兼容性)要求,那么这种驱动器可以帮助整个系统满足《CISPR25》中针对汽车电子部件作出的规定。 在上述驱动器电子器件的内部和外部电路中都设有不同的诊断功能,本驱动器可以在电压在60V以下时正常工作,而且通过本驱动器可以实现数字和模拟的调光功能。汽车内部电压稳压器(LDOs)可以同时对控制器或者模拟辅助电路以3.3V和5V供电。 Buck-to-Ground拓扑结构第二个经典的拓扑结构为Buck-to-Ground拓扑结构,简称为Buck-to-GND-拓扑结构,这种拓扑结构属于降压转换器(Step-Down-Converter 或者 Buck-Converter)。该转换器可以让负载电压小于输入电压,此性能对于解决电子控制问题很有意义。一般来说,此类转换器可以为一个到两个LED灯提供大电流。与Boost拓扑结构相反,驱动侧的降压转换器可以调整电流,负载电流被设定了上限。因此,具有这种拓扑结构的转换器不像具有Boost拓扑结构那样,总是需要配置降低输入电流额定值的电路装置。 降压转换器可以配合日间行车灯(DRL)、雾灯、转向灯、车灯以及倒车灯工作。市场上已经开发出了很多照明产品,比如,针对电流小于2A的照明产品开发出了基于降压转换器的elmos E522.10型控制器。对于电流较大,即,小于6A的LED,市场上开发出了基于开关稳压器IC的解决方案。这种解决方案允许在外部激励晶体管内灵活选择导通电阻。这就意味着,设计人员可以根据实际情况降低成本。在有的情况下可以使用Buck-to-Battery拓扑结构,例如带有LED控制器的E522.31/32/33/34。 Buck-to-Battery-拓扑结构还有一种使用了N型晶体管用在Lowside控制器里形成的拓扑结构,这种Buck-转换器用于为LED灯驱动(被称为Buck-to-Battery拓扑结构或者简称为Buck-to-Bat拓扑结构)。在这种控制器工作过程中,相对于电池,LED负载为负电荷,因此,LED的电势永远在电池驱动电势和大地电势之间。在电感器通过一个Lowside开关或者空转二极管交替充电放电期间,来自电感器的,变化幅度小的电流向串联的LED灯供电。 Buck-to-Battery拓扑结构可以通过电源开关处较小电压振幅帮助减少在侧面内的开关损失以及通过高交换层级减少向外的辐射量。 通过在电源开关较小的电压振幅,这种拓扑结构可以帮助减少边缘的开关损失,并通过高交换层级减少向外的辐射量。因为这种拓扑结构可以通过一个外部开关总是能与一个给定的电流条件和电压条件相匹配,所以这样的解决方案是相当灵活的。在组件设计过程中拓扑结构设计开发人员必须时时注意,转换器所决定的最大占空比(Duty Cycle)。Elmos建议,采用经典的Buck拓扑结构平衡这种Buck-to-Battery-拓扑结构。此时,大部分情况下转换器都允许100 %的占空比(Duty Cycle),采用经典的Buck拓扑结构进行平衡之后,Buck-to-Battery-拓扑结构可用的输入电压区间可以向下延伸。因为Buck-to-Battery-也需要差分放大器,elmos支持采取各种方式给开发人员以支持,如 elmos提供已经完成的、完整的演示电路。 在电容器中用于缓冲电源电压的电路的有效值是一个常常被低估的要求。当涉及Buck-转换器(和Buck-to-Battery)时,电流往往呈梯形或者矩形。在Buck-转换器的占空比为50%的例子中,有效的RMS-电流为输出侧负载电流的一半。     在一些情况下,带有两个集成的控制电路的LED转换器E522.32/34可以解决有效电流问题;上述转换器也可以用在多相系统中。即,通过将电源电路中的相位偏转180°,并且对电流进行分流,可以明显降低不同部件中的功耗。 Sepic-拓扑结构从原理上说,Sepic拓扑结构需要lowside-开关的转换器,诸如LED控制器系列的E522.31/32/33/34就可以应用于Sepic拓扑结构。不仅仅从输入电压,而且也可以从输出电压导出应用于Sepic拓扑结构的中晶体管和二极管的电压要求(一般来讲,应用于Sepic拓扑结构的中晶体管和二极管的电压要求与输入电压和输出电压的和有关)。因此,建议使用外部电源开关。在市场上,可以买到高质量的多种型号和外部电源开关,在选择时,可以灵活地选择不同的耐电强度的外部电源开关,也可以灵活选择不同工作电流的外部电源开关。高RMS电流要求对耦合电容器规格的选择起着很重要的作用,因此,通常采用陶瓷耦合电容器用作外部电源开关中的耦合电容器。 在进行涉及Sepic-拓扑结构的设计工作时,经常遇到的一个问题是,是否需要一个由两个线圈构成的耦合。如果从工作原理出发考虑这个问题,得到的回答是不需要,但是:如果核心上设置一个由两个线圈构成的耦合,则可以说,耦合会限制在两个线圈的中电流上升。综上所述可以得出,一个互相耦合的线圈电感值仅仅是两个分离的电感线圈的一半即可。通常情况下,综上所述,无论从器件的结构紧凑性还是成本来说,设一个耦合的线圈都是一种合理的选项。从控制技术角度上说,耦合也有它的优点,因为耦合减少了相关磁极的复杂性。 Zeta,尚未被人了解的转换器从原理上说,Zeta转换器就是一种头部被旋转了的Sepic转换器。和Sepic转换器相反,Zeta转换器作为Highside开关使用。一种可以与Sepic拓扑结构相类比的网络将能量传输到输出端。这种拓扑结构的优点是具有较低的耐电强度,这一特性对于线圈之间的耦合电容的正常工作是必要的条件。此外,还有其他一些与Sepic拓扑结构相类似的原则,以及对于两个电感存储器之间的耦合也适用于Zeta转换器。 一般来说,Buck转换器集成电路适合于在Zeta拓扑结构中被操作。电源开关必须能够承受相对于转换器接地电位电压为输出电压的负漏电压。出于上述原因,在这种拓扑结构中不宜使用异步激励级;实际上,必须使用带有外部P-FET的驱动器或者带有自由连接的漏机端子内部集成晶体管。此处,可以使用elmos推出的控制器E522.01-09和E522.10。 Zeta拓扑结构在EMC(电磁兼容性)方面的表现和Buck转换器类似。会出现不连续的输入电流和连续的输出电流的情况。如果作为需要向小负荷且冷启动(Cold-Cranking)的用电器进行驱动的电源,Zeta拓扑结构会是一种很有意思的选项。在转换器E522.10的基础上进行设计开发或者在控制器系列E522.01-09的基础上进行开发,可以达到上述应用要求。这种带有内置驱动器,漏电电压耐受力小于-10V的Buck转换器也特别适合于Zeta拓扑结构。

    时间:2017-02-09 关键词: LED驱动

  • 电容降压LED驱动电路图

    电容降压LED驱动电路图

    电容降压的工作原理并不复杂。它的工作原理是利用电容在一定的交流信号频率下产生的容抗来限制最大工作电流。 在50Hz的工频条件下,一个1uF的电容所产生的容抗约为3180欧姆。当220V的交流电压加在电容器的两端,则流过电容的最大电流约为70mA.虽然流过电容的电流有70mA,但在电容器上并不产生功耗,应为如果电容是一个理想电容,则流过电容的电流为虚部电流,它所作的功为无功功率。 采用电容降压电路是一种常见的小电流电源电路﹐由于其具有体积小﹑成本低﹑电流相对恒定等优点﹐也常应用于LED的驱动电路中。 下图为一个实际的采用电容降压的LED驱动电路﹕大部分应用电路中没有连接压敏电阻或瞬变电压抑制晶体管﹐建议连接上﹐因压敏电阻或瞬变电压抑制晶体管能在电压突变瞬间( 如雷电﹑大用电设备起动等 )有效地将突变电流泄放﹐从而保护二级关和其它晶体管﹐它们的响应时间一般在微毫秒级 .   LED驱动电路图 滤波电容C2﹑C3的耐压根据负载电压而定﹐一般为负载电压的1.2倍。其电容容量视负载电流的大小而定。

    时间:2015-05-14 关键词: 电容降压 LED驱动 电源显示器电源

  • led驱动电源电路

    led驱动电源电路

    led驱动电源电路

    时间:2013-05-22 关键词: LED驱动 电源其他电源电路 led驱动电源电路

  • 采用反激式拓扑的LED驱动电源电路图

    采用反激式拓扑的LED驱动电源电路图

    图中C1上的电压为经过桥式整流后的电压,Rs1采样流过MOS管的电流,进行逐周期限电流控制,使MOS管的电流峰值不至于太大,确保负载短路时变压器不发生磁饱和。利用辅助绕组完成变压器一次绕组的电流过零检测(APFC变压器去磁),控制功率开关管Q2重新开始下一个开关导通工作周期的工作,FAN7527B的Idet引脚外接的电阻R4阻值在几十千欧的范围内,使电路工作于“准零电压导通”的工作方式。R4电阻值取值和变压器的一次绕组的电感量和功率开关管MOSFET的输出电容有关,具体电阻值可以通过实验来确定,本电路中取值为33K。Rs2采样负载LED电流信号,R7、R8构成分压网络对LED上的电压进行采样。Rs2采样LED上的电流与TM101上的基准信号CVin进行比较,经误差经放大器对输出进行恒流控制,LED的亮度和流过LED的电流大小基本成正比的,只要控制流过LED的电流大小就可以调节LED的亮度。R7、R8采样LED上的电压与TM101上的基准信号CVin进行比较,经误差放大器对输出电压控制,送入TM101的这两路信号相“与”后通过光耦送入控制芯片FAN7527B的误差放大器进入乘法器。乘法器另一路是通过R13、R19、R23和R27采样经全波整流后的市电信号,这两路信号的乘积就是乘法器输出,该输出信号使得电感电流跟踪乘法器的输出波形信号,产生的PWM脉冲控制MOS管Q1的开关,实现对负载电流和输入电流的控制,完成LED实现对LED的恒流限压控制和输入功率因数的校正。采用反激式拓扑的LED驱动电源电路图:  

    时间:2015-05-21 关键词: 电源电路图 LED驱动 反激式拓扑 电源其他电源电路

  • 大联大控股品佳推NXP市电供电LED调光及非调光驱动方案

    21ic讯 -大联大控股宣布,其旗下品佳推出恩智浦半导体(NXPSemiconductors)基于GreenChip™技术的紧凑型调光解决方案SSL210X、SSL21082A/84A、SSL2129A系列和非调光SSL21081/83、SSL2109A系列,以及两款特别针对于大功率可调光LED驱动的SSL4101和SSL4120方案。该系列大功率可调光LED驱动方案可满足100V、120V和230V市场低成本高效应用的设计需求,驱动器最大转换效率高达95%,PF达到0.9以上功率范围为25W~400W。 一、NXP中小功率市电供电非调光LED驱动IC选型表格 非调光产品选型策略 二、NXP中小功率市电供电可控硅调光LED驱动IC选型表格 可调光产品选型策略 三、NXP在功率范围(25W~400W)市电供LED驱动IC选型表格 大联大控股品佳推出的NXPSSL4101驱动IC,使用Flyback反激拓扑电路结构,同时集成PFC控制器适合于25W~150W之间的功率LED驱动电路。而NXPSSL4120驱动IC使用LLC谐振拓扑电路结构,同时集成PCF控制器,适合于75W~400W之间功率的LED驱动电路。 四、样机及原理图 1、非调光非隔离产品样机:SSL21081 2、非调光隔离产品SSL2109A、SSL21151 3、调光产品样机SSL2129A 4、中功率反激方案SSL4101 5、大功率谐振方案SSL4120

    时间:2014-03-20 关键词: NXP 大联大 LED驱动

  • 非隔离驱动成为LED驱动市场的主导

    非隔离驱动成为LED驱动市场的主导,恒压限流驱动将成未来发展趋势。免驱动的出现,进一步撬开了LED驱动发展的新方向。LED由三个部份组成,外壳、光源和驱动,这三样是主角。驱动,在LED在灯具本身的自主作用是相当重要的,它不仅仅是让LED灯亮起来那么简单,它的功能会直接影响到灯具的使用寿命。非隔离驱动成为LED驱动市场的主导,恒压限流驱动将成未来发展趋势。免驱动的出现,进一步撬开了LED驱动发展的新方向。   在LED照明市场的强劲驱动下,也带动LED驱动市场成长,LED驱动规模逐渐攀升,据市场研究机构预测,LED驱动IC市场营收规模将由2010年的近20亿美元,在2015年达到近35亿美元,期间平均复合年成长率为12%。该机构还指出,LED照明所需的LED驱动IC,会是该市场的成长主力,照明、汽车头灯等LED的新兴应用市场大量涌现,掀起了LED的又一波应用狂潮。 随着市场和技术的成熟,LED应用己全面渗透到各个领域。照明与背光是LED技术目前的最大两个应用,而LED驱动技术的不断创新则是这两大应用走向普及的动力。在未来的1~3年内,国内LED驱动产品在技术指标、品质、可靠性、安全等方面都会因为强制要求而使整体水平提高到另一个高度。这种变化,是我们乐于见到的。将会大大加速LED产业的发展,助推LED产业成为新的经济增长点。这正是所有LED人所期待的未来。

    时间:2015-09-09 关键词: 背光 照明 LED驱动 非隔离驱动

  • 世强代理欧创芯OCX,为客户提供更多高性能集成电路应用解决方案产品的选择

    21IC讯 世强进一步拓展国产产品线,与欧创芯(深圳欧创芯半导体有限公司,OCX)签订授权分销协议。     欧创芯是国内在中低压DC-DC恒流恒压驱动产品线最完善的芯片企业之一,此次签约,意味着世强进一步拓展了国产中低压LED驱动、高压DC-DC电源管理等系列产品,并可为汽车、摩托车、电动车照明,装饰照明、工业照明、手持应急照明以及各种对性能指标要求很高的供电设备和供电总成装置等领域的客户,提供更多的高性能集成电路应用解决方案产品的选择。 本次签约后,在世强元件电商,一方面可以采购到欧创芯的全线产品,另一方面,可以获取产品的选型指导、设计指南、资料下载、技术难题解答等服务。 除了欧创芯外,世强元件电商在国产产品线上不断发力,快速引进和拓展了高品质国产DSP、通信模块、电源管理、PD快充、稀土永久磁铁、ESD保护器件、纳米涂层材料等等产品线及相关服务。加之原本国际顶级产品线的覆盖,相信广大中国企业,在享受世强元件电商全面专业的技术服务以外,都能购买到各类高性能、高品质、性价优的产品。

    时间:2019-01-24 关键词: 集成电路 世强 LED驱动

  • 智能汽车需要面向未来的照明设计

    智能汽车需要面向未来的照明设计

     在今年各大电子展中,汽车已经超越消费类产品成为电子创新的亮点所在。在一辆辆设计感十足的智能汽车内部,高级辅助驾驶(ADAS)、车联网、新能源等新技术的涌现,将根本地改变我们未来生活和出行方式。而作为汽车设计重要的组成部分,汽车照明设计在智能汽车、安全互连的驱动下也经历着全新的设计趋势。 “在汽车照明设计中,广泛应用固态照明实现时尚设计、驾驶辅助安全性和节能会是未来的趋势,”恩智浦半导体汽车固态照明产品线总经理、高级总监李晓鹤在谈到汽车照明创新设计时表示:“未来安全互联汽车的应用应该是丰富多彩的,举例来说,越来越多的汽车会使用全LED头灯或日行灯打造全车系一致的品牌元素;使用OLED作为尾灯来实现绚丽的动画效果;使用超过20个LED智能节点调整车内氛围光;实时反映手动驾驶,自动驾驶,运动模式,节能模式等使用情景;再例如防眩智能远光(Adaptive Driving Beam,简称ADB),通过摄像头侦测前方车辆,利用LED矩阵实现多个阴影区,避免前车受到强光干扰并提高驾驶安全性等都是目前热门的设计实例。” 在谈到各大整车厂照明设计趋势时,李晓鹤进一步表示:“主机厂在推动固态照明中的路线各异。以时尚设计见长的欧洲,尤其是德系车型把固态照明提供的造型设计灵活性应用得淋漓尽致。照明造型设计已经成为品牌形象的一部分,可以看成展现个性的设计语言。而以日系为代表的车型更多从新技术定位和节能减排出发,作简单光源替代,却在替换率上悄悄走在前面。但殊途同归,无论是日系还是德系,都在自己的技术平台上推出ADB系统。ADB系统可以改善夜间照明,为驾驶员赢得大约1.3秒的额外反应时间,考虑到未来更严格的碰撞测试标准会使摄像头的普及率迅速增加,ADB系统作为ADAS的延伸其边际成本会越来越低,或许逐渐会成为ADAS的标准组成部分。另外行业内也在研究利用固态照明把可见光通信(LiFi)应用到移动互联Car2X的可行性。” 平台化设计有助于低成本与灵活扩展 上述创新技术的开发正向车辆制造商和车灯供应商提出了挑战,他们必须在更短的开发时间内构建出独特的设计,同时仍具有良好的成本效益。因此,汽车制造商和车灯制造商不再完全采用单种产品设计,而是开发具有可扩展的灵活架构的平台解决方案,来满足多种不同需求。 对于这种改变,李晓鹤表示,“IC技术的改变,需要从终端用户出发,现在的用户需要自己的爱车时尚,体现个性,性价比高,需要不断增加新功能,同时又能安全可靠,需求是很多元化的。同时,未来新车型的设计和生命周期会越来越短。整车厂为满足用户需求,需要快速、经济地为新车型定制照明系统,但也会带来高昂的研发成本和更高的系统成本。对此,驱动平台化设计应运而生。其基本原则是对未来多车型的固态照明驱动系统,包括电子参数,通道配置需求,功率分配,连接散热等作统一规划,然后建立软硬件设计平台,用尽可能小的改动适应不同车型项目需求,以降低研发采购成本,加快上市时间。同时,IC核心器件则必须有能力支持,用尽可能低的系统成本实现平台高度的扩展性和灵活性。同时,汽车固态照明系统尤其是ADB,对IC的稳定性、最高耐压、最大电流输出、大电流跨度下的相对精度、PWM范围、效率、EMC、ESD、系统安全级别(ASIL)都有极高的要求,因此在市场上成熟的平台化产品屈指可数。” 凭借在汽车半导体及模拟混合信号产品长期的技术积累,恩智浦针对汽车固态照明设计开发解决方案,并利用其领先的汽车级高电压数模混合工艺ABCD9技术(一个用于混合信号高压集成的独特平台),成功量产多通道LED驱动器芯片组(ASLx500和ASLx415),可满足业界对单个灵活的可扩展平台架构的需求。该芯片组合可提供架构相似,管脚兼容的1/2/4相升压和2/3通道降压芯片系列,通过搭配组合可以实现同一软硬件架构下任意多通道(LED串)的灵活扩展,支持最大80V,140W照明系统,和3A最大LED电流输出。李晓鹤表示“这种平台架构可以适应从小电流高精度日行灯、迎宾灯,到大电流远近光灯,再到高电压小电流ADB矩阵的各种要求。未来的产品系列也会延伸到单通道和多通道增强版以及ADB矩阵控制器,激光驱动等。” 该IC产品组合将有助于实现车辆头灯和尾灯的新型和现有全方位LED照明功能。这些功能既包括简单的外部LED照明,也包括各种高级功能,例如LED高级远光灯、LED矩阵前照灯、无眩光远光灯,在未来的高级驾驶辅助系统中,它们都将成为至关重要的安全部件。对于这种能涵盖所有车辆照明方式的能力,李晓鹤补充道,“前灯固态照明根据功能,造型设计的不同在通道(LED串)数量,电压,驱动电流电流精度,PWM范围,总功率,动态负载特性,效率和散热方式等参数上跨度很大,而往往在电子平台设计中每个通道的参数是不确定的,会根据最终项目的灯具匹配而变化。一个真正的平台产品必须能在统一架构下满足绝大部分系统的需求,这也是这款LED驱动芯片组的定位。” 据介绍,LED驱动IC产品组合(ASLx500和ASLx415)是业界第一个双级升降压分立式多通道芯片组。和同类其它产品相比,这种架构具有更好的扩展性和灵活性。在主机厂总体规划全系LED平台中受青睐。同时独特的外置MOSFET更有利于EMC和散热设计,而且也把可以支持的最大电流从同类产品的1.4A提高到3A,以适应逐步发展的大电流LED需求。芯片组提供的灵活性使客户可以根据最终需求灵活配置IC和外围器件,在多通道,尤其是超过3通道的情况下可以节省LED驱动部分系统成本约10-20%. 协同合作共降设计难度 “汽车照明正在经历的变革只是全球汽车业所经历行业转型的缩影,技术创新会带来产业链结构的调整和游戏规则的变化,这对中国的参与者而言机遇多于挑战。”对于如何在变革机遇中处理设计挑战,李晓鹤也给出自己的建议,“我们发现国内很多主机厂,灯具厂都有固态照明的发展考虑,但电子设计实力并不是他们传统的强项。LED驱动系统尤其是大功率系统在器件选型,软硬件控制,保护,诊断,CAN/LIN通讯,散热,EMC设计方面有很多挑战,需要长期的经验积累。对此,恩智浦除了提供全面的文档,样片及演示系统外,还可以提供参考设计,设计审阅,现场调试等服务。对于设计师而言,我们还建议可以对最终用户需求和未来3-5年发展方向作全局规划,建立相对标准的软硬件平台。从平台和系统角度提升性能,优化成本。主机厂,灯具厂,系统集成商和芯片供应商共同协作,一同规划未来路图和技术演进。”[!--empirenews.page--]

    时间:2015-05-27 关键词: 芯片 可见光通信 汽车照明 LED驱动 adb

  • 插座型LED车灯熄灭故障如何破?选对驱动IC很关键

    插座型LED车灯熄灭故障如何破?选对驱动IC很关键

    由于寿命长、可高密度安装等优势特点,LED灯在汽车上的应用越来越广。例如:尾灯、外饰灯、前照灯等。 随着LED灯作为车灯应用的越来越普及,设计上的灵活性、可维护性等相应的需求也日益高涨,插座型LED灯也就应运而生了。 相比传统的LED电路板,这种插座型LED灯像LED灯泡一样容易更换,易于维修,但却有一个严重的问题,因为插座的电路板面积很小,无法装下足够的元器件,致使电池欠压时灯会熄灭。 最近,罗姆公司开发出了业界首创的超小型高输出线性LED驱动器,非常适用于最新的插座型LED灯,可以很好地解决上述问题。这款LED驱动器IC"BD18336NUF-M",在车载电池欠压时,仅通过这一枚芯片即可实现安全亮灯,有助于汽车DRL(Daytime Running Lamps:日间行车灯)、位置灯及尾灯等众多插座型LED灯的小型化设计。 罗姆半导体(上海)有限公司技术中心经理葛家明 罗姆半导体(上海)有限公司技术中心葛家明经理指出,车载电池驱动的各电子设备启动关断瞬间,电压会有跌落甚至欠压,在这种情况下,之前的解决方案如不配置外围电路,插座型LED灯就会出现熄灭的现象。罗姆的新驱动器BD18336NUF-M创新的增加了一个欠压电流旁路电路,巧妙地解决了这一问题。 具体来说,当电池电压从13V降至9V时,利用新搭载的欠压时电流旁路功能,通过切换LED电流路径来防止灯灭,能够始终保持30%以上的亮度。使用以往产品如果不配置外围电路,当电池欠压时,LED灯就会熄灭,对周围环境造成安全隐患。 新产品通过欠压时电流旁路功能,以1枚芯片即可实现欠压时的安全驱动,与以往产品相比,外置元器件数量减少了7个,从而使包括外围电路在内的安装面积减少了约30%。该产品可以3.0mm见方的超小型封装实现了600mA的高输出,可安装于超小型插座型LED灯要求的10mm见方的电路板中。 这款LED驱动器IC还有一个突出的优势是增加了发热控制功能,对于温度容易升高的高亮白色LED灯,它内置了抑制LED发热量的功能,通过搭载的输出电流降额功能,当LED温度升高后,能够降低LED驱动器的输出,从而抑制灯的发热量。因此,这款LED驱动器IC不仅适用于红色LED、黄色LED类尾灯、位置灯,还适用于白色LED类DRL、雾灯等。 据葛家明经理介绍,罗姆公司在LED驱动器技术方面相当有经验,具有长期的技术储备。从罗姆公司在LED驱动技术领域的专利情况就可以看出,无论是在专利的单项得分上,还是专利的总数量得分上,罗姆在同行中的得分都是最高。另外,针对汽车应用,罗姆已在2018年取得了ISO26262标准认证。据了解,罗姆的LED驱动器IC年发货量大约在2亿片,其中车载领域约1.4亿片。

    时间:2020-04-07 关键词: LED 技术专访 LED驱动

首页  上一页  1 2 3 4 5 6 7 下一页 尾页
发布文章

技术子站

更多

项目外包

更多

推荐博客