当前位置:首页 > led驱动器
  • Diodes推出两款汽车LED驱动器 可承受负载突降事件

    Diodes推出两款汽车LED驱动器 可承受负载突降事件

    据外媒报道,Diodes推出了两款汽车LED驱动器AL8860Q和AL8861Q。这两款驱动器灵活、性能强大、设计简约,适用于车辆内外部照明应用,例如雾灯、位置灯、尾灯和门灯。 AL8860Q和AL8861Q工作电压范围为4.5V到40V,可承受负载突降事件,并能在启停应用程序的低起动电压下正常运行。这两款驱动器利用迟滞模式降压控制,简化反馈回路设计,仅有四个外部组件,因此稳定性高。此外,由于这两款设备采用集成主电源MOSFET,并且具有高达1MHz可编程开关频率,只需使用小型输出电感器,因此,设计人员可以节省空间和电子材料。 这两款设备可以根据供电电压和外部组件,利用1.5A电源驱动最高40W的负载。此外,这两款驱动器均支持0.3V到2.5V模拟调光功能,以及1%到100%的高精度PWM调光功能,提供多种自动或由用户调节的亮度控制功能。由于其具备灵活性,因此可用于汽车内外各种应用,允许设计师使用相同驱动器创建多种灯具类型,提高效率,并简化生产库存管理。 这两款设备具有全面的内置保护功能,包括短路和开路LED保护,以及过热关闭等功能,确保可靠性和安全性。此外,AL8861Q还具有电流感应电阻和短路保护功能。 两个驱动器均采用高功率密度MSOP-8EP封装,通过一个控制销,进行模拟和PWM调光。该控制销具有模拟调光功能,仅使用一个电容器就能用于LED电流缓启动。AL8860Q和AL8861Q符合汽车规范,并且支持PPAP文档。此外,AL8860Q和AL8861Q还符合AEC-Q100 Grade 1规范。

    时间:2020-05-26 关键词: diodes led驱动器

  • 美国能源部公布第三份基于长期加速寿命测试的LED驱动器可靠性报告

    美国能源部公布第三份基于长期加速寿命测试的LED驱动器可靠性报告

    据外媒报道,美国能源部(DOE)日前公布了第三份基于长期加速寿命测试的LED驱动器可靠性报告。美国能源部固态照明(SSL)研究人员认为,最新的结果都证实了加速压力测试(AST)方法,在各种恶劣条件下都显示出了良好的性能。此外,测试结果及测定的失败因素都能告知驱动器开发人员进一步提升可靠性的相关策略。 众所周知,LED驱动器与LED组件本身一样,对于最佳光质量至关重要。合适的驱动器设计可以消除闪烁并提供均匀的照明。而驱动器也是LED灯或灯具中最可能发生故障的部件。在意识到了驱动器的重要性之后,DOE从2017年就开始了一个长期的驱动器测试项目。该项目涉及单通道和多通道驱动器,可用于天花板凹槽等固定装置。 美国能源部此前已发布了两份关于测试过程和进展的报告,现在公布的是第三份测试数据报告,涉及了在AST条件下运行6000-7500小时的产品测试结果。 实际上,行业没有这么多时间对在正常运行环境中的驱动器进行多年的测试。相反,美国能源部及其承包商RTI InternaTIonal已经在他们称之为7575环境中对驱动器进行了测试 - 室内湿度和温度均持续维持在在75°C。此次测试涉及两各阶段的驱动器测试,与通道无关。单阶段设计成本较低,但缺少首先将AC转换为DC然后调节电流的单独电路,而这个单独电路则是两阶段设计所独有的。 美国能源部报告指出,在对11种不同驱动器所进行的测试中,所有驱动器均在7575环境中运行了1000小时。当驱动器位于环境室中时,连接到驱动器的LED负载则位于室外的环境条件下,因此AST环境仅影响驱动器。DOE并没有将AST条件下的运行时间与正常环境下的运行时间联系起来。第一批装置在运行了1250小时后失效,尽管有些装置仍在运行。在测试了4800小时候,64%的设备失效。尽管如此,考虑到测试环境的恶劣,这些结果已经很不错了。 研究人员发现,大多数故障发生在驱动器的第一阶段,特别是功率因数校正(PFC)和电磁干扰(EMI)抑制电路。在驱动器的两个阶段中,MOSFET也存在故障。除了指明可以改善驱动器设计的PFC和MOSFET等地方外,此次AST还表明,通常可以根据监控驱动器的性能来预测故障。例如,监控功率因数和浪涌电流可以提前发现早期故障。闪烁增加也表明即将发生故障。 长期以来,DOE的SSL计划一直在SSL领域进行着重要的测试和研究,包括在Gateway项目下的应用场景产品测试以及在Caliper项目下商业产品性能的测试等。

    时间:2020-05-25 关键词: led驱动器

  • 新型LED驱动器控制器电路设计

    新型LED驱动器控制器电路设计

      Diodes公司推出了一款用于汽车应用中的LED新IC。   AL5814Q符合汽车标准,符合AEC-Q1001级标准。它具有低压差和增强的调光功能。   AL5614Q是一款可调节线性LED控制器,可在4.5伏至60伏的输入电压范围内工作。该器件提供最大15mA的驱动电流,可与外部LED驱动电源器件(如MOSFET或BJT)配合使用。      与传统的线性LED驱动器相比,采用外部驱动电源组件可最大限度地降低设备的内部功耗。这种配置还使AL5614Q能够驱动更高电流的LED或多个LED串。因此,该器件适用于需要更高光输出的应用,包括:   1、汽车尾灯   2、汽车内饰灯   3、汽车仪表照明   4、汽车位置灯   5、汽车牌照照明   作为低压差电压器件,即使电源电压非常接近输出电压,该单元也可以有效地工作。   引脚分配   可以通过VSET引脚的电压设置单元的输出电流。该电压通过使用电阻分压器R5和R6设置,在REF引脚和VSET引脚之间工作。      外部检测电阻R1上的电压馈入FB引脚进行检测。当电压超过分压器设定的VSET电压时,OUT引脚的输出变低,驱动器减少到外部晶体管。   VFAULT引脚负责调光和开路LED检测的脉冲宽度调制(可通过SFAULT引脚支持)。   实现热折返行为   这是通过对R6使用负温度电阻(NTC)来完成的。然后,当检测点的温度上升时,NTC电阻减小并使VSET处的电压降低。因此,输出电流减小,从而防止系统过热。   此外,AL5814Q还具有内部过温保护(OTP)。这是通过在结温超过+160°C时关闭IC并在结温降低+30°C时将其重新打开来实现的。   其他主要规格   1、采用MSOP-8EP封装   2、工作温度范围:-40°C至+150°C。   3、储存温度范围:-55°C至+150°C。   LED控制器应用领域   虽然我们仍然需要等待自动驾驶汽车以及全电动汽车的广泛适应,但电子设备在汽油动力和混合动力汽车中的应用仍在迅速发展。LED正在取代白炽灯泡,正如预期的那样,许多制造商都提供各种LED驱动器控制器,每个控制器都针对自己的特定应用进行了优化。这是两个例子:   恩智浦提供16通道PCA9685LED控制器,采用I²C总线控制。这款特殊的控制器针对RGBA背光进行了优化-每个LED输出都有自己的12位分辨率(4096步)固定频率的独立PWM控制器。与AL5814Q一样,该组件可调节亮度。   安森美半导体拥有NCV7691,该器件使用外部NPN双极器件与反馈电阻相结合来调节用于驱动LED的电流。这是另一款面向汽车应用的控制器。

    时间:2020-05-21 关键词: 控制器 led驱动器

  • Diodes 推出2款车规格降压LED驱动器 适用于驱动汽车内外部LED照明

    Diodes 推出2款车规格降压LED驱动器 适用于驱动汽车内外部LED照明

      Diodes 公司推出符合汽车规格的降压 LED 驱动器,为内外部 LED 照明提供简便、坚固耐用的解决方案。   【2020 年 1 月 7 日美国德州普拉诺讯】Diodes 公司 (Nasdaq:DIOD) 近日宣布推出 AL8843Q 与 AL8862Q 两款符合汽车规格的直流对直流 (DC-DC) 降压转换器,适用于驱动汽车内外部单一的 LED 或多重 LED 灯条。产品应用包含目前许多制造商已设为标准配备的日行灯 (DRL),亦包含雾灯、方向灯、煞车/停止灯。   AL8843Q 与 AL8862Q 的供应电压皆从 4.5V 到至少 40V (AL8862Q 达 55V),可承受相当严重的电压变动,例如怠速启动或熄火/启动操作时的负载突降,不会产生对应的LED 驱动器电流衰减问题。   高整合度不仅带来高效能,亦减少物料清单。两款皆内建功率 MOSFET:AL8843Q 为40V/0.2Ω,AL8862Q 为 55V/0.4Ω。此外,驱动器具备迟滞模式降压 LED 驱动器控制器,简化回馈回路,工程师得以只运用四个外部组件,设计出高度稳定的降压转换器。   两款产品功能不同,AL8843Q 输入电压范围为 4.5V 至 40V,提供 3A 的输出电流,AL8862Q 输入电压范围则为 5V 至 55V,提供高达 1A 的输出电流。不过,两款皆支持0% 至 100% 全范围 PWM 调光,可以 0.4V 至 2.5V 之间的模拟输入来控制,或以外部微控制器或主机处理器产生的 PWM 讯号来控制。安全功能包含过热保护以及 LED 短路与开路防护机制。AL8862Q 配置开路式故障指示器脚位,判定过低时将回报故障状况。   采用 SO-8EP 封装的 AL8843Q 与 AL8862Q 符合 AEC-Q100 Grade 1 等级规范,支持 PPAP 文件,并由 IATF16949 认证的设施制造。

    时间:2020-05-10 关键词: 降压转换器 diodes led照明 led驱动器

  • 安森美半导体推面向低功率固态照明的汽车LED驱动器和控制器

    安森美半导体推面向低功率固态照明的汽车LED驱动器和控制器

    新系列器件简化高效可靠的照明方案的设计工作,提供精密功能以增强道路安全性。 安森美半导体(ON Semiconductor,美国纳斯达克上市代号:ON)推出由四个器件组成的新系列,促进汽车厂商和消费者现在所期望的汽车外部和内部照明的高水平性能和创新功能。新系列专门针对低功率固态照明,包括两个LED驱动器(NCV7683和NCV7685)和两个电流控制器(NCV7691和NCV7692)。 为提升道路安全性,汽车厂商正从简单的“开/关”操作转向精密的系统,在组合尾灯(RCL)、转向信号灯、雾灯和其他外部调节的LED集群中结合了运动和可变强度,以向其他道路使用者发出更清晰和能见度更高的警告。 NCV7685和NCV7683分别集成了12个和8个线性可编程电流源,从而能够以每通道高达100 mA的电流驱动多串LED。这些器件提供了一系列可配置选项,包括菊花链、照明亮度控制、电流调节、序列功能和通道组合。NCV7685采用具有CRC8错误检测功能的8位I2C接口,可通过脉宽调制(PWM)进行个别输出电流调节,并用于先进的诊断,包括LED串开路检测或欠压检测,还提供专用的诊断引脚。根据特定的设计要求,可以使用DC-DC控制器和/或LDO稳压器为NCV7685供电。 NCV7691提供稳定的宽电流范围,用于驱动一串或多串LED,仅需一个外部NPN双极晶体管和一个反馈电阻。该驱动器提供设计灵活性,可以在多通道系统中添加额外单通道,并通过其PWM输入支持调光功能。NCV7691包括串开路、短路和热关断功能,确保基本照明的安全可靠运行。衍生的NCV7692提供更快的响应时间,并降低了开路负载检测的阈值。   安森美半导体汽车产品分部Jim Alvernaz说:“LED照明的性能和功能的可能性,已为汽车厂商和消费者所要求,精密的照明驱动器和控制器对于将想法变为现实至关重要。除了重要的安全益处外,基于LED的汽车照明还为汽车工程师创造令人兴奋的机会,以增强品牌和形象。”

    时间:2020-05-07 关键词: 安森美半导体 可编程电源 led驱动器

  • ROHM开发出内置MOSFET的4通道线性LED驱动器IC

    ROHM开发出内置MOSFET的4通道线性LED驱动器IC

    两轮机动车尾灯的理想选择!ROHM开发出4通道线性LED驱动器“BD183x7EFV-M” ~ 两项新技术有助于大幅削减车载LED灯的电路板面积和设计周期 ~ 全球知名半导体制造商ROHM(总部位于日本京都)面向两轮/四轮机动车中应用日益普及的LED尾灯(刹车灯、后尾灯)、雾灯、转向灯等,开发出内置MOSFET的4通道线性LED驱动器IC“BD183x7EFV-M”(BD18337EFV-M / BD18347EFV-M)。 新产品采用了两项新技术,即ROHM独有的热分散电路和LED单独控制功能,有助于显著削减LED灯的电路板面积和应用的设计周期,能够为以印度为主的海外两轮机动车市场提供解决方案。 在削减电路板面积方面,利用独有的热分散电路,将以往各输出通道所需的热分散电路用引脚集约为1个引脚,从而通过小型16pin封装实现了4通道更高输出(150mA/ch)。同时,当点亮规格不同的车载LED灯时,以往需要两个LED驱动器来驱动,而采用LED单独控制功能,仅需1个驱动器即可驱动。 另外,在削减应用的设计周期方面,通过采用独有的热分散电路,使以往每个通道都需要的热设计如今仅需1次即可,因此,非常有助于减少热设计工时。同时,利用LED单独控制功能,在发生异常时有两种控制方式可选(可选择统一OFF控制或单独OFF控制),且支持世界各国的两轮机动车牌照灯安全标准,因此很方便在世界各国扩展机型。不仅如此,新产品还配备了可提高设计灵活性的时序亮灯用单独调光功能和保护LED驱动器及外围电路的各种保护功能。 本产品已于2019年12月起暂以月产25万个的规模投入量产(样品价格 500日元/个,不含税)。前期工序的生产基地为ROHM Hamamatsu Co.,Ltd.(日本滨松市),后期工序的生产基地为ROHM Electronics Philippines Inc.(菲律宾)。 未来ROHM将继续开发有助于系统优化和节能的产品,不断为两轮和四轮机动车的技术创新贡献力量。 <背景> 近年来,在两轮/四轮机动车市场,从节能化和设计灵活性的角度出发,LED车灯的应用越来越广泛,LED灯的数量和亮度均呈现多样化趋势。 其中,在以两轮机动车为主要交通工具的亚洲地区,两轮机动车制造商希望能够进一步简化驱动尾灯和牌照灯的典型电路结构,以缩短开发周期并降低成本。然而,控制LED的LED驱动器存在热设计方面的问题,因此完全兼顾灯数、亮度、安全性及成本是非常困难的。 ROHM分析了世界最大的两轮机动车市场--印度市场的需求,开发出采用独有的热分散电路和LED单独控制功能两项新技术的LED驱动器,以解决该课题。<新产品特点> 新产品采用了两项新技术:“热分散电路”和“LED单独控制功能”,有助于显著削减LED灯的电路板面积和应用的设计周期。 1.有助于削减电路板整体的面积1-1 采用热分散电路, 实现4通道输出的小型化和更高输出 新产品采用ROHM独有的热分散电路,将以往解决方案中各输出通道所需的热分散电路用引脚集约为1个引脚,从而使以往业界中最大只能实现3通道的16pin封装进一步实现了小型化,并实现了4通道更高输出(150mA/ch)。在使典型的车载尾灯配置--4路LED灯亮时,以往需要2个LED驱动器,而新产品仅需1个驱动器即可,可减少部件数量和电路板面积。 1-2 采用LED单独控制功能, 实现对不同规格的2个LED灯的驱动 以往产品要使规格不同的2个LED灯(比如尾灯和牌照灯)灯亮时,需要2枚IC。 新产品配备了LED单独控制功能,因此仅1枚IC即可驱动规格不同的2个LED灯,IC数量的减少有助于大幅削减电路板面积。 2.  有助于缩短应用的设计周期 2-1 采用独有的热分散电路,减少热设计工时 以往产品需要与通道数量相对应的热分散电路,在进行热设计时,需要在考虑到每个通道LED相应的热分散电阻的电气特性偏差的前提下,边确认整个电路边进行权衡设计。新产品采用独有的热分散电路,将热分散电路用引脚集约为1个引脚,从而使以往每个通道都需要的热设计仅1次即可,有助于减少热设计工时。 2-2 采用异常时的LED单独控制功能,支持在各国扩展机型 新产品内置有控制方式选择功能,当LED发生异常时,可选择所有通道关闭或单通道关闭。例如,当1路尾灯因断线等原因不亮时,可选择关闭其他所有的通道或者仅关闭断线的通道。各国发生异常时的两轮机动车牌照灯的安全标准不同,新产品可通过一种设置对应众多国家和地区的法律法规,因此在各国进行机型扩展时,可减少重新设计工时。 3. 配备能够提高设计灵活性的时序灯亮功能 新产品在1个封装中还搭载了能够实现时序灯亮的单独调光功能,仅需增加电阻器等外置部件,即可实现机型的多样化。 4. 配备异常时保护电路的各种功能 新产品具有丰富的保护功能,如异常时保护车灯的开路短路检测功能和每个通道的异常检测功能等。即使发生异常也能保护电路,防止LED驱动器和外围电路被损坏。 <其他电气特性> <应用示例> 适用于 ◇尾灯(刹车灯、后尾灯) ◇雾灯 ◇转向灯 ◇牌照灯 ◇日间行车灯(Daylight Running Lamps) 等两轮/四轮机动车的各种LED灯驱动。

    时间:2020-05-02 关键词: MOSFET rohm led驱动器

  • 儒卓力推出全新RCDE-48系列Recom LED驱动器模块

    儒卓力推出全新RCDE-48系列Recom LED驱动器模块

    全新RCDE-48系列Recom LED驱动器模块适用于具有多达15个高亮度LED的灯串,提供模拟或脉冲宽度调制 (PWM)深度调光功能,并且具有宽输入电压范围和恒定电流输出。 为了实现效率高达97%的高亮度LED灯串运作,RCDE-48系列LED驱动器提供了高达350mA、700mA或1050mA的恒定输出电流。这些驱动器模块的输入电压范围为6至60VDC,适用于12V、24V或48V标称电源轨。该系列中的所有产品均提供欠压锁定 (UVLO)、过热保护以及输出开路和短路保护功能,以实现高达130万小时的平均无故障间隔时间(MTBF)。 LED驱动器具有与3.3V逻辑电平兼容的0至100%线性模拟或PWM调光输入功能,为IoT节点或μC调光器提供了出色的运作条件。调光引脚也可以用作开/关遥控器。 这些驱动器模块采用标准DIP-24封装(32.1x20.8x12.3mm),适用于海拨高达5000m的室内和室外照明应用。对于350mA型款,无需任何强制冷却或降额工作,即使在高达+ 80°C的高温环境下也能正常工作。

    时间:2020-04-28 关键词: LED 儒卓力 led驱动器

  • 创新的LED驱动器用途

    创新的LED驱动器用途

    现在大街上随处可见的LED显示屏,还有装饰用的LED彩灯以及LED车灯,处处可见LED灯的身影,LED已经融入到生活中的每一个角落。在LED技术出现之前,大多数照明应用都是根据使用的灯泡类型和耗电量来定义的,但LED改变了这一点。今天,同样的基本固态技术适用于低、中、高功率照明应用,提供更高的能效和更好的亮度。 在高功率细分市场,如荧光灯管、路灯和泛光照明的标准嵌入式灯具,以及其他形式的户外照明,节省的电力可能是巨大的。当考虑到连接方便性和输出电平可调时,LED照明的业务案例就很难被取代了。由于高能效,大多数LED照明应用可以小于100 W的功率级解决,这是非常重要的,因为它直接影响到所需的电源转换器、LED控制器和LED驱动器拓扑结构。 驱动器要求 从根本上说,除了白炽灯泡(直接采用交流电源运行)以外,大多数灯都需要某种电源转换。虽然LED照明采用正极或整流电源运行,但其他大多数照明技术都采用高压/高频交流电源运行。因此通常有能量损失,能效低,但是对于同样的亮度,LED消耗的功率要低得多,因此能够采用低压AC-DC电源。需要功率小于100 W的灯通常采用单级反激拓扑。从交流转换到直流,同时提供恒定且稳定的电源,以尽量减少闪烁,是从现有的照明转向LED的主要挑战。 期望整个照明电路至少在短时间内切换到直流是不合理的,因此有必要为每个灯泡、灯具或嵌入式灯具开发转换和驱动级。最方便的方法,至少对用户来说,是将这些器件集成到灯具中,或完美的集成到灯泡本身。对于低于100 W的应用,单级变换器是最常见的拓扑结构(功率水平超过100 W通常需要多级转换器)。一个单级转换器可涵盖广泛的应用,甚至个别灯泡或打火机所需的极低功率。 在所有用例中常见的是需要提供功率因数校正(PFC)和低总谐波失真(THD);这些因素现在都由政府立法,但实际水平可能因地区而异。取决于应用消耗的功率,PFC和THD是强制性的,许多制造商正瞄准替代方案,例如LED正在取代紧凑型荧光灯(CFL)。这在现有的物理空间方面存在重大挑战,因为所有的AC-DC转换和LED控制器/驱动器功能都需要集成到通常只由灯泡本身占用的空间中。 电源转换选择 由于这些空间限制和立法要求,LED内部功率转换的首选拓扑是采用初级端调节(PSR)的单级反激转换器。这可通过使用比次级端调节拓扑更少的器件和更小的电容器来实现,半导体制造商现在提供一系列的器件来满足这一需求。 PSR的一个优点是它不需要任何次级端反馈,这简化了变压器的设计,无需光电隔离。所采用的调节类型对于实现PFC和THD目标也很重要。为了满足这些要求,制造商正在转向非连续导通模式(DCM)。在这种模式下,存储在变压器中的电荷在开关晶体管导通前完全耗尽,因此输出二极管的电压也达到零。这将导致没有电流流过初级端或次级端的一段时间,即所谓的死区时间,因而这种反激拓扑被命名为非连续。它的优点是整个二极管没有损耗,在输出功率较低的应用中,它可以产生一个相对较小的变压器。 但是,它容易受到纹波电流的影响,会导致产生损耗。谷开关是DCM的延伸,当输出电压的振铃处于最低值时使晶体管导通。这发生在死区时间之初的第一次振荡,此时将重新导通晶体管和重新启动功率传输周期。这要求控制器能够检测输出电压上的振铃,并在检测到处于谷底时切换。这通常还需要能够根据输出功率需求改变开关时间;提前导通以满足高需求,或者在需求低的情况下晚一点切换。这种特性也被称为电压折返,改变开关频率可以降低电磁干扰,同时,谷开关也会由于可变的开关时间而导致更高的输出纹波。 DCM和谷开关的一个流行的替代方案是准谐振(QR)模式,也称为临界导通模式(CRM)。在这种模式下,当控制器检测到输出电压上的第一次振荡的底部时,晶体管导通,提供较低的开关损耗和所有模式中最高的效率,但使用QR/CrM实现好的PFC和THD是具挑战性的。 开发一个LED驱动器 NCL3038x是单级反激降压-升压(buck-boost)转换器,在QR/CrM模式下工作,为LED或LED串提供恒流和恒压。然而,与其他QR/CrM控制器不同,NCL3038x提供极佳的PFC(>0.95)和非常低的THD(<10%)。这超越了全球标准,使得这些器件适合用于任何有立法要求的地区,以符合PFC和THD要求使。图1展示了NCL30386(带调光)将如何用于一个典型的电路。 该器件有效地工作在三种模式:在输出负载超过80%时采用CrM,而在负载低于80%时使用谷底模式,在非常低的负载下可以采用频率反走。这种灵活性有助于在所有条件下提供高能效和极佳的THD。NCL3038x还集成了一个高压(HV)启动功能,以确保即使在非常低的负载下一致的启动时间和保持运行。高压引脚动态调节操作,以在运行期间达到最佳的PFC、THD和稳压。 智能照明 调光是智能LED照明的一个重要功能,也是许多LED驱动器(包括NCL30386)支持的特性。这通常使用模拟电平设置光输出或脉宽调制(PWM)信号来实现;NCL30386都支持。通常,基于PWM的调光特性可能会由于PWM不工作而导致输出电气噪声和闪烁,但使用NCL30386,输出总是转换为模拟电平,无论通过模拟输入还是PWM信号调光。NCL30386使用PWM可支持0%到100%的调光级别,使用模拟输入可支持0.5%到100%的调光级别。图2显示了NCL30386的线性和二次输出曲线。 输出的形状也很重要,通常要么是线性的,要么是二次曲线。前者提供确定性和定期的照明间隔水平,而后者往往被认为是更自然的。NCL30386提供线性和二次输出,还有一个非调光版本:NCL30388。 总结 LED照明由于其使用寿命长、能效高等优点,正迅速成为几乎所有照明应用的基准。然而,它有严格的PFC和THD要求,这可能因地区而异。与其他LED驱动器不同,NCL3038x采用QR/CrM模式提供高PFC、低THD和更简单的变压器设计的好处,因为这些器件提供恒流和恒压,还可提供“冷启动”功能,并作为辅助电源运行。在一系列负载下具备领先的THD与极佳的PFC,制造商可采用单一的、通用的平台用于广泛的地区和市场,有效地应对这些立法要求。虽然LED在生活中处处可见,但是LED也还有一些不足需要我们的设计人员拥有更加专业的知识储备,这样才能设计出更加符合生活所需的产品。

    时间:2020-03-27 关键词: pfc led驱动器 thd

  • 两轮机动车尾灯的理想选择!ROHM开发出4通道线性LED驱动器“BD183x7EFV-M”

    两轮机动车尾灯的理想选择!ROHM开发出4通道线性LED驱动器“BD183x7EFV-M”

    全球知名半导体制造商ROHM(总部位于日本京都)面向两轮/四轮机动车中应用日益普及的LED尾灯(刹车灯、后尾灯)、雾灯、转向灯等,开发出内置MOSFET的4通道线性LED驱动器IC“BD183x7EFV-M”(BD18337EFV-M / BD18347EFV-M)。 新产品采用了两项新技术,即ROHM独有的热分散电路和LED单独控制功能,有助于显著削减LED灯的电路板面积和应用的设计周期,能够为以印度为主的海外两轮机动车市场提供解决方案。 在削减电路板面积方面,利用独有的热分散电路,将以往各输出通道所需的热分散电路用引脚集约为1个引脚,从而通过小型16pin封装实现了4通道更高输出(150mA/ch)。同时,当点亮规格不同的车载LED灯时,以往需要两个LED驱动器来驱动,而采用LED单独控制功能,仅需1个驱动器即可驱动。 另外,在削减应用的设计周期方面,通过采用独有的热分散电路,使以往每个通道都需要的热设计如今仅需1次即可,因此,非常有助于减少热设计工时。同时,利用LED单独控制功能,在发生异常时有两种控制方式可选(可选择统一OFF控制或单独OFF控制),且支持世界各国的两轮机动车牌照灯安全标准,因此很方便在世界各国扩展机型。不仅如此,新产品还配备了可提高设计灵活性的时序亮灯用单独调光功能和保护LED驱动器及外围电路的各种保护功能。 本产品已于2019年12月起暂以月产25万个的规模投入量产(样品价格 500日元/个,不含税)。前期工序的生产基地为ROHM Hamamatsu Co.,Ltd.(日本滨松市),后期工序的生产基地为ROHM Electronics Philippines Inc.(菲律宾)。 未来ROHM将继续开发有助于系统优化和节能的产品,不断为两轮和四轮机动车的技术创新贡献力量。 <背景> 近年来,在两轮/四轮机动车市场,从节能化和设计灵活性的角度出发,LED车灯的应用越来越广泛,LED灯的数量和亮度均呈现多样化趋势。 其中,在以两轮机动车为主要交通工具的亚洲地区,两轮机动车制造商希望能够进一步简化驱动尾灯和牌照灯的典型电路结构,以缩短开发周期并降低成本。然而,控制LED的LED驱动器存在热设计方面的问题,因此完全兼顾灯数、亮度、安全性及成本是非常困难的。 ROHM分析了世界最大的两轮机动车市场--印度市场的需求,开发出采用独有的热分散电路和LED单独控制功能两项新技术的LED驱动器,以解决该课题。 <新产品特点> 新产品采用了两项新技术:“热分散电路”和“LED单独控制功能”,有助于显著削减LED灯的电路板面积和应用的设计周期。 1. 有助于削减电路板整体的面积 1-1 采用热分散电路,实现4通道输出的小型化和更高输出 新产品采用ROHM独有的热分散电路,将以往解决方案中各输出通道所需的热分散电路用引脚集约为1个引脚,从而使以往业界中最大只能实现3通道的16pin封装进一步实现了小型化,并实现了4通道更高输出(150mA/ch)。在使典型的车载尾灯配置--4路LED灯亮时,以往需要2个LED驱动器,而新产品仅需1个驱动器即可,可减少部件数量和电路板面积。 1-2 采用LED单独控制功能,实现对不同规格的2个LED灯的驱动 以往产品要使规格不同的2个LED灯(比如尾灯和牌照灯)灯亮时,需要2枚IC。 新产品配备了LED单独控制功能,因此仅1枚IC即可驱动规格不同的2个LED灯,IC数量的减少有助于大幅削减电路板面积。 2.  有助于缩短应用的设计周期 2-1 采用独有的热分散电路,减少热设计工时 以往产品需要与通道数量相对应的热分散电路,在进行热设计时,需要在考虑到每个通道LED相应的热分散电阻的电气特性偏差的前提下,边确认整个电路边进行权衡设计。新产品采用独有的热分散电路,将热分散电路用引脚集约为1个引脚,从而使以往每个通道都需要的热设计仅1次即可,有助于减少热设计工时。 2-2 采用异常时的LED单独控制功能,支持在各国扩展机型 新产品内置有控制方式选择功能,当LED发生异常时,可选择所有通道关闭或单通道关闭。例如,当1路尾灯因断线等原因不亮时,可选择关闭其他所有的通道或者仅关闭断线的通道。各国发生异常时的两轮机动车牌照灯的安全标准不同,新产品可通过一种设置对应众多国家和地区的法律法规,因此在各国进行机型扩展时,可减少重新设计工时。 3. 配备能够提高设计灵活性的时序灯亮功能 新产品在1个封装中还搭载了能够实现时序灯亮的单独调光功能,仅需增加电阻器等外置部件,即可实现机型的多样化。 4. 配备异常时保护电路的各种功能 新产品具有丰富的保护功能,如异常时保护车灯的开路短路检测功能和每个通道的异常检测功能等。即使发生异常也能保护电路,防止LED驱动器和外围电路被损坏。 <其他电气特性> <应用示例> 适用于 ◇尾灯(刹车灯、后尾灯) ◇雾灯 ◇转向灯 ◇牌照灯 ◇日间行车灯(Daylight Running Lamps) 等两轮/四轮机动车的各种LED灯驱动。

    时间:2020-03-10 关键词: rohm 尾灯 led驱动器

  • 汽车LED灯调光技术

    汽车LED灯调光技术

    随着科学技术的发展,LED技术也在不断发展,为我们的生活带来各种便利,为我们提供各种各样生活信息,造福着我们人类。夜间驾驶时,您可能很少会想到汽车的前大灯和尾灯,而我对这些照明系统中的很多设计元素却非常着迷:车身造型师设计出令人赞叹的前大灯和尾灯轮廓和外形,激发消费者的购买欲望 政府监管机构关注光束的形状和亮度、系统架构师决定光源和功能、光学工程师开发了反光镜和玻璃特性、机械工程师选择材料并设计光源的物理结构、电气工程师设计电路为光源供电并与车载电子设备通讯。鉴于灯光设计中涉及的众多学科,最终产品的开发过程也便自然而然地会有很多的设计选择。今天,我想谈谈其中的LED灯。 LED灯 和家用照明一样,汽车的外部照明之前也多采用白炽灯。随着发光二极管(LED)灯在家庭中的使用日益普遍,它在汽车市场也逐渐受到追捧。LED汽车尾灯和刹车灯便是一个例证。设计人员经常使用一组共享的LED串作为这两种车灯的光源。当驾驶员刹车时,刹车灯变亮,而尾灯则变暗。这一功能是设计人员通过驱动LED光源的电子设备中的调光功能实现的。 图1所示为驱动LED前大灯和尾灯的电子元件的框图。     图1:驱动汽车照明LED的典型架构的框图。 汽车LED前大灯和尾灯系统调光中的一些关键考虑因素包括: 带PWM的LED驱动器:如图1所示,LED驱动器,即向LED提供电流的电子电路,从定时器电路接收脉宽调制(PWM)信号。该PWM信号的占空比控制LED驱动器驱动的平均电流,而平均电流又控制LED光源的亮度。因此,当驾驶员刹车时,来自LED的光变亮,而仅提示周围车辆和行人时,则光被调暗。电子设计工程师通常使用TI的555定时器集成电路(IC)生成PWM信号,该定时器集成电路(IC)广泛用于汽车、工业和其它很多行业。 占空比精度:基于555定时器的PWM信号的缺点是占空比的精度不足。影响占空比的555定时器IC参数在不同的IC上会各不相同;这意味着即使设计中的每个组件值都相同,一个555 IC定时器产生的占空比与另一个555 IC产生的占空比也可能会不同。而在汽车中,这就意味着左右两侧的尾灯亮度可能不同。解决这个问题的方法之一,是用以晶体为时钟源的微控制器代替555 IC,从而生成精确的占空比PWM信号。但是,这个解决方案需要使用更多的昂贵部件和更复杂的软件编程。另一种方法是在制造过程中校准尾灯的亮度。但是,这种方法要求电子设备支持校准,因而所需的生产时间更长,也会提高整体的产品成本。 反馈:第三种可能性是使用反馈。图2描述了这一方法。原理很简单:将PWM占空比与精确参考值进行比较,然后相应地调整定时器的电路输出。这种方法操作简单而且成本效益较高。     图2:框图中添加了反馈,用于提高TI 555定时器电路生成的PWM信号的精度。 我相信您会一定会问:这种方法有效吗?答案是肯定的!汽车照明的精密PWM调光LED驱动器参考设计中包含有相关的设计细节和测试结果。相信在未来的科学技术更加发达的时候,LED会以更加多种类的方式为我们的生活带来更大的方便,这就需要我们的科研人员更加努力学习知识,这样才能为科技的发展贡献自己的力量。

    时间:2019-11-17 关键词: 汽车 led灯 电源技术解析 led驱动器

  • 高性能LED调光引擎技术

    高性能LED调光引擎技术

    繁华的城市离不开LED灯的装饰,相信大家都见过LED,它的身影已经出现在了我们的生活的各个地方,也照亮着我们的生活。开关模式可调光LED驱动器凭借其高效性以及对LED电流的精确控制而闻名。这类LED驱动器还可以提供调光功能,使得最终用户在营造奇幻灯光效果的同时有效降低自身功耗。 基于8位单片机(MCU)的解决方案可针对此类应用提供必要的模块,从而实现通信、定制和智能控制功能。此外集成的独立于内核的外设,与纯模拟或ASIC实现相比可显著提升灵活性,扩展照明产品功能的同时塑造产品差异化,从而实现创新。这类智能照明解决方案具备故障预测和维护、能量监测,色温维持以及远程通信和控制等功能,功能之丰富不胜枚举,并且将因此而倍受青睐。 虽然LED驱动器与先前的照明解决方案相比具备诸多优势,但其实现过程中也会面临许多挑战。但您不必担心,阅读完本文章后,您将会了解如何使用8位MCU来轻松应对这些设计挑战,从而打造出高性能的开关模式LED驱动解决方案,功能之丰富令传统解决方案只能望其项背。 8位单片机可独立控制最多四个LED通道,这是大多数现成LED驱动器控制器所不具备的一项独特能力。在图1中,LED调光引擎可由单片机中提供的外设构成。这些引擎均具有独立的封闭通道,极少需要甚至不需要中央处理单元(CPU)干预即可控制开关模式电源转换器。这样可以释放CPU以执行其他重要任务,比如系统中的监控功能、通信功能或新增的智能功能。     图1:通过Microchip的PIC16F1779 8位单片机控制四个LED串的图示 LED调光引擎 在图2中,基于电流模式升压转换器的LED驱动器由LED调光引擎控制。该引擎主要由互补输出发出发生器(COG)、数字信号调制器(DSM)、比较器、可编程斜坡发生器(PRG)、运算放大器(OPA)和脉宽调制器3(PWM3)等独立于内核的外设(CIP)组成。这些CIP与固定稳压器(FVR)、数模转换器(DAC)和捕捉/比较/PWM(CCP)等其他片上外设一起组成完整的引擎。COG将高频开关脉冲提供给MOSFET Q1,从而将能量和供电电流传输给LED串。COG输出的开关周期通过CCP和占空比设置,用于维持LED恒定电流,具体取决于比较器输出。每当Rsense1两端的电压超过PRG模块的输出时,比较器就会产生一个输出脉冲。PRG的输入源自反馈电路中的OPA输出,它被配置为斜率补偿器,以在占空比大于50%时抵消固有次谐波振荡的影响。 OPA模块实现为具有II型补偿器配置的误差放大器(EA)。FVR用作DAC输入,根据LED恒定电流规范为OPA同相输入提供参考电压。为了实现调光目的,PWM3用作CCP输出的调制器,同时驱动MOSFET Q2以使LED快速循环亮起和熄灭。调制操作可通过DSM模块来完成,调制后的输出信号馈送到COG。PWM3可提供占空比可变的脉冲,用于控制驱动器的平均电流,实际上控制的是LED的亮度。 LED调光引擎不仅可以实现典型LED驱动器控制器的功能,而且还具备解决LED驱动器典型问题的能力。现在,我们将探讨这些问题并分析如何使用LED调光引擎来加以避免。     图2.LED调光引擎 频闪 频闪是典型开关模式可调光LED驱动器可能面临的挑战之一。虽然精心策划的频闪会带来有趣的效果,但如果LED发生意外频闪,则会破坏用户期望的灯光设计。为了避免频闪并提供平滑调光体验,应确保驱动器从最高档位(即100%灯光输出)一直到最低档位的调光效果都是连续流畅的。由于LED会瞬间响应电流变化并且不具有阻尼效果,因此驱动器必须具有足够多的调光档位才能确保人眼察觉不到变化。为了满足这一要求,LED调光引擎采用PWM3来控制LED的调光。PWM3是16位分辨率的PWM,从100%到0%占空比共有65536个档位,可保证亮度平滑切换。 LED色温转换 LED驱动器还可以转换LED的色温。 此颜色变化是人眼能够察觉得到的,削弱了客户对享受优质LED照明体验的主张。图3给出了典型的PWM LED调光波形。当LED熄灭时,由于输出电容缓慢放电,LED电流会逐渐减小。此事件会导致LED发生色温漂移且功耗增大。     图3.LED调光波形 可以使用负载开关来防止输出电容缓慢放电。例如,在图2中,电路使用Q2作为负载开关,LED调光引擎会同步关闭COG PWM输出和Q2,以便切断电流衰减路径,让LED快速熄灭。 峰值电流 当使用开关模式功率转换器驱动LED时,将采用反馈电路来调节LED电流。但是,如果在调光期间操作不当,反馈电路会产生峰值电流(见图3)。回顾图2,当LED点亮时,电流传输到LED,RSENSE2两端的电压馈送到EA。当LED熄灭时,没有电流传输到LED,RSENSE2电压变为零。在此调暗期间,EA输出会增加到最大值,并使EA补偿网络过充。当调制的PWM再次导通时时,如果有高峰值电流驱动到LED,则需要若干个周期才能恢复。此峰值电流会削减LED的使用寿命。 为了避免这一问题,LED调光引擎允许将PWM3用作OPA的改写源。当PWM3为低电平时,EA的输出呈三态,将补偿网络与反馈回路完全断开,并将保持最后一个稳定反馈点作为补偿电容中存储的电荷。当PWM3为高电平且LED再次点亮时,补偿网络重新连接,EA输出电压立即跳到其先前的稳定状态(PWM3为低电平之前),并且几乎立即恢复LED电流设定值。 完整解决方案 如前文所述,LED调光引擎极少需要甚至不需要CPU干预即可正常工作。因此,在将所有对于LED驱动器的控制工作分配给各个CIP时,CPU将具有充足的带宽来执行其他重要任务。 此外,通过对检测到的输入和输出电压进行处理,可以执行欠压锁定(UVLO)、过压锁定(OVLO)和输出过压保护(OOVP)等保护功能。这样可确保LED驱动器按照规范要求工作,并且LED不受异常输入和输出条件的影响。CPU还可以处理来自传感器的温度数据,以实现对LED的热管理。而且,当设置LED驱动器的调光级别时,CPU可以处理来自简单外部开关或串行通信命令的触发信号。此外,LED驱动器的参数可以通过串行通信的方式发送到外部设备以进行监控或测试。 除了上述功能之外,设计师还可以在自己的LED应用中尽情添加更多智能功能,包括通信(例如,DALI或DMX)和定制控制功能等。图4给出了使用LED调光引擎的完整开关模式可调光LED驱动器解决方案示例。     图4.开关模式可调光LED驱动器解决方案 结论 LED调光引擎可用于打造高效型开关模式可调光LED驱动器。高效性体现在其能够驱动多个LED串、提供高效能源、确保LED达到最佳性能、维持较长的LED使用寿命以及在系统中增添智能功能。以上就是LED技术的相关知识,相信随着科学技术的发展,未来的LED灯回越来越高效,使用寿命也会由很大的提升,为我们带来更大便利。

    时间:2019-11-17 关键词: asic 电源技术解析 led驱动器 调光引擎

  • LED驱动失效的因素

    LED驱动失效的因素

    现在大街上随处可见的LED显示屏,还有装饰用的LED彩灯以及LED车灯,处处可见LED灯的身影,LED已经融入到生活中的每一个角落。基本上可以说LED驱动器的主要作用是将输入的交流电压源转换为输出电压可随LED Vf(正向导通压降变化的电流源。 做为LED照明中的关键部件,LED驱动器的品质直接影响到整体灯具的可靠性及稳定性。本文从LED驱动等相关技术及客户应用经验出发,整理分析灯具设计及应用中诸多的失效情况。 1、未考虑LED灯珠Vf变化范围 LED灯具负载端,一般由若干数量的LED串并 联组成,其工作电压Vo=Vf*Ns,其中Ns表示LED串联数量。LED的Vf随温度变动而变动,一般情况下,在恒定电流时,高温时Vf变低,低温时Vf变高。因此,高温时LED灯具负载工作电压对应为VoL,低温时LED灯具负载工作电压对应为VoH。在选用LED驱动器时需考虑驱动器输出电压范围大于VoL~VoH。 如果选用的LED驱动器最大输出电压低于VoH,可能导致低温时灯具的最大功率达不到实际所需功率,如果选用的LED驱动器最低电压高于VoL,则高温时可能驱动器输出超出工作范围,工作不稳定,灯具会有闪烁等情况。但综合成本及效率考虑,不能一味追求LED驱动器超宽输出电压范围:因为驱动器电压只在某一个区间时,驱动器效率才是最高的。超过范围后效率、功率因数(PF)都会变差,同时驱动器输出电压范围设计太宽,则导致成本升高,效率无法优化。 2、未考虑功率余量及降额要求 一般情况下,LED驱动器的标称功率是指额定环境、额定电压情况下测得的数据。考虑到不同客户会有不同的应用,多数LED驱动器供应商会在自家的产品规格书上提供功率降额曲线(常见的有负载vs环境温度降额曲线及负载vs输入电压降额曲线)。     图1 负载vs环境温度的功率降额曲线 如图1所示,红色曲线表示LED驱动器在输 入120Vac情况下,其负载随环境温度变化的功率降额曲线。当环境温度低于50℃时,驱动器允许100%满载,当环境温度高达70℃时,驱动器只能降额到60%的负载,当环境温度在50-70℃之间变化时,驱动器负载随温度上升而线性下降。蓝色曲线则表示LED驱动器在输入230Vac或 277Vac情况下,其负载随环境温度变化的功率降额曲线,其原理类同。     图2 负载vs输入电压的功率降额曲线 如图2所示,蓝色曲线表示LED驱动器在环境温度55℃时,其输出功率随输入电压变化的降额曲线。当输入电压为140Vac时,驱动器的负载允许100%满载,随着输入电压下调;若输出功率不变,输入电流将上升,导致输入端损耗加大,效率降低,器件温度上升,个别温度点将可能超标,甚至可能导致器件失效。因此,如图2当输入电压小于140Vac时,要求驱动器的输出负载随输入电压减小而线性减小。看懂如上降额曲线及相应要求后,选用LED驱动器时就应该根据实际使用时的环境温度情况及输入电压情况,综合考虑及选择,并适当留出降额余量。 3、不了解LED的工作特性 曾有客户要求灯具输入功率为固定值,固定5%误差,只能针对每盏灯去调节输出电流达到指定功率。由于不同工作环境温度,及点灯时间不同,每一盏灯的功率还是会有较大差异。客户提出这样的要求,虽然有其市场推广及商务因数的考虑。但是,LED的伏安特性决定LED驱动器为恒定电流源,其输出电压随LED负载串联电压Vo变化而变化,在驱动器整机效率基本不变的情况下,其输入功率随Vo变化。 同时,LED驱动器在热平衡后整体效率会有所上升,在相同输出功率的条件下,相比于开机时刻,输入功率会下降。所以,LED驱动器的应用者在拟定需求时,应先了解LED的工作特性,避免提出一些不符合工作特性原理的指标,同时避免出现远超实际需求的指标,避免质量过剩和成本浪费。 4、测试中失败 曾经有客户采购过很多品牌的LED驱动器,但是所有样品都在测试过程中失效。后来到现场分析后发现,客户采用自偶调压器直接给LED驱动器供电进行测试,上电后将调压器从0Vac逐渐上调到LED驱动器额定工作电压。这样的测试操作,很容易使得LED驱动器在很小的输入电压时就启动并带载工作,而此种情况会导致输入电流远远大于额定值,内部输入端相关器件,如保险丝、整流桥、热敏电阻等因电流超标或过热而失效,导致驱动器失效。 因此正确的测试方法是将调压器调到LED驱动器额定工作电压区间,再接上驱动器上电测试。当然,从技术上改善设计也可以规避此种测试误操作导致的失效问题:在驱动器输入端设置启动电压限制电路及输入欠压保护电路。当输入未达到驱动器设定的启动电压时,驱动器不工作;当输入电压降低到输入欠压保护点时,驱动器进入保护状态。 因此,即使客户测试过程中依然采用自偶调压器的操作步骤,驱动器具备自我保护功能而不至于失效。但是客户在测试之前一定要仔细了解所购的LED驱动器产品是否具备这项保护功能(考虑到LED驱动器的实际应用环境,目前多数LED驱动器不具有此项保护功能)。 5、不同负载,测试结果不同 LED驱动器带LED灯测试时,结果正常,带电子负载测试时,结果就可能异常。通常这种现象有以下原因: (1)驱动器的输出瞬间电压或功率超出电子负载仪的工作范围。(尤其在CV模式下,最大测试功率不应超过负载最大功率的70%,否则加载时负载可能会瞬间过功率保护,导致驱动器无法正常工作或加载。) (2)所用电子负载仪的特性不适用于测恒流源,出现负载电压档位跳变,导致驱动器无法正常工作或加载。 (3)因为电子负载仪的输入内部都会有一个大的电容,测试就相当于在驱动器输出并联了一个大电容,可能导致驱动器的电流采样工作出现不稳定。 因为LED驱动器设计就是为了符合LED灯具工作特性的,最接近实际与真实应用的测试方式应该是用LED灯珠作为负载,串上电流表及电压表来测试。 6、常发生的一下状况会导致损坏 将AC接到了驱动器的DC输出端,导致驱动器失效;将AC接到了DC/DC驱动器的输入或输出,导致驱动器失效;将恒流输出端与调光线接到了一起,导致驱 动器失效;将相线接到了地线上,导致驱动器无输出及 外壳带电; 7、相线接错 通常户外工程应用都是3相四线制,以国标为例,每个相线与零线间的额定工作电压是220Vac,相线与相线间的电压是380Vac。如果施工工人将驱动器输入端接到两根相线上,则通电后,LED驱动器输入电压超标导致产品失效。     图3 零线开路图 如图3所示,V1表示第一相电压,V2表示第二相电压,R1及R2分别表示正常安装到线路中的LED驱动器。当线路上零线(N)如图断开时,两个支路上的驱动器R1,R2相当于串联后接到380Vac电压上。因为输入内阻差异,当其中一个驱动器充电到启动时,内阻变小,电压可能大部分加到另外一个驱动器上,导致其过压损坏失效。因此建议同一配电支路上,开关或断路器要一起断,不能只断开零线。配电保险丝不要放在零线上,线路上要避免零线接触不良。 8、电网波动范围超出合理范围 当同一个变压器电网支路配线太长,支路中有大型动力设备时,在大型设备启停时,电网电压会剧烈波动,甚至导致电网不稳。当电网瞬时电压超过310Vac时有可能损坏驱动器(即使有防雷装置也无效,因为防雷装置是应对几十uS级别的脉冲尖峰,而电网波动可能达到几十mS,甚至几百mS)。 因此,路灯照明支路电网上有大型电力机械时要特别注意,最好监测下电网波动幅度,或单独电网变压器供电。 9、线路频繁跳闸 同一支路上的灯接得太多,导致某一相电上的负载过载,及各相之间功率分布不均,从而致使线路频繁跳闸。 10、驱动器散热 当驱动器安装在非通风环境下,应该尽量将驱动器外壳与灯具外壳接触,条件允许的话,在外壳与灯壳的接触面上涂导热胶或贴导热垫,提高驱动器的散热性能,从而保证驱动器的寿命及可靠性。综上所述LED驱动器在实际应用中有很多细节需要注意,很多问题都需要提前分析、调整,避免不必要的失效与损失!以上就是LED技术的相关知识,相信随着科学技术的发展,未来的LED灯回越来越高效,使用寿命也会由很大的提升,为我们带来更大便利。

    时间:2019-11-17 关键词: 电网 电源技术解析 智能照明 led驱动器

  • 基于闪光灯的LED驱动器

    基于闪光灯的LED驱动器

    在科技高度发展的今天,电子产品的更新换代越来越快,LED灯的技术也在不断发展,为我们的城市装饰得五颜六色。机器视觉系统使用非常短的强光闪烁来产生用于各种数据处理应用的高速图像。例如,快速移动的传送带通过机器视觉系统进行快速标签和缺陷检测。 红外和激光LED闪光灯常用于近程和运动检测机器视觉。安全系统发出高速、难以察觉的LED闪光灯来检测运动,捕获和存储安全影像。 所有这些系统都存在的一个挑战,即产生非常高的电流和短时间(微秒)LED相机闪光波形,这些波形可能散开在较长时间内,例如100 ms到1 s以上。产生间隔较长时间的短时LED闪光方波并非易事。当LED(或LED串)的驱动电流上升到1 A以上,并且LED开启时间缩短到几微秒时,挑战难度进一步加大。许多具有高速PWM能力的LED驱动器可能无法有效处理较长关断时间和短时间的高电流,而又不降低适当处理高速图像所需的方波质量。 专有LED闪光灯 幸运的是,LT3932高速LED驱动器可为高达2 A的LED串提供机器视觉相机闪光灯,关断时间可以长达1秒、1小时、1天或更长时间。LT3932的特殊相机闪光灯功能允许其保持输出电容和控制环路充电状态,哪怕是在长关断时间内。对输出和控制环路电容的状态进行采样后,LT3932继续在长关断期间对这些元件进行涓流充电,以补偿通常都会有的漏电流,而这是其他LED驱动器未予考虑的。 LT3932的专有闪光技术可以扩展,驱动器可以并联以提供更高的LED闪光电流。所需的闪光形状和完整性保持不变。图1显示了并联两个驱动器以支持3 A相机闪光灯是多么容易,高达4 A的设计也是可行的。 机器视觉系统的LED闪光灯要求远远高于标准PWM调光驱动器所能达到的要求。也就是说,大多数高端LED驱动器设计用于在至少100 Hz的PWM频率下提供PWM调光亮度控制。这是因为,若频率较低,哪怕LED波形是方形且可重复的,人眼看到的也是令人讨厌的闪烁或频闪。在100 Hz时,理论最大关断时间约为10 ms。在10 ms关断时间内,如果设计正确,LED驱动器会损失极少输出电容电荷,使其在大约相同的状态下启动控制环路,从而结束最后一个PWM导通脉冲。电感电流和下一个LED PWM导通脉冲的快速响应和斜坡上升可以很快且可重复,并且启动时间极短。较长关断时间(频率低于100 Hz时)可能会导致输出电容因漏电而损失电荷,从而使LED重新开启时无法快速响应。 并联LED驱动器以提供更高电流 LED驱动器充当电流源,调节通过发光二极管发出的电流。电流仅沿单一方向流向输出,因此可将多个LED驱动器并联起来,其电流汇总后通过负载。电流源不需要防范电流通过一个转换器反向流动,也无需担心输出不匹配。另一方面,电压调节器本身并不擅长均流。如果它们都试图将输出电压调节到某一点,并且其反馈网络存在细微差异,则调节器可能会吸收反向电流。 LED驱动器会保持其输出电流不变,无论其他驱动器是否提供额外电流并汇总在输出负载上。这使得并联LED驱动器非常简单。例如,图1所示两个并联LT3932 LED驱动器构成的LED闪光灯系统能以3 A高效驱动4个LED,10μs短脉在机器视觉系统所定义的较长期间内冲散开来。在PWM导通时间内,每个LT3932转换器产生总串电流的一半;在PWM关断时间内,转换器关闭并保存其输出状态。关断时间可短可长,对闪光波形的重复性没有影响。     图1.相对于标准PWM调光频率,并联LT3932 1.5 A LED驱动器产生具有长关断时间的3 A机器视觉LED脉冲。     图2.无论PWM关断时间是多少,图1所示并联LED驱动器的3 A相机闪光波形看起来相同。波形显示,(a) 10 ms之后和(b) 1 s之后的10μs脉冲是相同的。经过一天或更长的PWM关断时间之后,LT3932 LED闪光波形看起来也相同。 在长关断期间,并联相机闪光灯应用几乎与单个转换器一样简单。转换器观察最后一个PWM导通脉冲结束时的共享输出电压,让输出电容充电至该状态并保持,即使在长关断时间内也如此。每个转换器将其PWM MOSFET与共享负载断开连接,并向其输出电容供应电流以补偿泄漏的能量,使该电容充电至接近最后电压状态并保持。这些电容在长关断时间内发生的任何泄漏都可以通过少量维持电流来补偿。当下一个PWM导通脉冲开始时,每个转换器的PWM MOSFET导通,输出电容以与最后一个脉冲大致相同的状态启动,无论是经过了10 ms还是一整天。 图2(a)和2(b)显示了LT3932并联LED驱动器以3 A驱动4个LED,机器视觉相机脉冲为10μs。无论是10 ms PWM关断时间(100 Hz)还是1 s PWM关断时间(1 Hz),LED脉冲都很陡峭且快速,这对于机器视觉系统是非常理想的。 实现更高电流亦可行 并联LED驱动器不限于两个转换器。三个或更多转换器也可以并联在一起,产生具有陡沿的更高电流波形。该系统没有主器件或从器件,因此所有转换器都提供相同量的电流并平均分担负载。建议所有并联LED驱动器转换器共享相同的同步时钟并保持同相。这样可确保所有转换器的输出电容纹波具有大致相同的相位,故而纹波电流不会反向流动或在不同转换器之间流动。PWM脉冲波形与2 MHz同步时钟保持同相很重要。这样可确保LED闪光波形保持方形且无抖动,从而产生最佳图像处理结果。 LT3932演示电路(DC2286A)设计为通过一个或两个LED(作为降压LED驱动器)驱动1 A的LED电流。如图1所示,它很容易进行更改和并联,以实现更高电流、更高电压或并联运行。图4显示了如何将两个这样的电路轻松连接在一起,从24 V输入以10μs、3 A脉冲驱动4个LED。出于测试目的,脉冲发生器可用于提供同步时钟信号,如图4所示。在量产机器视觉系统中,可利用时钟芯片生成同步时钟信号和PWM脉冲。如需更高电流脉冲,可使用相同的并联方案添加更多演示电路DC2286A转换器。     图3.工业传送带上的机器视觉例子。检测系统以多种不同速度移动,但闪光技术必须快速而清晰。 结语 机器视觉系统可以使用并联LED驱动器来创建自动图像处理所需的快速、方形、高电流波形。通过并联转换器,LT3932 LED驱动器的专有相机闪光灯技术可以扩展到更高的电流。采用并联LT3932转换器,即使关断时间较长,也可以实现3 A和更高的微秒级脉冲。 无论LED闪光之间的关断时间有多长,LED相机闪光波形都能保持方形且无抖动。现在的LED灯或许会有一些问题,但是我们相信随着科学技术的快速发展,在我们科研人员的努力下,这些问题终将呗解决,未来的LED一定是高效率,高质量的。

    时间:2019-11-16 关键词: 机器视觉 电源技术解析 led驱动器 led闪光灯

  • LED电源的电磁干扰问题

    LED电源的电磁干扰问题

    繁华的城市离不开LED灯的装饰,相信大家都见过LED,它的身影已经出现在了我们的生活的各个地方,也照亮着我们的生活。首先我们来看一下能够影响到EMI/EMC的几个因素:驱动电源的电路结构;开关频率、接地、PCB设计、智能LED电源的复位电路设计。 由于最初的LED电源就是线性电源,但是线性电源在工作时会以发热的形式损耗大量能量。线性电源的工作方式,使他从高压变低压必须有将压装置,一般的都是变压器,再经过整流输出直流电压。虽然笨重,发热量大,优点是,对外干扰小,电磁干扰小,也容易解决。而现在使用比较多的LED开关电源,都是以 PWM形式的LED驱动电源是让功率晶体管工作在导通和关断状态。在导通时,电压低,电流大;关断时,电压高,电流小,因此功率半导体器件上所产生的损耗也很小。缺点比较明显的是,电磁干扰(EMI)也更严重。 LED电源的电磁兼容出现问题一般是开关电路的电源中。而开关电路是开关电源的主要干扰源之一。开关电路是LED驱动电源的核心,开关电路主要由开关管和高频变压器组成。它产生的du/dt具有较大幅度的脉冲,频带较宽且谐波丰富。这种高频脉冲干扰产生的主要原因是:开关管负载为高频变压器初级线圈,是感性负载。导通瞬间,初级线圈产生很大的涌流,并在初级线圈的两端出现较高的浪涌尖峰电压; 断开瞬间,由于初级线圈的漏磁通,致使部分能量没有从一次线圈传输到二次线圈,电路中形成带有尖峰的衰减振荡,叠加在关断电压上,形成关断电压尖峰。高频脉冲产生更多的发射,周期性信号产生更多的发射。在LED电源系统中,开关电路产生电流尖峰信号,而当负载电流变化时也会产生电流尖峰信号。这就电磁干扰根源之一。 基本上在所有电磁干扰问题的题目中,主要是因为不适当的接地引起的。有三种信号接地方法:单点、多点和混合。在开关电路频率低于1MHz时,可采用单点接地方法,但不适宜高频;在高频应用中,最好采用多点接地。混合接地是低频用单点接地,而高频用多点接地的方法。地线布局是关键,高频数字电路和低电平模拟电路的接地电路尽不能混合。可以说适当的印刷电路板(PCB)布线对防止EMI是至关重要的。 在LED电源中,有不少智能LED电源采用单片机控制,并且有的LED电源采用单片机控制开关电路的占空比,单片机的看门狗系统对整个LED电源的运行起着特别重要的作用,由于所有的干扰源不可能全部被隔离或往除,一旦进进CPU干扰程序的正常运行,那么复位系统结合软件处理措施就成了一道有效的纠错防御的屏障了。常用的复位系统有以下两种:①外部复位系统。外部“看门狗”电路可以自己设计也可以用专门的“看门狗”芯片来搭建。这样,假如程序系统陷进一个死循环,而该循环中恰巧有着“喂狗”信号的话,那么该复位电路就无法实现它的应有的功能了。②现在越来越多的LED电源都带有自己的片上复位系统,这样用户就可以很方便的使用其内部的复位定时器了,但是,有些智能LED电源的控制电路复位指令太过于简单,这样也会存在象上述死循环那样的“喂狗”指令,使其失往监控作用。     要解决LED驱动电源的电磁干扰问题,从硬件上可从以下几个方面入手: 1.减少开关电源本身的干扰:软开关技术,在原有的硬开关电路中增加电感和电容元件,利用电感和电容的谐振,降低开关过程中的du/dt和di/dt,使开关器件开通时电压的下降先于电流的上升,或关断时电流的下降先于电压的上升,来消除电压和电流的重叠。开关频率调制技术,通过调制开关频率fc,把集中在fc及其谐波2fc、3fc…上的能量分散到它们周围的频带上,以降低各个频点上的EMI幅值。元器件的选择,选择不易产生噪声、不易传导和辐射噪声的元器件。通常特别值得注意的是,二极管和变压器等绕组类元器件的选用。反向恢复电流小、恢复时间短的快速恢复二极管是开关电源高频整流部分的理想器件。 合理使用电磁干扰滤波器,EMI滤波器的主要目的之一,电网噪声是电磁干扰的一种,它属于射频干扰(RFI),其传导噪声的频谱大致为10KHz~30MHz,最高可达150MHz.在一般情况下,差模干扰幅度小,频率低,所造成的干扰较小;共模干扰幅度大,频率高,还可以通过导线产生辐射,所造成的干扰较大。欲削弱传导干扰,最有效的方法就是在开关电源输入和输出电路中加装电磁干扰滤波器。LED电源一般采用简易式单级EMI滤波器,主要包括共模扼流圈和滤波电容。EMI滤波器能有效抑制开关电源适配器的电磁干扰。 2.通过切断干扰信号的传播途径来减少电磁干扰问题:第一种情况是电源线干扰可以使用电源线滤波器滤除。一个合理有效的开关电源EMI滤波器应该对电源线上差模和共模干扰都有较强的抑制作用。改善PCB板的电磁兼容性设计PCB是LED电源系统中电路元件和器件的支撑件,它提供电路元件和器件之间的电气连接。随着电子技术的飞速发展,PCB的密度越来越高。PCB设计的好坏对LED电源系统的电磁兼容性影响很大。 实践证实,即使电路原理图设计正确,印刷电路板设计不当,也会对LED电源系统的可靠性产生不利影响。PCB抗干扰设计主要包括PCB布局、布线及接地,其目的是减小PCB的电磁辐射和PCB上电路之间的串扰。还有,一般变压器电磁干扰引发的交流声频率一般为50HZ左右,而地线布线不当导致的交流声,由于整流电路的倍频作用频率约为100HZ,仔细区分还是可以察觉的。因此,在设计印刷电路板的时候,应留意采用正确的方法,遵守PCB设计的一般原则,并应符合抗干扰的设计要求。 3.主动大幅增强受干扰体的抗干扰能力:在LED电源系统中输进/输出也是干扰源的传导线,和接收射频干扰信号的拾检源,我们设计时一般要采取有效的措施:采用必要的共模/差模抑制电路,同时也要采取一定的滤波和防电磁屏蔽措施以减小干扰的进进。在条件许可的情况下尽可能采取各种隔离措施(如光电隔离或者磁电隔离),从而阻断干扰的传播。防雷击措施,室外使用的LED电源系统或从室外排挤引进室内的电源线、信号线,要考虑系统的防雷击题目。 常用的防雷击器件有:气体放电管、TVS(Transient Voltage Suppression)等。气体放电管是当电源的电压大于某一数值时,通常为数十V或数百V,气体击穿放电,将电源线上强冲击脉冲导进大地。TVS可以看成两个并联且方向相反的齐纳二极管,当两端电压高于某一值时导通。其特点是可以瞬态通过数百乃上千A的电流。 通过本文我们可以总结出针对于LED电源EMC/EMI的主要几个控制技术是:电路措施、EMI滤波、元器件选择、屏蔽和印制电路板抗干扰设计等。如果能正确合理的对这些问题进行解决,通过LED驱动电源顺利通过3C认证,不是问题!现在的LED灯或许会有一些问题,但是我们相信随着科学技术的快速发展,在我们科研人员的努力下,这些问题终将呗解决,未来的LED一定是高效率,高质量的。

    时间:2019-11-16 关键词: 电压 电源技术解析 电磁干扰 led驱动器

  • LED照明控制系统解析

    LED照明控制系统解析

    随着科学技术的发展,LED技术也在不断发展,为我们的生活带来各种便利,为我们提供各种各样生活信息,造福着我们人类。传感器作为信号采集和机电转换的器件,其机电技术已相当成熟,近几年来,传感器技术向小型化、智能化、多功能化、低成本化大踏步迈进。 光敏传感器、红外传感器等各种类型的传感器都可与 LED 照明灯具组成一个智能控制系统,传感器将采集来的各种物理量信号转换成电信号,可以经由集成电路化的 AD(模数)转换器、MCU(微控制器)、DA(数模)转换器对所采集的信号进行智能化处理,从而控制 LED 照明灯具开启和关闭。并可以籍此在 MCU 上设定各种控制要求,控制 LED 灯的开关时间、亮度、显色、多彩变幻,从而达到智能照明控制的目标。 光敏传感器 光敏传感器是比较理想的因天亮、天暗(日出、日落)时照度变化而能控制电路自动开关的电子传感器。光敏传感器可根据天气、时间段和地区自动控制 LED 照明灯具开闭。在明亮的白天通过减少其输出功率来降低耗电量,与使用荧光灯时相比,面积为 200 平米的便利店最大可降低 53%的耗电量,寿命也长达约 5~10 万小时。一般情况下,LED 照明灯具的寿命为 4 万小时左右;发光的颜色也可采用 RGB(红绿蓝)多彩变幻的方式,使灯光更多彩,气氛更活跃。 红外传感器 红外传感器是靠探测人体发射的红外线而工作的。主要原理是:人体发射的 10μm 左右的红外线通过菲涅尔滤光透镜增强后聚集到热释电元件 PIR(被动式红外)探测器上,当人活动时,红外辐射的发射位置就会发生变化,该元件就会失去电荷平衡,发生热释电效应向外释放电荷,红外传感器将透过菲涅尔滤光透镜的红外辐射能量的变化转换成电信号,即热电转换。在被动红外探测器的探测区内无人体移动时,红外感应器感应到的只是背景温度,当人体进人探测区,通过菲涅尔透镜,热释电红外感应器感应到的是人体温度与背景温度的差异,信号被采集后与系统中已存在的探测数据进行比较以判断是否真的有人等红外线源进入探测区域。 被动式红外传感器有三个关键性的元件:菲涅尔滤光透镜,热释电红外传感器和匹配低噪放大器。菲涅尔透镜有两个作用:一是聚焦作用,即将热释红外信号折射在 PIR 上:二是将探测区内分为若干个明区和暗区,使进入探测区的移动物体/人能以温度变化的形式在 PIR 上产生变化的热释红外信号。一般还会匹配低噪放大器,当探测器上的环境温度上升,尤其是接近人体正常体温(37℃)时,传感器的灵敏度下降,经由它对增益进行补偿,增加其灵敏度。输出信号可用来驱动电子开关,实现 LED 照明电路的开关控制。 超声波传感器 与红外传感器应用相仿的超声波传感器近年在自动探测移动物体中得到更多的应用。超声波传感器主要利用多普勒原理,通过晶振向外发射超过人体能感知的高频超声波,一般典型的选用 25~40kHz 波,然后控制模块检测反射回来波的频率,如果区域内有物体运动,反射波频率就会有轻微的波动,即多普勒效应,以此来判断照明区域的物体移动,从而达到控制开关的目的。 超声波的纵向振荡特性,可以在气体、液体及固体中传播,且其传播速度不同;它还有折射和反射现象,在空气中传播频率较低、衰减较快,而在固体、液体中则衰减较小、传播较远。超声波传感器正是利用超声波的这些特性。超声波传感器有敏感范围大,无视觉盲区,不受障碍物干扰等特点,已经被证明是检测小物体运动最有效的方法。因此与 LED 灯具组成系统可灵敏控制开关。由于超声波传感器灵敏度高,空气振动、通风采暖制冷系统及周围邻近空间的运动都会引起超声波传感器产生误触发,所以超声波传感器需要及时校准。 温度传感器 温度传感器 NTC(负温度系数)做 LED 灯具的过温保护被比较早的广泛应用。LED 灯具如采用大功率 LED 光源,就必须采用多翼的铝散热器,由于室内照明用的 LED 灯具本身空间很小,散热问题到目前还是最大的技术瓶颈之一。 LED 灯具散热不爽的话,会导致 LED 光源因过热而早期光衰。LED 灯具开启后热量还会因热空气自动上升而向灯头富集,影响电源的寿命。因此在设计 LED 灯具时,可以在铝散热器靠近 LED 光源方紧贴一个 NTC,以便实时采集灯具的温度,当灯杯铝散热器温度升高时可利用此电路自动降低恒流源输出电流,使灯具降温;当灯杯铝散热器温度升高到限用设定值时自动关断 LED 电源,实现灯具过温保护,当温度降低后,自动再将灯开启。 声控传感器 由声音控制传感器、音频放大器、选择频道电路、延时开启电路及可控硅控制电路等组成的声控传感器(microphone array)。以声音对比结果来判断是否要启动控制电路,用调节器给定声控传感器的原始值设定,声控传感器不断地将外界声音强度与原始值做比较,当超过原始值时向控制中心传达“有音”信号,声控传感器在楼道及公共照明场所得到广泛的应用。 微波感应传感器 微波感应传感器是利用多普勒效应原理设计的移动物体探测器。它以非接触方式探测物体的位置是否发生移动,继而产生相应的开关操作。当有人走进感应区内,并且达到照明需求时,感应开关自动开启,负载电器开始工作,并启动延时系统,只要人体未离开感应区,负载电器将持续工作。 当人体离开感应区后,感应器开始计算延时,延时结束,感应器开关自动关闭,负载电器停止工作。真正做到安全、方便、智能、节能。以上就是LED技术的相关知识,相信随着科学技术的发展,未来的LED灯回越来越高效,使用寿命也会由很大的提升,为我们带来更大便利。

    时间:2019-11-12 关键词: 电源技术解析 i2c接口 led驱动器 led彩灯

  • 多级LED驱动解析

    多级LED驱动解析

    随着科学技术的发展,LED技术也在不断发展,为我们的生活带来各种便利,为我们提供各种各样生活信息,造福着我们人类。尽管为通用照明应用而设计的基本LED驱动器相对简单,但是当需要切相调光(phase cut dimming)和功率因数校正等附加功能时,这种设计就将会变得非常复杂。 不带功率因数校正功能的非调光LED驱动器一般包括一个离线开关电源,用其进行调节以实现恒流输出。这与标准离线开关电源和在AC-DC适配器中通用的型号并无太大差异。这种设计可以采用标准的SMPS(开关电源)电路拓朴,如降压、升压或反激式转换器等。2009年12月3日,美国能源局(DOE)为一体化LED灯项目发布了“能源之星”规格的最终版,规定在美国应用的LED驱动器的功率因数必须优于 0.7,而工业应用则预计要优于0.9。目前市场的许多产品尚不能满足这样的要求,因此未来需要用更先进的产品来进行替代。有两种方式可以实现功率因数校正(PFC),每种都要求在电源转换器的前端增加一些附加电路:简单的低成本无源PFC,以及更复杂的有源PFC。 在更深入研究这些方法之前,需要强调的一点是为了获得“能源之星”评级, LED驱动必须是可调光的。一般而言,这就意味着其可调性会源于现有的基于切相工作原理的墙式电子调光器,这一原理最初是用来设计纯阻抗白炽灯。尽管其它调光方法,如线性0-10V调光或DALI也可能合乎要求,但是它们可能都仅限于高端工业类LED驱动器。 到目前为止,切相调光器的应用相当广泛,很显然,能够有效调光的LED灯将具有极大的优势。由于市场上还有许多基于三端双向可控硅开关的低成本调光器,因此保证LED驱动器与所有类别相兼容是不现实的,特别是许多调光器仅采用基本设计,性能十分有限。基于这样的原因,“能源之星”项目仅要求LED驱动器厂商在一个网页中详细说明哪些调光器可以与其产品相兼容。在“能源之星” 规格中,值得注意的另外一个要求是LED的工作频率必须大于150Hz,以消除出现可见闪烁的可能性。这就意味着给LED供电的输出电流中不能带有任何大量的频率是线性频率(50Hz或60Hz)两倍的纹波。 在如办公室照明、公共建筑和街区照明等离线应用中,越来越多的应用中采用LED照明,并且在未来几年里仍将保持这一趋势。在这些应用中,大功率LED会取代线性或大功率CFL荧光灯、HID灯以及白炽灯。这些应用需要一个LED驱动器,其典型功率范围为25W至150W。在许多情况中,LED负载都由一个的高亮度白光LED阵列组成,通常采用多种形式的芯片封装。用于驱动这些负载的DC电流通常至少为1安培。实际也有AC电流驱动的LED系统,但是一般认为DC系统可以为LED提供更理想的驱动条件。 在LED照明设备中需要进行电流隔离,以防止在可以接触到的地方发生触电危险,这种危险在大多数情况下都可能发生,除非采用一个绝缘的机械系统。这是由于与日光灯照明设备等不需要通过绝缘来实现安全性的产品不同,LED芯片需要与金属散热器连接。为了实现良好的热传导性,需要在LED芯片和散热器之间形成热障,这样就无需通过添加绝缘材料来满足绝缘要求。因此,在LED驱动器内部形成绝缘就是最佳选择,同时也说明了电源转换器拓朴技术是可行的。 两种可能方案分别是反激式转换器或包括一个PFC级的多级转换器,然后是绝缘和降压级,最后是后端电流调整级。两种方案之中,反激式因其相对简易且成本较低,应用比较广泛。反激式转换器为许多应用提供了良好的解决方案(图1),然而,它却具有如下的局限性:有限的功率因数校正能力;在宽输入电压范围上效率有限;两倍线频(<150Hz))时的输出纹波很难消除;需要通过附加电路进行调光。 尽管多级设计(图2)的额外成本限制了其在高端产品中的应用,但这种设计却可以克服其中的一些问题。在较宽的AC输出电压范围内,其可以实现高功率因数和较低的总谐波失真(THD),从而使相同的LED驱动器可以利用110V、120V、220V、240V或277V的主电源供电。能够在很宽的范围上保持高效率,而不是使效率在一个特定线负载点上达到峰值,但在不同的条件下却又大幅下降。同时,它也更易于降低150Hz下的纹波输出,多级系统使其自身能够更加高效的采用不同的调光方式。 本文其余部分将深入探讨宽电压输入范围、绝缘、可调光、稳压DC输出多级LED驱动设计原则,主要针对25W至150W范围的应用。该实例中的多级LED驱动器将分为三个部分:前端,功率因数校正(PFC)部分;绝缘和步降部分;后端,电流调制部分。 前端部分包括一个升压转换器,配置采用一个功率因数校正做预调节,在输出端提供一个高压DC总线,在电压或负载的各种变化范围上,将其稳定到一个固定的电压。由于稳压控制回路响应很慢,使得AC线频率的许多周期都会受到负载变化的影响,它只吸收了一个基本的正弦线输入电流。这个电路典型一般工作在临界导通模式,否则就被认为是转换模式。在这种模式中,PWM关断周期和由此形成的开关频率是可变的,所以,当存储在升压电感器中的所有能量传输到输出端时,新的开关周期才开始。这种共振工作模式被广泛应用,而且由于它的开关损耗最小,从而实现了高效率。在指定的功率范围内使用这种设计是最佳方式。 中间级将高压DC总线电压(典型值在475V左右)转换成为适用于驱动LED负载的低压输出。基于安全方面的考虑,LED负载通常采用低压驱动,因此驱动电路通常最小值为1安培。这里所推荐的绝缘和降压级配置是一种谐振半桥,包括一对用相互反相的信号驱动开关MOSFET。高频降压变压器初级绕阻的一端接到这两个开关管的的中点,而另一端与DC总线至地回路的电容分频网络相连接。通过这种方式,变压器初级可以看到一个正负电压振幅相等的方波。二次绕阻将采用中心抽头,这样两个二极管整流器即可用于将输出电流转换到DC。其中输出电流高到可以用MOSFET取代整流二极管,从而作为同步整流系统的方式运行。在采用3安培电流的典型应用中,在30度的环境温度下,同步MOSFET的表面温度比采用相同封装的肖特基二极管的温度更低。 我们可以看出,随着电流要求的增长,同步整流的热优势就变得更为显著。最后,还需要一个平滑电容,以产生绝缘的低纹波DC电压。这个电容的容值为数十法拉的级别,因此要采用陶瓷电容器。 为了使半桥级效率更高,在设计中,应该使其工作在谐振模式,其中MOSFET在零电压(ZVS)条件下开关。要实现这一点就必须保证一个MOSFET关断而另一个MOSFET开启之间有一个短时延,并且在这段时延电压从一个轨整流换向到另一条轨的中间点。这是因为电感器中能量的释放并通过MOSFET中的体二极管进行传导。变压器的初级设计中,有必要保持足够的漏电感,从而可以存储更多的能量,从而可以进行能量交换。 这样,变压器的设计就会变得更加复杂,而避免这些问题的一个简单方法就是采用一个标准的高频变压器设计,无需为其设计增加额外的漏电感,仅仅需要增加一个与初级电感平行的另外一个电感来促进能量交换。这个额外的电感也可以用于帮助基于三端双向可控开关的调光器进行调光操作,并为调整提供了额外的成本和空间。我们还将对此做进一步的探讨。这样的电感器可以采用开气隙磁芯或开口磁芯来增加储能。 LED驱动器的后端级包括带有短路保护功能的电流调制电路。这可以通过一个线性调制电路来实现,但仅采用这种方式还不够,它只适用于低输出电流,不可用于多级系统。备选方案是一个简单的降压稳压器电路,利用电流反馈来限制每个超过目标LED驱动电流的输出电流。这样可以补偿在温度和器件容差带来的总的LED正向电压的变化,同时也限制了短路或其它故障情况下的电流,保护驱动器不受损伤。 在多个输出级都与由前一级供电的单独的隔离DC电压相连接时,也可以采用多级通道的方式。因为在这样的设计中,一个通道出现输出短路不会妨碍其它通道的正常运行。而且,这还允许将几个通道的调制电流提供给不同的LED阵列,并且省去了对于连接平行LED阵列的需要。众所周知,如果LED不能在相近的温度条件下有相似的正向压降,那么并行连接LED将会出现问题,这时采用带有多个独立输出的驱动器的优势就显而易见了。 TRIAC调光器的缺点 现有的大多数调光器一般可采用前沿切相方式工作,采用一个非常简单的基于三端双向可控硅开关的电路。这些调光器最初设计只是与作为电阻负载的白炽灯一起使用。三端双向可控硅开关器件是一个半导体开关,它只有当给其第三个门极加脉冲使其触发之后,其两个主要端子之间可以任何一个方向传导电流。这个脉冲可以具有任意一个极性,因此易于通过一个基本的RC计时电路进行创建。其工作原理包括 在AC线周期的一个点上触发三端双向可控硅开关,这样它将一直导通到周期的结束,周期结束时线性电压降为零,接着流经三端双向可控硅开关电流也将为零,三端双向可控硅开关会再次关闭。三端双向可控硅开关器件具有最小的额定保持电流,低于这个电流,开关将关闭。调节电路中的电位器控制调节器电路中三端双向可控硅开关的开通点,并且通过实现调光改变整体的平均AC电流。 然而,即使它们包括一个功率因数校正前端,LED转换器和其它电源或电子镇流器也不会成为调光器的纯电阻负载。当调光水平被降低时,调光器中的三端双向可控硅开关可能会不规律被激发或错过开关周期。影响这种性能的因素非常复杂,由于我们已经找到了一个简单的解决方案,可以在多级系统中最大程度的克服这种问题,因此在这里没有必要进行深入分析。 无需将降压变压器的初级侧中的整流换向电感器返回到电容分压器的中点,电流即可以通过一个DC分隔电容器流回到线输入。这就在AC线循环结束前,提供了少量的额外电流,这些电流将使三端双向可控硅开关处于开启状态,并使其在所要求的调光范围内运行。这一解决方案通过利用那些将被浪费的电流,通过基于三端双向可控硅开关的调光器帮助调光。 利用这种方式调光是切实可行的,因为随着调光级别的降低,前端级的输出总线电压也在降低。这就使得次级电压也下降,由于LED负载有固定的总压降,电压中的一个微小变化也将引起电流以及光输出的巨大变化。通过这种方式,实现了LED的线性调光,由此满足了更为复杂的PWM调光电路的要求并避免了可能的专利侵权。 尽管调光器兼容性需要损失一定的效率,但多级配置仍是更高性能LED驱动器设计的绝佳选择。现在的LED灯或许会有一些问题,但是我们相信随着科学技术的快速发展,在我们科研人员的努力下,这些问题终将呗解决,未来的LED一定是高效率,高质量的。

    时间:2019-10-22 关键词: led灯 电源技术解析 led驱动器 切相调光

  • LED驱动电路的PWM亮度控制技术

    LED驱动电路的PWM亮度控制技术

    现在大街上随处可见的LED显示屏,还有装饰用的LED彩灯以及LED车灯,处处可见LED灯的身影,LED已经融入到生活中的每一个角落。典型应用中,通过串口向LED驱动器发送指令改变相应LED的寄存器值进行亮度调节。用于亮度控制的数据通常为4位至8位,对应于16至256个亮度等级;有些Maxim的LED驱动器的亮度控制则通过调整漏极开路LED端口的恒定吸入电流大小来实现。 该应用笔记讨论如何在LED恒流驱动器上加入PWM亮度调节,通过控制LED电源的通、断调节亮度。也可以通过刷新数据位仿真外部PWM亮度控制。内置PWM的LED驱动器也可以通过外部PWM实现亮度调节,只要PWM信号的外部时钟可以同步。 PWM仿真 按照一定周期向LED驱动器发送开/关控制信号,可以仿真PWM亮度调节的效果。因为LED数据接口的传输速率远远高于PWM信号的频率,可以使用微控制器或FPGA (现场可编程门阵列)很容易地仿真PWM调光方式。PWM开关频率、数据传输的时钟频率和PWM亮度等级之间的关系如式1所示:其中,fCLOCK为数据接口的时钟频率,fPWM为PWM频率,nPORT为控制端口数,nLEVEL为亮度等级。 在该项技术中,PWM仿真数据由控制器连续发送到LED的每个端口,每个端口1位。所有端口更新一次即为PWM的一个台阶。从索引值1开始重复仿真PWM台阶,直至索引值等于设定的亮度等级,形成一个PWM周期。例如,如果亮度等级为256,每个端口刷新数据256次构成一个PWM周期。如果对应端口的亮度等级高于PWM仿真台阶的索引值,数据为1;否则数据为零。只要LED保持点亮状态,则始终重复PWM仿真周期。 该PWM仿真控制可以由下列C程序实现: PWM仿真技术适用于MAX6968和MAX6969。MAX6968为8端口LED恒流驱动器,数据接口传输速率可达25Mbps;MAX6969是MAX6968的16端口版本。利用这一方法可以实现16位或65,536级亮度控制,MAX6968的PWM频率可以设置在47Hz,MAX6969的PWM频率可以设置在24Hz。如果只要求12位的亮度控制分辨率,对应的PWM频率可以分别设置在752Hz和376Hz。PWM仿真技术无需对电路进行任何修改即可实现每个驱动口的亮度控制。 LED电源的开关控制 通过对LED电源进行开、关控制也可以实现LED的PWM亮度调节。图1所示电路利用PWM控制电源为LED提供额外的亮度调节。微处理器向LED驱动器发送I²C命令产生PWM信号,PWM波形可以由软件控制。这种方式适用于具有恒流LED端口,但没有内部亮度调节功能的MAX6969,以及带有可调节恒流LED端口的MAX6956。该方案通过一个晶体管控制PWM信号的占空比,达到亮度调节的目的。LED亮度可由微处理器通过LED驱动器间接地控制,也可以由晶体管直接控制。以MAX6956为例,恒流驱动与PWM占空比调节相结合,无需任何其它电路介入。 利用下式计算外部晶体管的功耗: 其中,tRISE为晶体管的上升时间,tFALL为晶体管的下降时间,T为PWM周期,tON/T为PWM亮度等级,I为LED总电流,RON为晶体管的导通电阻。式2给出了晶体管开关损耗与导通损耗之和,开关损耗由开/关时间决定。当晶体管闭合或断开时,在晶体管两端电压从零上升到VLED的过程中,或者是在反方向变化时,几乎所有电流流过晶体管。 使用高速开关晶体管时,上升时间和下降时间通常为50ns。对于周期(T)为1/1000秒的PWM、LED电压(VLED)为5.5V、LED总驱动电流为200mA时,晶体管总功耗为:若晶体管导通电阻为0.1Ω,则晶体管在最高亮度时的导通功耗为:从式4可以看到,合理选择高速开关晶体管,能够将损耗降至最小。 主控与各端口的分层控制 有些LED驱动器的PWM亮度控制可以通过主控与各端口之间的分层控制实现。例如,MAX6964、MAX7313、MAX7314、MAX6965、MAX7315和MAX7316。如图3所示,各端口的PWM亮度控制波形重复多次。每重复一次相当于一次主机控制。由此,如果主机控制15级亮度调节,则控制波形重复15次。LED驱动器各端口的控制信号决定了波形的占空比。主控信号决定控制波形的重复次数。比如:某个端口的占空比为3/16,主控设置为4/15。波形的导通时间占整个周期的3/16,波形在全部15个时隙的前4个时隙重复。 遗憾的是,一个MAX6964的主控信号不能与另一MAX6964的端口信号相组合,以构成多芯片链路机制。因为,多个MAX6964之间无法实现时钟同步;每个端口的PWM控制导通时间不能与主控制器亮度调节信号的通/断时间窗口保持一致。如果时钟信号的边沿无法对齐则无法同步控制亮度,LED会变暗。由于时钟之间的相位偏差,也会导致LED周期性地闪烁(通、断)。 分层PWM亮度调节方案可以通过LED驱动器避免闪烁问题,适用于MAX7302等具有时钟同步机制和较宽的时钟频率范围的器件。图4给出了利用两片MAX7302和开关晶体管实现PWM亮度分层控制的典型电路。 其中一片MAX7302的输出端口连接在LED的阴极,每路输出端口作为一个独立的亮度控制端口。另一片MAX7302的输出通过外部晶体管连接在LED的阳极,这一MAX7302作为亮度主控制器。每个端口的亮度控制由外部1MHz高频时钟驱动,这是MAX7302工作时钟的上限。例如,将一个端口的亮度等级设置为15/33时,P2亮度控制端口输出作为主控制器的时钟输入。得到的主控制器等效时钟频率约为1000000/33 = 30kHz。 该应用实例中,每个亮度控制端口可以用于调节RGB LED的颜色,而主控制器用来调节亮度。以上就是LED技术的相关知识,相信随着科学技术的发展,未来的LED灯回越来越高效,使用寿命也会由很大的提升,为我们带来更大便利。

    时间:2019-10-22 关键词: 电源技术解析 led驱动器 pwm信号 pwm仿真技术

  • 高功率因数的LED解析

    高功率因数的LED解析

    现在大街上随处可见的LED显示屏,还有装饰用的LED彩灯以及LED车灯,处处可见LED灯的身影,LED已经融入到生活中的每一个角落。本文就将主要探讨LED照明的驱动部分,怎样降低输入电流谐波,提高输入功率因数。发达国家在照明领域里的能源问题已非常重视,譬如欧洲能源标准EVP5和美国能源之星在这方面已明确规定,住宅照明驱动器的功率因数PF必须大于0.7,商业照明大于0.9的强制性要求。 2 主动式LED驱动器 主动式功率因数校正常规上采用两极拓扑来实现,前级用升压电路结构,后级直流转换部分用隔离反激式结构,如图4.1示,功率因数校正芯片用恩智浦半导体的SSL4101控制器,它运行在临界导通模式下,恒定导通时间控制,流过电感电流与桥堆整流后的电压成正比例关系,所以输入平均电流的相位会跟随输入电压,得到非常高的功率因数。 这种控制环路可靠度高,常在中、大功率驱动器中使用。SSL4101也集成了反激转换控制功能,如目前常采用准谐振断续式控制,准谐振工作的特点就是确保主开关上的寄生电容上的电压降到最低时导通,降低开关损耗,并对电磁辐射有一定程度的帮助。     图1:两级主动式功率因数校正结构图 3 单级功率因数校正LED驱动器 3.1 采用单级功率因数校正的原因 不管是用填谷方式或主动式功率因数校正技术来提高功率因数,都有其各自的优缺点,如填谷式电路中需要使用大容值的高压电解电容,已致于元件成本和尺寸在紧凑型的LED灯设计中存在一定的局限性。两级主动式结构虽然能将功率因数和谐波性能实现得最好,但功率因数校正电路结构较为复杂,使电源的成本和体积增加,由此产生了单级功率因数校正技术,其拓扑是将功率因数校正电路中的开关元件和后级DC-DC变换器的开关元件合并和复用,将两部分电路合二为一。 因此单级功率因数变换器有以下优点:1)开关器件数减少,主电路体积及成本可以降低;2)控制电路通常只有一个输出回路,简化了控制回路;3)单级变换器拓扑中部分能量可以直接传递到输出侧,不经过两级变换,所以效率要高于两级变换器。由于以上特点,单级功率因数校正电路在中小功率LED驱动器中优势非常明显。 3.2 单级降压式功率因数校正的工作原理 前面提及了传统降压式BUCK结构中功率因数过低的主要原因,所以这里就是要解决怎样把流经主开关管上的电流平均值调整成接近于电压变化的相位,也就是在每个周期内,让电流跟随电压的变化而变化,从而达到高功率因数的目的。图2所示线路是用来调整主开关电流的外围控制线路的仿真图,电路原理是在三级管Q1发射极端得到一个两倍于市电的频率,且近似于半正弦波的变化电平,这样再把这个电平提供给控制芯片SSL2109电流回授脚,芯片内部再去调制主回路工作频率,使流过主开关管的平均电流形成近似半正弦的形状。     图2:单级功率因数调整电路 3.3 反激式结构中验证单级功率因数调整电路 当然,单级降压结构中的功率因数矫正的外围线路也可以用到隔离反激式结构中,因为,在一部分LED照明中,隔离反激式结构的设计需求也是非常多的。图3是试验在隔离反激式结构的数据,控制芯片任然采用恩智浦公司的SSL2109,从测试出来的结果看到,功率因数和谐波电流与在降压式结构中得的结果基本相同,都能做到功率因数(PF)值大于0.9和谐波电流小于20%的性能。     图3:功率因数调整线路在反激结构应用结果 4 总结 本文就LED照明驱动器的设计方案做了相关探讨和研究,特别是解决了如何用低成本的方法获得的高功率因数和低电流谐波性能,经过理论分析和实际实验论证,证明出在传统降压式结构上改进出的单级功率因数调整式结构是可以完全达到高功率因数和低谐波的性能,也能容易地应用于LED照明驱动器的实际设计。相信在未来的科学技术更加发达的时候,LED会以更加多种类的方式为我们的生活带来更大的方便,这就需要我们的科研人员更加努力学习知识,这样才能为科技的发展贡献自己的力量。

    时间:2019-10-19 关键词: led灯 电源技术解析 led照明 led驱动器

  • 高亮度LED给驱动器解析

    高亮度LED给驱动器解析

    随着科学技术的发展,LED技术也在不断发展,为我们的生活带来各种便利,为我们提供各种各样生活信息,造福着我们人类。LED驱动器IC必须具有的一个关键性的特点是能给LED充分调光。既然LED是用恒定电流驱动的,其中DC电流值与LED的亮度成正比,那么要改变LED的亮度,就有两种通过控制LED电流来调光的方法。 第一种方法是模拟调光,在这种方法中,通过降低恒定LED电流值,成比例地降低LED的DC电流值。降低LED电流可能导致LED颜色的改变或不准确的LED电流控制。第二种方法是数字或脉冲宽度调制(PWM)调光。PWM调光以等于或高于100Hz的频率通断LED,人眼对这种频率的通断察觉不到。PWM调光的占空比与LED亮度成正比,同时,在接通时LED 电流保持同一个值不变(如LED驱动器IC所设定的那样),从而在高调光比时保持LED颜色不变。在某些应用中,使用这种PWM调光方法能提供高达3000:1的调光比。 凌力尔特的方案 凌力尔特公司的LED驱动器IC采用既满足输入电压范围要求、又满足所需输出电压和电流要求的转换拓扑,尤其在驱动高亮度LED的情况下,能为很多不同类型的LED配置提供充足的电流和电压。因此,凌力尔特公司的高亮度LED驱动器IC一般具有以下特点:宽输入/输出电压范围;高效率转换;严格调节的LED电流匹配;低噪声、恒定频率工作;独立的电流和调光控制;宽调光比范围;小型紧凑的占板面积,所需外部组件最少。凌力尔特公司拥有种类繁多的产品以满足LED驱动设计需求,其中的两个例子是LT3754和LT3956。 大型平板显示的背光照明——LT3754方案 当白光LED用于大型平板显示器的背光照明时,凌力尔特公司推出的新产品LT3754能解决与驱动白光LED有关的设计问题。LT3754是一款创新性LED驱动器IC,可用于配备了26英寸或更大尺寸平板显示屏高清电视机。这款升压模式LED驱动器有16个单独的通道,每个通道具有约3.2V的Vf,能驱动由多达一个由15个50mALED组成的LED串。因此,每个LT3754能驱动多达240个50mA的白光LED。结果,一个26英寸的LCD高清电视机也许仅需要一个LT3754,就能提供必需的背光照明。所有16个通道都通过单个PWM输入控制,能提供高达3,000:1的PWM调光比。 LT3754使用一个小型电感器和甚至更纤巧的陶瓷输出电容器。惟一需要的其他组件是单个输入电容器、MOSFET和一个电流设定电阻器,如图1所示。每个通道都跟随一个可编程设定的主电流,以允许每串LED有10mA~50mA的LED电流。这些通道还可以并联,以提供更大的LED电流。输出电压适应LEDVf的变化,以实现最佳效率,开路LED故障不影响所连接的其他LED串的工作。LT3754采用紧凑型32引脚、5mm×5mmQFN封装。     图138WLED驱动器驱动16串每串有15个50mALED的LED串 串联LED组成的白光LED前灯——LT3956方案 现在,用一个由18个串联LED组成的阵列可以配置一个25W的白光LED前灯,流过LED的350mA电流可产生需要的光输出。不过,一个主要的障碍是,如何高效率、简单地驱动这样一个配置?一个可能的解决方案是,使用凌力尔特公司最近推出的LT3956单片LED驱动器。LT3956是一款DC/DC转换器,为作为恒定电流和恒定电压调节器工作而设计。它非常适用于驱动大电流、高亮度LED(参见图2)。     图2效率为94%的25W白光LED前灯驱动器 LT3956包括一个额定值为84V/3.3A的内部低压侧N沟道功率MOSFET,用内部调节的7.15V电源驱动。其固定频率、电流模式架构可在宽的电源和输出电压范围内实现稳定工作。一个以地为基准的电压反馈(FB)引脚用作几种LED保护功能的输入,还使该转换器能作为恒定电压源工作。频率调节引脚允许用户在100kHz~1MHz范围内设定频率,以优化效率、性能或外部组件尺寸。 LT3956在LED串的高压侧检测输出电流。就驱动LED而言,高压侧检测是最灵活的方法,允许升压、降压或降压-升压模式配置。PWM输入提供高达3,000:1的LED调光比,而CTRL输入提供额外的模拟调光功能。用LED驱动器驱动的任何LED 都必须能以最低功率提供必需的光输出量,这样才不会在最终系统中引起显着的热量设计限制。 幸运的是,就照明设计师而言,既存在高效率LED,又存在高性能LED 驱动器,可提供他们最需要的特性:以适中的功率在合情合理的成本下提供大量光输出。相信在未来的科学技术更加发达的时候,LED会以更加多种类的方式为我们的生活带来更大的方便,这就需要我们的科研人员更加努力学习知识,这样才能为科技的发展贡献自己的力量。

    时间:2019-10-19 关键词: 电源技术解析 led驱动器 恒定电流 led充分调光

  • 增加LED的智能优劣

    增加LED的智能优劣

    在科技高度发展的今天,电子产品的更新换代越来越快,LED灯的技术也在不断发展,为我们的城市装饰得五颜六色。随着照明业转向LED技术,也增加了对更智能控制器与驱动器的需求。LED的高效运行可以有效抑制家庭与单位上涨的电费支出。很多应用需要提供恒定不变的照明质量,同时支持先进的控制功能,如调光、色温均衡,以及精确混色等。 应用的自诊断可以减少对技术人员的需求,从而降低维护费用,远程连接也成为这些应用的一种常规要求。LED照明应用中加入智能可能需要从固定功能的LED驱动器转向基于微控制器或可编程架构。专用的功率电子微控制器还能够在照明控制与通信以外控制照明电源,从而使照明应用拥有更高效率和更具性价比。向数字控制的转化提升了灵活性,可以使照明产品达到新的智能与差异化水平。 获得智能平台 照明行业正在快速地利用LED技术的很多优点(见附文“LED的优点”)。不过,LED应用对于所需要支持的能力有着很大的差异。家居应用包括灯泡替换、重点照明,以及小型室外照明。通常情况下,只需要点亮少数LED,一般是一串至两串。鉴于这个市场存在着低成本压力,一般不常用到先进的控制功能。 商务应用包括荧光镇流器、灯泡替换,以及重点照明。只需要点亮少数LED,一般是一串至两串。虽然关注成本,但这个市场也注重节能。较高端应用需要远程连接能力,以及某些控制器智能。娱乐应用包括高端显示屏和情境照明。对光强度的完全控制以及始终如一的彩色质量是基本需求,另外还要有远程连接,以及支持业界标准协议,如DALI(可数字寻址照明接口)和DMX512。室外与基础设施应用包括街道照明以及工厂和大型办公楼的照明。通常需要大量LED,必须支持很多灯串;高亮度LED也很常用。这些应用需要远程连接能力,以及高水平的控制器智能。 基于LED的最简单照明系统是使用一个LED驱动器,通常是一个固定功能的设备,它提供一种简单直接的低成本控制方法。一般来说,它们有不错的功率效率,不需要软件编程。开发人员顶多是在选择驱动器或决定电路板上元件的具体数值时要做一些计算。虽然使用简单明确,但很多LED驱动器缺乏更先进系统的充分灵活性。要在某个给定应用中支持多种LED类型或LED串结构,就可能需要不同的方案。事实上,系统中的任何修改都可能需要改动驱动器,如一串中LED数量变化,或一个装置中LED串数的变化等。因此,一家OEM提供的多数照明产品都可能需要专门的模拟驱动器。如果产品数量众多,这种要求会增加OEM或供应商的库存品种种类,可能降低规模经济性,或导致更高的设备成本。 另一方面,智能控制器则使开发者能够创造出更灵活的照明系统。在采用微控制器的系统中,可以通过配置代码来支持各种不同类型的LED、专有的功率级需求、不同的串长度,以及不同的串数,而无需对硬件做大的改动。系统可以设计成能自动检测需要驱动的LED数量。微控制器系统的可编程特性甚至能够实现高级的调光和定时功能,用于更高级的照明场景控制与自动照度水平。数字控制的灵活性使OEM只要设计一种控制器,就可以驱动各种最终产品。重新使用控制IP还可以大大降低设计投入。一只灵活的控制器可减少需要库存的器件数量,通过规模经济性而降低总的系统成本。 用数字控制的集成     一个智能LED照明系统的基本架构包括三个主要部分:功率转换、LED控制和通信(图1)。 功率转换级为LED提供正确的电压与电流。开始是AC/DC整流,然后是一个PFC(功率因数校正)级,再后面是一个或多个并联的DC/DC转换级。高能效的功率转换要求对这些级进行精确和灵活的控制。主级的每个部分都需要一个智能控制器,以维持其效率及功能。固定功能的模拟方案可能需要独立的PFC、DC/DC、LED和通信控制器。而专用的功率电子微控制器可以实现高度的集成,减少了电源的元件数量。事实上,单只微控制器有足够的性能、功率优化外设及通信端口,可以提供一个中心化的可编程平台,从而协调地控制一个智能照明系统的所有三个级,处理有关电源、LED照明控制与通信的任务。 数字功率控制也有可能使动态系统实现更高的转换效率。虽然LED较传统光源效率有明显的提升,从而相应地降低了使用与电费成本,但并非所有LED系统都是相同的。数字电源控制可以在LED照明系统做调光、改变颜色输出,或调整光强输出时,让功率级获得更高效率。同样,在固定照明条件下,微控制器可以通过更先进的功率级设计,增加运行效率。这种效率增长对最终用户很有吸引力,可以成为两种LED系统相互比拼时的一个关键差异点。 假设一个城市打算更换2000盏街灯,正在评估两种模型,相互之间效率有10%的差值(图2)。对高效率系统来说,进入系统的输入功率为178W,而低效率系统需要200W才能获得相同效果的160W光输出。这样单是电源本身的功率,转换成每年能源成本,大约能多节省10%,本例中就是33,726美元。节省余额超过采用LED系统的节省。 智能的好处 对于很多应用来说(包括商业显示屏与娱乐照明),发光的质量很重要。此时,质量是指输出稳定光强与颜色的能力。影响LED性能有三大主要因素:制造差异、温度和老化。不同批次的LED输出可能有很大变化;采用同一产品线但不同批次LED的器件,可能发光质量也不同,就是因为存在制造差异。在单台设备上使用相同批次的LED,就可以保持质量的一致性,如果不能做到这点,不同批次LED做的设备相邻安装时,其发光质量就能产生可察觉(以及不可接受)的差异。有了智能控制器,系统可以对任何差异做校准补偿。由于这一工作是软件完成,因此,如果需要产品的一致性,可以在设备制造期间完成校准工艺。 随着环境温度的变化,LED的输出也会改变。为补偿这个效应,系统需要用一只传感器检测环境的温度。微控制器读出传感器数据,相应地调节LED驱动,动态地校准颜色和光强度。由于温度只需要定期检查,所以这个工作的负荷不高。这也能让系统监控自己本身的安全状况。例如当LED温度超过了一个规定阈值时,照明控制器可以降低光强,或关掉某个LED串,并远程通知工作人员。极端温度会使LED过早老化,使其光输出降级。确保LED不超过某个温度,可以延长其使用寿命。 LED的老化会影响发光质量,造成颜色的变化。例如,红色LED要比蓝色LED老化得更快,某个确定功率输出或PWM频率产生的颜色会随时间而漂移。智能控制器可以考虑到老化情况,校正颜色曲线,从而在LED系统的整个生命周期内维持一致的发光。用于质量管控的同种技术还可以提高安全性和效率,可以调节发光强度以配合当前的环境光,例如在暴风雨的天气,街灯可能提前开启,或当有充足的环境光时,可以调低亮度以节省能耗。交通灯或特殊街灯上的传感器可以监控深夜的交通状况,如果车流变多,可以提高街面照明亮度。在仓库里,工人可能会零散地使用不同的空间。通过室内感应传感器,能够只对正在使用的部分照明。如果在任何时间,只用到车间的50%面积,则其余的灯可以关闭,节省一半能耗。 同样考虑图2中的街灯例子。在深夜里,很多街灯可以比全亮时调暗,因为交通流量下降。如果运动传感器之间有通信网络,街灯就可以动态地开关,以适应车流的需求。为获得更高效率,图2中显示的178W输入系统可关闭25%的灯,相应节省25%的能耗,相当于每年68,218美元,以下面几个式子计算:1,819,160kWhr/年×75%/夜晚工作时间=1,364,370kWhr/年1,364,370kWhr/年×0.15美元/kWhr=204,656美元每年费用272,874美元初始的年费用减去204,656美元修正后年费用=68,218美元每年节约将电源效率的节省数与智能工作的节省数相加,每年可节约101,944美元,约占系统的大约33%。 远程连接 远程连接是智能照明系统的一个关键性能。智能设备可以自动管理自己的运行,提升效率与质量。但除非设备可以与中心控制器通信,否则这种智能必须预先编写好,并且只有单台设备可以获得最高效率。通过将照明系统中的各个部件连网,开发人员可以协调整体装置中各设备的运行。这样做能实现一种全新的功能,包括远程调光、远程关机与紧急控制。操作者可以从一个中心控制位置调节整个光组的照明强度,而不需要单独调节每盏灯。 为获得最多功能,每个部件都必须既能接收信息,也能将信息发回给操作者。这样,街灯可以做简单的自我诊断,以判断是LED烧坏,还是性能低于了一个最小品质阈值,然后告知操作员做必要的维护。这样,就不需要让技工去做定期维护来确保设备正常工作,操作人员可以远程做出检查,只有当问题严重到一定程度时,才派技工去。这种远程监控与LED的长工作寿命相结合,可以大大节省维护成本,增加运行的安全性,因为可以立即判断出故障。 远程控制还能实现其它先进功能,这些功能对工作效率和成本有明显的影响,能够动态地控制灯光,以及将多处照明点连网到某处的一个控制点,这个控制点也许与实际灯光位置距离遥远。例如,街灯可能需要按照夏令时做出调整,此时不需要派技工去每个控制箱,照明系统操作人员可以在系统中修改所有灯光的时间表。操作人员还可以轻易地在时间表中实现临时改变,例如在晚场结束的运动会后提供道路灯光照明,或者在繁忙季节中保持工厂照明等。远程控制还能在紧急状况下直接控制灯光,从而提高安全性。 商用与工业中的智能照明还有一个更有益的功能,这就是精确地跟踪功耗情况。例如,过去街灯的支付费率是固定不变的,而有了智能灯光控制器,市政操作人员就可以跟踪实际功耗,将数据发至一个中心控制点,确保该市支付的电费不超过实际金额。对实际使用情况的数据记录能让操作人员精确地调节自己的运行成本规划、维护资源以及未来投入。它还能够实现更先进的前瞻性诊断。动态高能耗或需要大量更换灯泡,这些问题如果能提早告知操作人员,就可以在它们推高运行与维护成本以前,尽快加以处理。连接能力也是很多照明系统的基础,尤其是娱乐应用。这个市场中已有了很多通信标准,包括DALI、DMX512和KNX,而支持这些协议的设备就拥有了一种竞争优势。 电力线通信 PLC(电力线通信)即让网络设备运行在为设备供电的相同电源线上,而无需装设独立电缆作为通信链路,这是照明应用的一种重要技术。对于不需要全套PLC功能集的应用,PLC-Lite是一种灵活的替代方法,它以较低的数据速率提供了简捷性,并降低了协议开销。开发人员能够以低得多的每链路成本实现PLC-Lite,小于PLC的一些更复杂变型,如G3或PRIME(电力线智能读表演化)。 由于PLC-Lite不是一个固定的标准,开发人员可以利用它的灵活性优化某个通道特性的实现,以提高那些需要处理电力线干扰环境下的链路强健性。PLC-Lite非常适用于需要低成本但有强健通信通道的应用,如家庭网络中的单只灯泡或墙上开关。开发人员还可以采用射频技术,以无线方式连接各个设备。通过模块化结构,设备可以采用任何最适合客户需求的连接。无论链接是采用PLC或Wi-Fi,数据都通过一个标准I2C或SPI端口传送给微控制器。 集成化优势 为降低系统成本,开发人员需要一种有足够处理能力的微控制器,用一只微控制器就能实现功率级、LED控制、传感器输入以及远程连接能力。通常情况下,一个集成了所有系统控制器的单芯片设计要比需要多MCU的方案价格更低。不过,有些照明系统中存在着高电压和低电压,通常需要在PFC和DC/DC之间有一种隔离边界(图3)。这种情况下,采用两只微控制器可能更容易些,两只微控制器通过I2C或SPI接口实现跨隔离边界的通信。如果设计是非隔离的,则用同一只微控制器实现PFC和DC/DC转换功能就相对简单些。 当为LED设计使用单个微控制器时,最好是有一种适合于广泛应用的高性能架构,这样针对数字功率控制的设计就能支持各种电源结构。微控制器最好集成有以下功能: (1)高精度PWM生成以及占空比控制,以及高精度的死区,以实现对功率级的更高效、更高性能控制。先进PWM提供了生成非常精准彩色输出以及调光级的能力。例如,通过16路PWM输出,微控制器可以独立地控制多达16个单独LED串。(2)提供高达4.6M采样/s采样与转换速度的模数转换器。A/D模块与PWM相结合,使工程师能够创造出一个严密的反馈回路,对不断变化的系统与周围工作条件做出快速反应。(3)内置故障保护机制,处理过流和过压情况。PWM故障跳闸区使系统能够在意外系统状况下,绕开CPU并用一个预先设定的状态替代PWM信号,从而防止系统损坏。(4)I2C、SPI、UART、USB与CAN外设具有已生产就绪的固件驱动,满足大多数LED应用的连接需求。 德州仪器公司的C2000Piccolo平台是用于LED照明设计的集成微控制器的例子(图4)。32位TMS320C28x核心提供了微控制器器件中的数字信号处理能力,具有经优化的算术运算、用于实时控制的中断驱动架构,以及能响应变化事件的可编程灵活性。TI的集成CLA(控制规齿加速器)是一个独立核心,在无需增加成本或第二只MCU开销的前提下,实现了双核运行。CLA能够独立于C28xDSP运行,其设计可完成高效的并行处理。     Piccolo微控制器将一个照明系统的功能划分为C28x核心和CLA核心,用一只芯片实现了完整的智能LED控制器。例如,CLA可以用于运行PLC算法,而同时C28x核心则专注于数字功率转换以及LED串控制。对于需要更先进或更高带宽PLC的应用,还有一个供Piccolo F2806x微控制器使用的集成式Viterbi复杂算术单元(VCU)。该VCU专门针对PLC算法做了调整,与没有VCU情况相比,可以使PLC处理速度提高6倍。很多公司都提供开发软硬件,帮助工程师们评估和设计出各种LED照明应用,从小电压的辅助供电系统,直到有远程连接功能的高电压全交流供电系统。 TMDSIACLEDCOMKITacLED照明与通信开发人员套件就提供了一个完整的平台,可加快交流供电的智能照明产品设计,使其具有高的工作效率(约90%),并完全支持远程连接以及照明通信协议。现在的LED灯或许会有一些问题,但是我们相信随着科学技术的快速发展,在我们科研人员的努力下,这些问题终将呗解决,未来的LED一定是高效率,高质量的。

    时间:2019-10-19 关键词: 电源技术解析 led驱动器 led技术 led照明应用

首页  上一页  1 2 3 4 5 6 7 8 下一页 尾页
发布文章

技术子站

更多

项目外包