当前位置:首页 > 电子系统
  • 美国国家科学基金会和半导体研究联盟共同资助耐故障电路与系统的研究

      美国国家科学基金会和半导体研究联盟今日宣布,共同资助一个包含18个项目的联合计划,以期解决耐故障电路与系统的设计挑战。   这份价值600万美元的三年期合作项目将支持18所美国大学的29个教师组开展研究,重点研究面向未来计算应用的弹性电路与系统的各种设计问题。这些大学包括:德克萨斯大学、加利福尼亚大学、南加州大学、卡内基梅隆大学、康涅狄格大学,犹他大学、德州农工大学、伊利诺伊大学、斯坦福大学、密歇根大学、明尼苏达大学、罗切斯特大学,科罗拉多州立大学,北卡州立大学、弗吉尼亚大学和西弗吉尼亚大学等。   微型电子器件构成了当前普遍的、越来越高效和复杂的电子系统。常见的例子包括手机、个人数字助理等通信设备、飞行控制系统、自主车辆、精密武器系统,以及心脏起搏器、心脏监测器等体内外微型医疗设备。这些系统的准确运转通常是生死攸关的大事,如起搏器的一个小故障可能威胁到病人的生命,飞行控制电路或自主车辆的意外失效可能导致一场事故。   多种原因可以导致高灵敏、自动化的机械设备偏离预期的行为或功能。这些原因包括设计缺陷、不受控的物理现象、制造工艺误差、随时间或其他外因的老化,甚至还可能包括篡改或恶意的设计。   通过资助芯片设计方面的基础研究,国家科学基金会和半导体研究联盟的联合计划重点研究自纠正或自愈合的耐故障系统,以使其在整个工作周期内几乎不会受到外部干扰。   国家科学基金会工程部负责人PramodKhargonekar表示,“随着器件尺度越来越小及基本原理上的限制,项目将开发考虑到制造工艺偏差的全新设计方法,这也将解决当前半导体行业面临的紧迫问题。”   国家科学基金会计算机与信息科学工程部负责人FarnamJahanian表示,“新的基础设计技术有可能大幅提高电子系统的可靠性。该计划与半导体研究联盟共同合作,为学术界开展开拓性、长期的基础研究提供了机会。”   半导体研究联盟执行副总裁Steve Hillenius表示,“这种政府、产业和学术界的合作方式,将帮助大学解决关键计算问题的挑战。弹性系统将对多个产业领域产生影响,提升他们的全球竞争力,有助于将研究推向应用,建立细分市场。”

    时间:2020-09-04 关键词: 电子系统 电路

  • 汽车电子系统在未来几年的发展将无人能敌

      VR日报讯 索尼的PSVR已经上市有一个月了,在这期间PSVR的销售具体数字是多少,索尼并未公布,虽说VR硬件的销量我们还无从得知,但是索尼还是有公布每个月VR游戏在北美和欧洲的游戏排行榜。从游戏的受欢迎程度,可能也能间接的了解,到底什么类型的游戏会受玩家的青睐一些。   PSVR游戏10月排行榜(欧洲)   1. Batman: Arkham VR(蝙蝠侠:阿卡姆VR)   2. PlayStaTIon VR Worlds(PlayStaTIon VR世界)   3. UnTIl Dawn: Rush of Blood(直到黎明:血戮)   4. Here They Lie(他们在说谎)   5. Tumble VR(跌落VR)   7. Gunjack(EVE:Gunjack)   8. Driveclub VR(驾驶俱乐部VR)   9. EVE: Valkyrie(EVE:瓦尔基里)   10. Sports Bar VR(运动酒吧VR)   PSVR游戏10月排行榜(美国)   1. Job Simulator(模拟工作)   2. Batman: Arkham VR(蝙蝠侠:阿卡姆VR)   3. UnTIl Dawn: Rush of Blood(直到黎明:血戮)   4. PlayStation VR Worlds(PlayStation VR世界)   5. Here They Lie(他们在说谎)   6. Keep Talking and Nobody Explodes(没人会被炸掉)   7. EVE: Valkyrie(EVE:瓦尔基里)   8. Gunjack(EVE:Gunjack)   9. Harmonix Music VR   10. Sports Bar VR(运动酒吧VR)   可以看出位列这两个地区榜首的游戏分别是蝙蝠侠:阿卡姆VR和模拟工作。   《工作模拟(Job Simulator)》是由Owlchemy Labs开发的,该游戏设定在2050年的未来世界,机器人负责做饭、打扫卫生、提供各式服务以及有条不紊地管理着世界的秩序。人类工作已经成为了一种久远的回忆,蓝领职业早已不复存在。人类提出在自动化社会里,他们不应该忘记人类的“职责”,因此“Job Bot”就诞生了。Job Bot可以创造出“工作模拟”的环境,教人类如何“工作”。Job Bot广受人类的好评,因为它是人类历史的传承者。   《蝙蝠侠:阿卡姆VR》是由Rocksteady制作、Warner Bros发行的一款VR动作类游戏。游戏需要利用索尼PlayStation VR进行,玩家可以通过VR技术亲身体验蝙蝠侠的那些“日常”,浏览蝙蝠巢穴和华丽的韦恩庄园,借助先进的装备去调查犯罪现场,让罪犯都能得到应有的惩罚。

    时间:2020-08-20 关键词: 汽车电子 物联网 电子系统

  • 专家解密:用有源平衡技术怎么大幅提升电动汽车电池寿命

    专家解密:用有源平衡技术怎么大幅提升电动汽车电池寿命

     无论每年销售多少辆汽车,汽车中的电子系统都会继续增加。对混合动力型和全电动型汽车的需求进一步推进了汽车电子市场的增长。随着将电池作为电源这种方式日益流行,对于最大限度延长电池可用寿命,也出现了同样的需求。那有好的技术来大幅度提升电动汽车电池寿命不?   汽车市场是凌力尔特公司重点关注的终端市场。上一财年,我们在汽车市场的收入已经增长到占公司总收入的 20%,增长速度持续高于公司的总体增长速度。汽车行业的大部分创新和差异化都源自汽车电子系统。提高行车安全性、燃油效率和舒适度的需求创造了巨大商机。混合动力型和全电动型汽车的激增将稳步促进对创新性模拟电子产品的需求。除了汽车电子系统的增加,全球潜在汽车市场预计也将出现稳步增长。   无论每年销售多少辆汽车,汽车中的电子系统都会继续增加。对混合动力型和全电动型汽车的需求进一步推进了汽车电子市场的增长。随着将电池作为电源这种方式日益流行,对于最大限度延长电池可用寿命,也出现了同样的需求。电池不平衡 (即组成电池包的各节电池之间的充电状态失配) 是大型锂离子电池包的一个问题,这个问题是由制造过程、工作条件和电池老化程度的不同造成的。电池不平衡可能减小电池包的总体容量,并有可能损坏电池包。电池不平衡妨碍了从充电状态到放电状态的电池跟踪过程,而这个过程如果不能严格监控,就可能导致电池过度充电或过度放电,这将永久性地损坏电池。   对于混合电动型汽车和全电动型汽车电池包中使用的电池,电池制造商会针对其容量和内部阻抗进行分类,以减少交付给客户的特定批次电池之间的差别。然后,用仔细挑选过的电池构成汽车电池包,以提高电池包中电池之间的总体匹配度。理论上,这样做应该能够防止电池包中出现很严重的电池不平衡,但是尽管如此,一个普遍的共识是,组成大型电池包时,要在电池包寿命期内保持很大的电池容量,电池监控和电池平衡都需要。凌力尔特新的电池管理系统 (BMS) 产品系列正是为了满足这种需求而设计的,这些产品系列广受欢迎,是目前在产及投入使用的小汽车和客车中采用的,也是为数不多的 BMS 品牌之一。   目前,大型、高压可充电电池系统是电动型汽车中常见的动力源。这类大型电池组由串联 / 并联电池阵列组成,能够存储大量能量(数10千瓦时)。锂聚合物或 LiFePO4 电池是常见选择,因为这类电池能量密度高,有很强的峰值功率能力。与单节电池应用一样,必须仔细控制这类电池组中各节电池的充电,并严格监控各节电池,以确保安全运行,防止电池过早老化或损坏。不过,与单节电池系统不同的是,串联连接的电池组产生了一个额外的要求:电池平衡。   当电池组中的所有电池都有同样的电荷状态(SoC)时,这些电池是“平衡的”。SoC 指的是,随着各节电池的充电和放电,其当前剩余容量与其最大容量之比。例如,一个10 A-hr电池,当前剩余容量是 5A-hr,那么其 SoC 就是50%。所有电池都必须保持在同一个SoC范围之内,以避免损坏或缩短寿命。如应用不同,所允许的SoC最小值和最大值也不同。在最重视电池运行时间的应用中,所有电池都可能在20% SoC最小值和100% (满充电状态)最大值之间运行。要求电池寿命最长的应用也许限制SoC范围为最小30% 至最大70%。这些数值是电动型汽车的典型 SoC 限制,这类汽车采用非常大、非常昂贵的电池,更换成本极高。BMS 的主要作用就是,仔细监视电池组中的所有电池,确保所有电池在充电和放电时,无一超出该应用的最小和最大SoC限制。   对于串联/并联电池阵列,假定并联连接的电池相互之间会自动平衡,一般而言是安全的。也就是说,随着时间变化,并联连接电池的电荷状态会自动平衡,只要电池端子之间的传导通路存在。假定串联连接电池的电荷状态随时间变化往往出现偏离,导致偏离的因素有多种。电池包中电池的温度变化率或阻抗不同、自放电速率不同或各节电池的加载不同,都可能导致 SoC逐渐发生变化。尽管与电池包的充电和放电电流相比,电池之间的这些不同往往显得不那么重要,但是电荷状态失配会逐渐累积而不会减弱,除非对所有电池进行周期性平衡。各节电池的 SoC会逐步变化,需要补偿,这是平衡串联连接电池的最根本理由。一般而言,对于容量严格匹配的电池组,无源或消耗性平衡方法足以应对SoC 的再平衡问题。   无源平衡方法简单、价格低廉。然而,无源平衡速度非常慢,在电池包内部产生不想要的热量,是通过降低所有电池的剩余容量以与电池组中SoC最低的电池匹配,从而实现电池平衡。由于另一个常见问题,即容量失配,因而无源平衡方法有效应对SoC误差的能力也不足。所有电池都随着老化而出现容量下降,而且由于与前述类似的原因,容量下降的速度往往不同。既然入出所有串联电池的电池组电流是相等的,那么电池组中容量最低的电池就决定了电池组的可用容量。只有有源平衡方法才能在整个电池组范围内重新分配电荷,补偿电池之间失配导致的容量下降。   电池之间无论是容量还是SoC失配,都会严重降低电池组的可用容量,除非电池之间是平衡的。要最大限度提高电池组容量,就要求在电池组充电和放电时,电池之间是平衡的。   例如,有一个由10 节电池串联组成的电池组,每节电池都是 100A-hr (标称值),从容量最小的电池到容量最大的电池,容量误差为+/-10%,对这个电池组充电和放电,直至达到预先设定的SoC限制为止。如果SoC值限制在 30% 至70%,且没有进行电池平衡,那么在一次完整的充电/放电周期之后,相对于这些电池的理论可用容量,实际可用电池组容量降低25%。在电池组充电时,无源平衡方法理论上可以平衡每节电池的SoC,但是在电池组放电时,这种方法却无法防止10 号电池先于其他电池达到 30% SoC 值。即使在电池组充电时采用了无源平衡,在电池组放电时仍然会有大量容量“丢失”(不可用)。只有采用有源平衡解决方案,在电池组放电时,从高SoC电池向低SoC电池重新分配电荷,才能实现“容量恢复”。   采用 “理想的”有源平衡方法,可以100%恢复由于电池失配而“丢失的”容量。在稳定状态下使用这种方法时,当电池组从其70% SoC“满”充电状态放电时,必须将1号电池(容量最大的电池) 存储的电荷有效地取出,并传送给10号电池(容量最小的电池),否则10号电池就会先于其余电池达到其 30% 最低SoC 值,这时电池组放电必须停止,以防电池组寿命进一步缩短。类似地,在充电时,电荷必须从10号电池转移出来,重新分配给1号电池,否则10号电池就会先于其他电池达到其 70% SoC 上限,充电周期就必须终止。在电池组工作寿命期内的某一点,电池老化程度的不同将不可避免地导致电池之间的容量失配。只有有源平衡解决方案才能通过按需从高 SoC 电池向低 SoC 电池重新分配电荷,以实现 “容量恢复”。要想在电池组寿命期内实现最大电池组容量,就需要用有源平衡解决方案给各节电池高效率地充电和放电,以在整个电池组内保持SoC 平衡。   凌力尔特的 LTC3300(参见图1) 是一款专门为满足电动型汽车高性能有源平衡需求而设计的新产品。LTC3300 是一款高效率、双向有源平衡控制 IC,是高性能BMS系统的关键组件。每款 IC 都可以同时平衡多达 6 节串联连接的锂离子或 LiFePO4 电池。     图 1:凌力尔特的 LTC3300 是一款面向电动型汽车的双向有源电池平衡器   SoC平衡是通过在指定电池和多达12节或更多相邻电池之间重新分配电荷来实现。平衡决策和平衡算法必须由一个单独的、控制LTC3300的监视器件和系统处理器来处理。从指定电池向12节或更多相邻电池重新分配电荷,以给该电池放电。类似地,从12节或更多相邻电池向指定电池传送电荷,以给该电池充电。所有平衡器都可以同时以某一电荷传送方向运行,以最大限度缩短电池组平衡时间。所有平衡控制命令都通过一个可叠置的、噪声裕度很大的串行 SPI 接口提供给每个IC,而对叠置高度没有限制。   LTC3300 中的每个平衡器都采用非隔离式、边界模式同步反激式电源级,以实现各节电池的高效率充电和放电。6 个平衡器中每一个都需要自己的变压器。每个变压器的“主”边都跨接在被平衡的电池两端,“副”边则跨接在12节或更多相邻电池构成的电池组的两端,其中包括被平衡的电池。副边跨接的电池数量仅受到外部组件击穿电压的限制。与外部开关和变压器的调节范围相对应,电池的充电和放电电流可通过外部检测电阻器设定为高达10A以上的值。是否排序以及是否对通过主边和副边组件的 IPEAK/IZERO 电流进行检测,取决于平衡器是否启动以给某节电池充电或放电。通过同步运行和恰当地选择组件可以实现高效率。各个平衡器都是通过BMS系统处理器启动的,这些平衡器将保持启动状态,直到BMS命令要求停止平衡或者检测到故障情况为止。   电池包最大的难题之一是热量。高环境温度会迅速缩短电池寿命并降低其性能。不幸的是,在大电流电池系统中,平衡电流也必须很大,以延长运行时间,或实现电池包的快速充电。效率欠佳的平衡器会导致电池系统内产生不想要的热量,这个问题必须通过减少在给定时间可以运行的平衡器数量或者通过昂贵的减热方法来解决。LTC3300在充电和放电方向都能实现>90% 的效率,相对于效率为80%的解决方案而言,在平衡器功耗相等的情况下,这允许平衡电流提高一倍以上。此外,平衡器效率越高,电荷分配就越有效,这又会使容量恢复更有效、充电速度更快。     图 2:LTC3300 怎样在整个电池组内传送电荷   在整个电池组内传送电荷是通过副边交错连接实现的,如图 2 所示。以这种方式交错连接,允许电荷从 6 节电池构成的任何电池组传送到相邻电池组。请注意,相邻电池在电池组中可以是上面的电池,也可以是下面的电池。当优化平衡算法时,这种灵活性非常有用。对交错系统的常见误解是:从非常长的电池组的顶部向底部重新分配电荷效率一定非常低,因为从顶部向底部移动电荷需要大量转换。然而实际上,仅通过向或自最靠近需要平衡的电池的那些电池重新分配电荷,就可完成大多数平衡。在由10节或更多节电池组成的副边电池组中,仅通过运行1个平衡器,就允许比较薄弱的电池恢复超过 90%“丢失”的容量,否则这种电池就会限制整个电池组的运行时间。因此,凭借LTC3300 的交错拓扑,无需从电池组顶部一路将电荷移动到底部,大多数平衡工作是靠相邻电池在局部完成的。   除了提供出色的电气性能,LTC3300 双向有源平衡器还提供很多行车安全功能,以防止平衡时出现闪失,并保持最高可靠性。数据完整性校验 (对所有入出数据、看门狗定时器和回读数据进行CRC 校验) 防止平衡器响应意外或错误的命令。可编程伏-秒箝位确保平衡时电流检测故障不会导致出现电流失控。逐电池过压和欠压校验以及副边过压检测可在平衡时防止突然发生的电池束线故障损坏平衡电路。   这些特性使 LTC3300 能够在串联电池系统中提供高性能,并提供可靠的有源平衡,例如电动型汽车中常见的那类串联电池系统。随着这类系统中电池的老化或需要更换,补偿由此导致的电池容量失配以防进一步损害运行时间、充电时间或电池包寿命,这变得越来越重要了。

    时间:2020-08-15 关键词: 混合动力 电子系统

  •  助推节省燃料的汽车启动 / 停止电子系统

    助推节省燃料的汽车启动 / 停止电子系统

    背景 许多汽车制造商设计了一种节省汽车燃料的巧妙方法,就是运用了被称为“启动 / 停止”系统的新概念。该系统在汽车处于停顿状态或空档位置时将自动关闭引擎,并在驾驶者再次踩压离合器踏板时立即重新起动引擎。自动启动 / 停止功能可在汽车每次完全停稳时 (例如:等候交通信号灯) 关闭引擎,并自动重新发动引擎,因而有助于减少燃料消耗及尾气排放。与未装备此类系统的汽车相比,在城市交通环境中其耗油量的节省幅度可高达 8%。还有一个额外的好处就是能够降低其二氧化碳排放量。 原理很简单:如果引擎不运转,就不会消耗燃料。当不需要引擎工作时,自动启动 / 停止系统功能将自动关闭引擎。在交通拥堵或者甚至在走走停停的交通状况下,只需将汽车置于空档位置并把脚从离合器上移开就将启动此项功能。信息显示器上的一条“启动 / 停止”消息将表示“引擎已被关闭”。如欲重新发动引擎,则踩下离合器、挂档,汽车将马上快速恢复工作状态,即刻就能继续行驶。 应当指出的是:自动启动 / 停止功能并不会影响驾驶的舒适性和安全性。比如,在引擎达到某个理想的运行温度之前,该功能不会被启动。这一原则同样适用于以下情形:空调尚未将车厢调节至期望的温度、电池尚未充足电或驾驶者转动了方向盘。 自动启动 / 停止功能由一个监视来自所有相关传感器之数据的中央控制单元负责协调,包括起动电机和交流发电机。出于舒适性或安全性的需要,该控制单元还可自动重新发动引擎。例如:倘若车辆开始行驶、电池电荷量降至过低的水平或挡风玻璃上形成了冷凝水。此外,大多数系统还能够区别出短暂停顿与旅程终止之间的差别。如果驾驶者的座椅安全带松开、或者车门或后备箱敞开,则该系统不会重新发动引擎。假如有必要的话,揿压一个按钮就可以完全撤消自动启动 / 停止功能。 然而,当引擎重新发动且某个信息娱乐系统处于开启状态或存在任何其他需要 5V 以上电压的电子设备时,12V电池有可能5V以下,从而导致此类系统复位。有些信息娱乐系统采用一个 5V 和 8.5V 的工作输入电压,而此电压是由一个依靠汽车电池工作的降压型转换器馈送的。如果在引擎重新起动 (冷车发动) 期间输入电压降至 5V 以下,则这些系统将在 DC/DC 转换器仅能对输入电压进行降压操作的时候复位。显然,如果在观看视频或聆听 CD 的过程中,每次汽车重新起动时这些视听系统就自动复位,将是用户无法接受的。 一款新型解决方案 幸运的是,凌力尔特公司推出了一款三路输出 DC/DC 控制器 LTC3859A,该器件将一个同步升压型控制器和两个同步降压型控制器集成在单个封装之中。同步升压型转换器输出向降压型转换器馈电以保持一个足够高的电压,从而避免那些需要 4V 以上工作电压的电子系统在引擎重新起动的过程中发生复位。此外,当从汽车电池至升压型转换器的输入电压高于其编程输出电压时,它将在 100% 的占空比条件下运行,并简单地将输入电压直接传送至降压型转换器,从而最大限度地降低了功率损失。图 1 示出了 LTC3859A 的原理图,当电池电压降至 10V 以下时,由同步升压型转换器向同步降压型转换器提供 10V 电压。除了为两个降压型转换器供电之外 (在本例中可产生 5V/5A 和 8.5V/3A),升压型转换器还可被用作“第三输出”,能够提供一个额外的 2A 输出。 图 1:典型的 LTC3859A 启动 / 停止应用电路原理图 LTC3859A 是采用全 N 沟道 MOSFET 的低静态电流、电流模式控制、三路输出同步 DC/DC 控制器,启动时,LTC3859A 在 4.5V 至 38V 的输入电压范围内工作,并在启动后保持工作直到低至 2.5V 为止。两个降压型控制器 (通道 1 和 2) 180° 异相运作,并能产生 0.8V 至 24V 的输出电压,非常适合给导航、信息娱乐系统、处理器和存储器供电。升压型控制器 (通道 3) 与通道 1 同相运行,且能产生高达 60V 的输出电压。用于每个通道的强大的 1.1Ω内置栅极驱动器最大限度地降低了 MOSFET 开关损耗。工作频率可以设置在 50kHz 至 900kHz 的范围内,或者利用内部锁相环 (PLL) 同步至一个频率范围为 75kHz 至 850kHz 的外部时钟。LTC3859A 不同于 LTC3859 之处是其在 INTVCC 引脚上布设了一个内部箝位电路。该箝位电路提供了一种故障安全方式,可在用户由于疏忽而使用了一个漏电的肖特基限幅二极管时避免 INTVCC引脚承受过大的电压。 该器件的其他特点包括用于 IC 电源和栅极驱动的内置 LDO、可编程软起动、电源良好信号和外部 VCC 控制。VREF 准确度在 -40°C 至 85°C 的工作温度范围内为 ±1%,LTC3859A 采用 38 引脚 SSOP 封装或 38 引脚 5mm x 7mm QFN 封装。 延长电池的工作时间 对于任何在系统其余部分关断的情况下需要一根“始终保持接通”的电源总线的电池供电型系统而言,节省电池能量都是必须的。这种状态通常被称为“睡眠”、“待机”或“空闲”模式,只要求系统具有非常低的静态电流。在有可能包括诸多电气电路 (比如:车载信息服务系统、CD / DVD 播放机、遥控无钥匙进入系统和多条始终保持接通的总线线路) 的汽车应用中,为节省电池能量而要求实现低静态电流显得特别重要。在待机模式中,此类系统的总电流消耗必需尽可能低;而且,随着汽车的运行越来越多地依赖电子系统,汽车制造商所面临的节省电池能量的压力在持续地增加。 在睡眠模式中 (升压型转换器和两个降压型转换器中的一个处于接通状态),LTC3859A 仅吸收区区 75μA 的电流。当所有三个通道均接通并处于睡眠模式时,LTC3859A 的吸收电流只有100μA,从而显著地延长了空闲模式中电池的工作时间。这是通过将器件配置为进入高效率的突发模式 (Burst Mode®) 操作状态来实现的,在此操作模式中,LTC3859A 向输出电容器输送简短的电流脉冲,随后是一个睡眠周期,此时仅由输出电容器将输出功率传递至负载。图 2 示出了说明其工作原理的概念性时序图。 图 2:LTC3859A 的突发模式操作电压线图 突发模式输出纹波与负载无关,唯一将会变化的是睡眠间隔的长度。在睡眠模式中,大部分内部电路都被关断,只有用于实现快速响应的关键电路除外,从而进一步减小了其静态电流。当输出电压的降幅足够大时,睡眠信号电平走低,控制器通过接通顶端的外部 MOSFET 恢复标准的突发模式操作。另一方面,也存在这样的情况 ━━ 用户希望器件在轻负载电流条件下工作于强制连续模式或恒定频率脉冲跳跃模式。这两种模式的配置均很容易,它们的静态电流较高而峰至峰输出纹波则较低。 负载突降 / 效率 / 解决方案尺寸 “负载突降”(load dump) 这一术语指的是起动电机被关闭之后所发生的感应冲击。对于一个汽车用 12V 铅酸电池系统来说,此浪涌电压一般被箝位于 36V (最大值)。该浪涌要求控制器、MOSFET 及关联的组件能在箝位电压下工作。这些较高电压器件 (例如:40V MOSFET) 会导致效率下降,必须谨慎地将这种不良影响降至最低。当采用图 1 中的电路时,每个电压轨的效率高于 92% (如图 3 所示)。为清楚起见,分别示出了每个降压和升压部分的效率。此外,图 4 还示出了这款电路的布局和尺寸,其中最高的部件达 4.8mm。 图 3:LTC3859A 效率与负载电流的关系曲线 (针对不同的转换器部分) 图 4:LTC3859A 演示电路板的尺寸和布局 (a) 顶面 (b) 底面 启动和关断 LTC3859A 的三个通道可采用 RUN1、RUN2 和 RUN3 引脚单独关断。把这些引脚中的任一个拉至 1.2V 以下都将关断用于对应通道的主控制环路。而把所有三个引脚全部拉至 0.7V 以下将停用所有的控制器和大多数的内部电路,包括内置的 LDO。在这种状态下,LTC3859A 仅吸收 8μA 的静态电流。 软起动或跟踪 两个降压型控制器的 TRACK/SS1 和 TRACK/SS2 引脚可用于调节软起动接通时间或在启动期间对两个或更多的电源进行“重合”或“比例式”跟踪。这些关联曲线示于图 5,并同时在主电源与从电源的 TRACK/SS 引脚之间布设了一个电阻分压器。 图 5:LTC3859A 输出电压跟踪:(a) 重合跟踪 (b) 比例式跟踪 保护功能 LTC3859A 可配置成利用 DCR (电感器电阻) 或一个检测电阻器来检测输出电流。至于选择两种电流检测方案当中的哪一种,在很大程度上取决于成本、功耗和准确度的综合权衡。DCR 日益受到欢迎,原因是其可省去昂贵的电流检测电阻器且效率较高,尤其是在大电流应用中。LTC3859A 拥有用于降压通道的电流折返功能,以在输出短路至地时帮助限制负载电流。 内置比较器负责监视降压输出电压,并在输出大于其标称输出电压的 10% 时指示出现了过压情况。当检测到这种状况时,顶端 MOSFET 关断而底端 MOSFET 接通,直到过压状态被清除为止。只要过压状态持续存在,底端 MOSFET 就将连续保持接通。如果输出电压回归至一个安全的电平,则自动恢复正常操作。 在较高的温度条件下,或者内部功耗导致芯片内部产生过量的自发热时,过热停机电路将关断 LTC3859A。当结温超过大约 170°C 时,过热保护电路将停用内置的偏置 LDO,从而导致偏置电源降至 0V并以一种有序的方式有效地关断整个 LTC3859A。一旦结温回落至 155°C 左右,LDO 将重新接通。 结论 可节省燃料的汽车启动 / 停止系统在今后的几年里将继续发展。对于车载信息娱乐及导航系统的供电,以及需要高达甚至超过 5V 电压以实现正确运作的磁盘驱动器的供电,必须谨慎从事。此类系统在输入电压因引擎重新发动而降至稳压范围之外时会发生复位。LTC3859A 提供了一款解决方案,它可利用其内置的同步升压型控制器将电池电压提升一个安全的工作电平。LTC3859A 将一个同步升压型控制器与两个同步降压型控制器整合在一起,非常适合于给众多的汽车电子设备供电,可在引擎重新发动时保持针对所有输出电压的稳压作用。

    时间:2020-08-04 关键词: dcr 电子系统

  • 中国的发展不是技术封锁能够阻挡的,我国成功研制出先进空警-2000预警机

    中国的发展不是技术封锁能够阻挡的,我国成功研制出先进空警-2000预警机

    众所周知经过几十年的发展,中国军工业有了翻天覆地的变化,武器装备的研发以惊人的速度在发展。然而在几十年前的中国,确实独立自主研发无门,引进先进装备也处处碰壁,不得已的情况下必须咬牙提升自身的军工业。上世纪70年代,中国独立研发了空警一号预警机,但因技术的限制,直至90年代,空警一号已经难以满足军事需求,只能向国外引进更加先进的预警机。 1994年,中国和俄罗斯、以色列签署了三方合作的协议,协议内容是购买俄A-50预警机机体四架,并加装以色列先进的费尔康预警系统。当时以色列的费尔康预警系统非常先进,其处理速度甚至已经赶超美E-3预警机几十倍。这一份协议的完成,可大大助力中国空军实力的提升。 遗憾的是这份协议并没有达成,只因美国不断的阻拦,以色列决定反悔,并退回3.5亿美元的违约金。预警机在空军军事战略系统中,是非常重要的指挥系统,集预警、指挥、控制、通信、情报于一体,突然地毁约让中国损失很大。此后以色列三架本应交付中国的预警机,以11亿美元高价卖给印度。 中国引进先进的预警机无果,只能想办法独立研发。经过三年的高强度研发工作,中国王小谟科研团队终于实现了数百项核心技术的突破,研制出了先进的空警-2000预警机。空警-2000是在俄伊尔-76运输机的基础上,加装了我国自主研发的相控阵雷达、电子系统、碟形天线,超级计算机、控制台及软件。中国科研团队以成果,向世界证明了,技术封锁并不能阻挡中国的发展,只能越挫越勇。

    时间:2020-07-07 关键词: 雷达 运输机 电子系统

  • 汽车电子常见的电子系统盘点分析

    汽车电子常见的电子系统盘点分析

    随着汽车科技的发展,电子系统正成为当下汽车中的标配,很多功能都需要电子系统配合才能使用,汽车中都有哪些常用的电子系统呢? A 防抱死系统(ABS) 说到汽车电子系统,很多人首先会想到ABS,也就是防抱死系统。虽然知道防抱死系统是汽车中非常重要的安全系统,大多数人却知其然而不知其所以然,不知道防抱死系统到底有啥作用?车主田忠就是其中一员。“经常听人说起防抱死系统,但我不知道那是什么,只知道它能保证汽车在行驶中的安全。” “防抱死系统就是车辆在紧急制动时,避免出现车轮抱死、方向盘无法转动的情况。”业内人士张立告诉记者,有了防抱死系统后车轮不会抱死,提高了紧急制动后的方向稳定性。 防抱死系统诞生于20世纪初,被认为是除安全带以外,在安全性方面取得的最重要技术成就。“防抱死系统目前在技术上已经相当成熟,市面上大部分车型都配备了这个系统。”张立说。 如果防抱死系统在仪表盘上的提示灯亮了,车主就要注意,这说明爱车防抱死系统出了问题。“一般防抱死系统的提示灯亮了,有三种情况,一是控制电脑损坏;二是线束损坏;三是车轮传感器出了问题。”张立说,不管是哪种情况,只要是防抱死系统出了问题,就一定要尽快维修,以免带来严重后果。 B 防侧滑系统(ESP) 防侧滑系统和防抱死系统有一定的共同之处,因为两者都需要通过车轮传感器传出的信息来判断车辆的行驶状况。“如果说防抱死系统保证的是汽车紧急制动时的安全,那防侧滑系统就是保证汽车在行驶中的安全。”张立说。 防侧滑系统的提示灯亮了,一般是车轮转速出现异常。“如果四个轮胎中,有一个轮胎转速不一样,这个灯就会亮。”张立告诉记者,这种情况容易在改装过轮胎的汽车上出现,因为改装轮胎可能出现大小不同的情况,一旦轮胎周长不同,防侧滑系统检测到后,就会在仪表盘上提示。 防侧滑系统提示灯亮的同时,如果防抱死系统的灯也亮了,说明防抱死系统的线束出现问题。张立提示:“两个系统的提示灯同时亮,就可以断定是防抱死系统的线束出了问题。如果遇到这种情况,需尽快将汽车送修。” C 自动巡航系统(CCS) 前段时间,车主周先生在高速公路上开车时,不小心碰到一个按钮,一开始他没发现有什么问题。但不久后,他注意到仪表盘上有一个像小指针一样的标识亮了。“我不知道那个标识代表什么,但为了安全起见,我还是选择了靠边停车。” 随后周先生给4S店打电话,询问这个标识点亮代表什么,工作人员告诉他:那是汽车自带的自动巡航系统开启的表现。只需踩一下刹车或油门,即可解除巡航状态。 到底什么是自动巡航系统呢?自动巡航系统需在汽车行驶速度达到系统设定的80或90码时,才能开启。此后汽车就会按照当前的速度行驶,不需要驾驶员继续控制油门,不仅解放了驾驶员的双脚,而且也更省油。“这个技术,解放了双脚,减轻了驾驶员的负担,因其速度限制,一般在开高速时使用。” 张立说。 D 胎压监测系统(TPMS) 市民汪春霞平时习惯开车上班,曾遇到这样的突发状况。“在上班路上,我发现仪表盘上一个黄色的提示灯亮了,感觉驾驶没什么异常,就没管,结果下班准备开车回家时,发现轮胎有点瘪,才知道轮胎漏气了。” 汪春霞将车开到维修点后,维修师傅问她,为什么胎压提示灯亮了却没有及时去检查轮胎,她才恍然大悟,原来那个黄色的提示灯,是胎压提示灯。 “胎压监测系统非常实用,不同的汽车,系统设置的胎压都不同,当轮胎胎压低于设置数值时,胎压传感器会将此信息传到车载电脑中,胎压提示灯就会点亮。”张立向记者介绍了胎压监测系统的工作原理。 这种系统在轮胎刚出现问题时,会通过点亮胎压提示灯的形式,及时提示车主检查轮胎,避免事故发生。不过,该系统只能监测胎压过低的情况,胎压如果过高,则无法监测。 张立提醒广大车主:“给轮胎加压时,一定要严格按规定数值加,并不是越高越好,相反,胎压过高,会加剧轮胎磨损。” E 电池监控系统 开过车的人都知道,汽车仪表盘上有一个蓄电池标识,大多数人都以为这个标识存在的意义,是提示驾驶人汽车是否熄火,其实,这个标识还有其他用处。 “如果一辆车的蓄电池提示灯在汽车发动机运行时亮了,则预示着这辆车不能再长时间行驶。”张立告诉记者,蓄电池提示灯一亮,说明发电机没有工作了,发电机不再发电,车灯、空调等就需要使用蓄电池的电,一旦蓄电量不足,就无法支撑汽车长时间行驶,汽车熄火就成了必然。 “这种情况下,一旦熄火,汽车是无法启动的,即常说的打不燃火。”张立建议,如果发现蓄电池的提示灯亮了,一定要找地方靠边停车,然后打电话向4S店或维修站求援。因为行驶过程中突然熄火非常危险,市民切不可掉以轻心,以免造成无法挽回的损失。 ESP系统实际是一种牵引力控制系统,与其他牵引力控制系统比较,ESP不但控制驱动轮,而且可控制从动轮。如后轮驱动汽车常出现的转向过多情况,此时后轮失控而甩尾,ESP便会刹慢外侧的前轮来稳定车子;在转向过少时,为了校正循迹方向,ESP则会刹慢内后轮,从而校正行驶方向。ESP系统是汽车上一个重要的系统,通常是支援ABS及ASR的功能。它通过对从各传感器传来的车辆行驶状态信息进行分析,然后向ABS、ASR发出纠偏指令,来帮助车辆维持动态平衡。ESP可以使车辆在各种状况下保持最佳的稳定性,在转向过度或转向不足的情形下效果更加明显。ESP一般需要安装转向传感器、车轮传感器、侧滑传感器、横向加速度传感器等。 ESP除用到了ABS和TCS的轮速传感器和液压调节器之外,还包含了一个集成有侧向加速传感器的横摆角速度传感器和方向传感器,这两只传感器主要负责测量汽车围绕其纵轴的回转运动和记录驾驶员的转向意图;轮速传感器用来测量车轮的即时转速;转向角传感器:用于记录驾驶员的转向意图;横摆角速度传感器和侧向加速度传感器用来测量汽车围绕其纵轴的回转运动和离心力。这些传感器很好支撑了ESP系统的运行,目前ESP系统只在一些高档车中有使用,一些代步车中还没有应用,这主要是因为ESP系统价格还是比较昂贵的,所以作为传感器厂家我们应该积极开放这上面的传感器,争取让传感器的价格能够降下来,让ESP系统应用于每辆车上,保障驾驶安全。 ESP系统包含ABS(防抱死刹车系统)及ASR(驱动防滑转系统),是这两种系统功能上的延伸。因此,ESP称得上是当前汽车防滑装置的最高级形式。ESP系统由控制单元及转向传感器(监测方向盘的转向角度)、车轮传感器(监测各个车轮的速度转动)、侧滑传感器(监测车体绕垂直轴线转动的状态)、横向加速度传感器(监测汽车转弯时的离心力)等组成。控制单元通过这些传感器的信号对车辆的运行状态进行判断,进而发出控制指令。有ESP与只有ABS及ASR的汽车,它们之间的差别在于ABS及ASR只能被动地作出反应,而ESP则能够探测和分析车况并纠正驾驶的错误,防患于未然。ESP对过度转向或不足转向特别敏感,例如汽车在路滑时左拐过度转向(转弯太急)时会产生向右侧甩尾,传感器感觉到滑动就会迅速制动右前轮使其恢复附着力,产生一种相反的转矩而使汽车保持在原来的车道上。当然,任何事物都有一个度的范围,如果驾车者盲目开快车,现在的任何安全装置都难以保全。 2组成部分1、传感器:转向传感器、车轮传感器、侧滑传感器、横向加速度传感器、方向盘油门刹车踏板传感器等。这些传感器负责采集车身状态的数据。2、ESP电脑:将传感器采集到的数据进行计算,算出车身状态然后跟存储器里面预先设定的数据进行比对。当电脑计算数据超出存储器预存的数值,即车身临近失控或者已经失控的时候则命令执行器工作,以保证车身行驶状态能够尽量满足驾驶员的意图。3、执行器:说白了ESP的执行器就是4个车轮的刹车系统,其实ESP就是帮驾驶员踩刹车。和没有ESP的车不同的是,装备有ESP的车其刹车系统具有蓄压功能。简单的说蓄压就是电脑可以根据需要,在驾驶员没踩刹车的时候替驾驶员向某个车轮的制动油管加压好让这个车轮产生制动力。另外ESP还能控制发动机的动力输出什么的,反正是相关的设备他都能插一腿!4、与驾驶员的沟通:仪表盘上的ESP灯。

    时间:2020-06-16 关键词: 汽车电子 电子系统

  • 无人机如何借助其他系统来提高战斗力

    无人机如何借助其他系统来提高战斗力

    近日,俄罗斯国防部宣布,俄罗斯军队开始正式配备带有新型“索具-3”电子战系统的“海雕-10”无人机,该系统能够通过手机信号找到隐藏的敌人,并引导炮兵或战机快速打击。俄军事专家认为,“索具-3”电子战系统正式装备部队后,可大幅提升部队的侦察作战能力。 近年来,俄罗斯军队除大量装备各种电子战系统外,还积极为无人机配备,力争实现电子战系统的空中全覆盖模式。正是在这一背景下,俄罗斯开始将新型“索具-3”电子战系统加装在无人机上,并在叙利亚战场和乌克兰东部地区冲突中率先使用,检验其实战能力。据介绍,一套“索具-3”电子战系统由2至3架“海雕-10”无人机配合使用,指挥中心部署在一辆“卡玛斯”卡车上。“索具-3”电子战系统的干扰距离达100公里,主要用以在战争环境下控制地方的手机通信信号,其工作原理类似于“虚拟蜂窝基站”,能够有效截获和定位手机通信信息,并向对方发送假消息,控制通信网络中的用户信息。今年夏天,在奥伦堡州训练场举行的演习中,配备“索具-3”电子战系统的“海雕-10”无人机根据用户手机发出的信号迅速探测到假想敌的位置,并将目标坐标传送到炮兵部队,成功予以摧毁。 对于俄军装备这一新型电子战系统,俄军事专家表示,“索具-3”电子战系统可以远程连接到通信基站,并拦截信息流。如果敌方使用的手机等通信工具处于开机状态,便可根据手机信号迅速确定敌方位置,精确度达米级,同时将坐标信息发送到指挥中心,通过指挥中心再传递给俄军炮兵、飞机和战术导弹部队等,后者及时对目标实施精确打击。另外,“索具-3”电子战系统还能帮助指挥中心选择打击武器、确定时间等。在叙利亚战场,俄军曾利用该系统向反政府武装分子发送包含停火信息等短信,随后根据回复或转发的手机信号迅速确定武装分子的隐藏位置。一旦被该电子战系统发现,对方想要摆脱打击的可能性几乎不存在,因为从发现目标到火力打击仅有几分钟时间,在实施打击之前,无人机还会继续更新目标坐标信息。 来源:搜狐

    时间:2020-05-21 关键词: 无人机 电子系统

  • ETC值得支持!

    ETC值得支持!

     很多人对ETC的反感大多来自于以讹传讹,认为ETC推广是“劳民伤财”,认为ETC技术落后,认为不找腾讯阿里是多此一举。然而,有些人并没有真切地去思考ETC推广的意义,也没有想明白为什么ETC只能依靠银行系统来推行。我个人对ETC推广是持拥护态度的,ETC的推广不仅仅是把人工收费裁撤换成电子系统这么简单,在ETC布局的背后,是为了中国经济运转效率再度提升做准备。 首先,我们要理解到,经济发展离不开两个要素,第一是劳动力资源要素的转移,第二生产效率的提高。现在都在说中国人口红利优势逐渐减退,那么自然就要进一步提升“生产效率”,而ETC就是加快生产效率的重要一环。交通系统,是整个经济运转链条的核心环节,它关乎整个通行效率的提升,而通行效率则是物流行业中成本核算的重中之重。ETC的无感支付能够显著地加快所有车辆的通行效率,节约了时间成本。 众所周知,之前省际边界会有一次出关一次入关,这里面每次都需要收卡、付款、车辆进行负重检查、再次拿卡等一系列重复环节,一旦有一两个超载车辆检查站就可能让货车排起长队,大大降低通行效率。而在使用ETC之后,仅仅是货车不停车这一点就可以节省大量的时间。如果我们设想一下,未来货运车辆开始普及高级辅助驾驶功能之后,无停车行驶将更进一步提升整个物流行驶效率,甚至可以在自动驾驶时代实现如同火车般的车队跟随行驶。这些假设的实现,都需要ETC的帮助。 对于ETC短时存在的问题,我们相信只要半年,甚至可能两个月,就能逐渐解决,用户也很快就可以体验到ETC带来的通行好处。而更重要的是后续,一旦ETC系统普及到99%的车辆之后,相当于将每辆车都介入了支付系统,这个庞大的系统可以延伸出更多的使用场景,包括高速路行驶费用的有效降低、新能源车的无感充电缴费、以及通过收取拥堵费换限购解除等等,对于汽车产业来说都是有很大的消费促进作用。 另一方面则是ETC对车辆的行驶轨迹有了全面的记录后,可以充分跟踪物流车辆的成本。ETC技术的关键在于当车辆通过某个龙门架之后会进行分段扣费,这些分段扣费连接起来就是全程花费。由于每段高速的价格不一样,A地到B地可能拥有不同的高速路径,所以现在可以根据实际路径进行收费,而不是之前按照最短路径计价。这样对最短路径和最短时间的不同选择,就能够有效的分流车辆,加快运行速度。 其次,ETC为什么要是银行来做,而不能是支付宝和微信?这里银行所用的储蓄卡、信用卡结算体系都会被人民银行支付结算系统所记录,也就是说从高速上过的每一分钱,在国家层面都有记录。而此前高速公路主要是省级财政收费,到底收了多少,有时候没有准确的数字,比如你一定记得偶尔会拿到一张手写的单据替代磁卡。所以,高速公路的财政收入在ETC普及之前,是一本不那么清楚的账目。 至于为什么不用支付宝或财付通,道理也是一样。一开始,互联网公司的入账先是到自己的结算系统,然后再和银行的结算系统结算,这个过程绕过了银联系统,就会有大量的风控问题。实际上,从2018年6月30日起,中国人民银行支付结算司就要求第三方支付机构受理的涉及银行账户的网络支付业务全部通过网联平台处理。这个“网联平台”就是第三方支付和银行系统的支付清算平台,是双方的桥梁和中介,作为记录各方“交易握手”的中间者。 因此,既然支付宝或财付通也需要支付清算平台,甚至比传统银行结算还要多一个步骤——第三方通过网联平台和银行结算,银行再通过央行支付结算系统结算——所以它们与传统银行间的结算效率相比并没有太多优势。现在这两家对ETC的帮助主要是利用一些小规模银行的推广需求,将自己的用户群体转介绍——比如我们通过微信上的ETC助手绑定的银行卡可能就是山东某个小银行的储蓄卡。 也正是因为支付宝和微信在结算体系上没有“存在感”,所以推广这两家互联网公司的“无感支付”意义也不大。 另外,这两家的无感支付主要依靠牌照识别,其实这也是一个需要“大算力”的技术,应对高速道路上的极大车流量、并且可能是每隔十几公里就要进行一次识别动作、还有在恶劣天气下的识别,也并不算成熟。而ETC主要是射频识别技术,也不受恶劣气候的影响,这对于高速道路来说应该是各方留下的最优选择。 当然,进入央行的支付结算系统之后,所有的高速公路收费也就变成了一本“明账”,国家统一收费再按实际通行分配,这样也更加准确。实际上,这也是提升“生产效率”的方式之一,对于高速公路的收费动态调整会更加准确——一个典型例子是,之前每逢节假日对乘用车免费,总需要有人站在ETC通道前提醒不要走错道,走了ETC反而会被扣费。 事实上,在新加坡这样的地方,ETC也是收取“拥堵费”的一种有效手段。一旦车辆经过特定区域的龙门架,就会进行拥堵费的扣除,也可以根据时间段的不同制定不同费率,这样大大提升了城市管理的效率。或许这次ETC普及以后,很多城市会使用收取拥堵费的方式换取“限购解除”。从新加坡的经验来说,市场经济手段的治理城市拥堵远比限购来得“实在”,用拥堵费的收益来补贴公共交通,也好过土地财政。   总的来说,从长远角度来看,ETC的快速推广才能够真正的快速见效,但是可能也铺开太快,容易在初期造成系统的混乱,带来一些不必要的麻烦。这可以参考当初12306网络订票系统刚刚上线的时候,大量的并发需求直接导致12306的前端后台垮掉,后来整套系统迅速重做,而现在12306系统可以说是全球最强的客运票务系统,已经是“真香”系列了。

    时间:2020-02-04 关键词: 自动驾驶 ETC 电子系统

  • 汽车电子技术测试概述

    汽车电子技术测试概述

     随着汽车电子化的方便、舒适性等特点逐渐显现,该技术被迅速普及于汽车的各个部分。汽车电子化被认为是汽车技术发展史上的一次革命。从广义上看,汽车电子包括基础元器件、电子零部件、车载电子整机、机电一体化的电子控制系统(ECU)、整车分布式电子控制系统及与汽车电子有关的车外电子系统等软硬件部分。 RIGOL是业界领先的,从事测量仪器研发、生产和销售的国家高新技术企业,是中国电子仪器行业协会、中国仪器仪表协会会员。公司已申请发明专利超过500项,填补了多项国家空白。产品远销美、英、法、德、俄、日、韩等70多个国家和地区。 从发动机到车窗,从安全气囊的控制装置到刹车系统,都有电子设备的身影。电子化程度则被认为是衡量汽车技术发展程度的重要标志之一。而衡量汽车电子化程度的指标主要有两个方面: 1、电子装置成本在整车成本结构中的比重 目前我国汽车电子系统在中高端车型的成本占比在30%-40%,在纯电动轿车中的占比可达65%左右。 2、单元微型计算机ECU应用数量 汽车中ECU使用数量也不断增加,而具有代表性的就是CAN总线控制器的应用。CAN总线的配置给电控单元的应用提供了灵活的设计平台,这将是电子系统应用的新起点。目前车用ECU的最高使用数量在一辆车中高达到了50个以上。正是这些ECU构成了整个汽车的控制系统中枢。   汽车电子技术及测试 目前在汽车的各个部分均有汽车电子部件的存在,如图二所示。而将这些电子系统按照功能分类,大致可以分为以下几个部分: 1、动力及传动系统电控: 发动机电喷、自动变速箱、自动无级冷却扇、进气增压、全时全轮驱动、混合动力驱动控制。 2、行使稳定系统电控: 防抱死系统ABS、行驶稳定性控制ESP、牵引力控制TCS、刹车力分配系统EBD、平行停车协助。 3、安全系统及舒适性电控: 自动空调、巡航控制、适时/瞬时悬置阻尼控制(ABC、RACU)、前灯光自适应控制、防盗、自动门锁系统、自动发动机启动。 4、娱乐及信息系统: 仪表、CAN总线及控制模块、导航GPS、DVD、娱乐系统、灯光控制。 5、油耗经济性控制: 电动转向助力系统EPS、混合动力、电刹车。   在上文提到的这些系统,均是以嵌入式结构为核心设计的,而各个系统之间的通信网络则又不得不提到CAN总线技术。可以说在现行的汽车电子技术领域,嵌入式技术和CAN总线技术是技术核心,这两种技术的发展程度直接决定了汽车电子技术的技术水平。 一个嵌入式系统装置一般都由嵌入式计算机系统和执行装置组成,嵌入式计算机系统是整个嵌入式系统的核心,由硬件层、中间层、系统软件层和应用软件层组成。执行装置也称为被控对象,它可以接受嵌入式计算机系统发出的控制命令,执行所规定的操作或任务。执行装置可以很简单,如手机上的一个微小型的电机,当手机处于震动接收状态时打开;也可以很复杂,如SONY 智能机器狗,上面集成了多个微小型控制电机和多种传感器,从而可以执行各种复杂的动作和感受各种状态信息。 6、CAN CAN是控制器局域网络(ControllerArea Network, CAN)的简称,是由以研发和生产汽车电子产品著称的德国BOSCH公司开发的,并最终成为国际标准(ISO11898),是国际上应用最广泛的现场总线之一。在北美和西欧,CAN总线协议已经成为汽车计算机控制系统和嵌入式工业控制局域网的标准总线,并且拥有以CAN为底层协议专为大型货车和重工机械车辆设计的J1939协议。近年来,其所具有的高可靠性和良好的错误检测能力受到重视,被广泛应用于汽车计算机控制系统和环境温度恶劣、电磁辐射强和振动大的工业环境。CAN的出现使车载设备网络化成为了可能。   测试技术 按照测试技术的发展程度分类,测试技术可以分为3类: 1,定性测试 这种测试手段比较原始,具体的操作方法是将被测件应用在他的其中一个标准适用环境中,如果被测件可以适应使用环境,那么认为合格,反之认为不合格。这是在测试工具极端匮乏和测试技术低下的情况下采用的不得已测试方法。这种原始的测试方法使测试人员“知其然而不知其所以然”,产品的通用性极差,对于产品的改进也没有任何帮助。 2,定量测试 随着技术的发展,测试设备的不断出现并完善,测试技术发展到定量测试阶段。即使用测试仪器,按照设计参数对被测件进行检测,符合规范的即为合格,反之不合格。这是测试技术走向“文明化”的标志,这种测试手段使得产品向标准化发展,同时测试的数据也为产品的改进和换代提供了第一手数据。这种测试手段是当前主流的测试手段。 3,系统化测试 随着经济的发展,对于一款产品来说要测试的参数明显增多了。例如在国标文件《QC T 549-1999 汽车倒车报警器》中规定汽车报警器需要通过的电学测试多达10项,而在整个汽车中这样的模块数十个。在这种情况下,为了兼顾产品品质和生产效率,系统化测试成为了测试工程师的最佳选择。 测试技术分析 现代电子产品的测试就其场所来分基本上都可以分为研发和生产两个部分。而汽车产品本身是由多系统组成的,因此汽车的生产是一个社会分工协作的过程,于是汽车电子的测试分为多个部分: 电子零部件的测试。例如汽车传感器测试; 通信网络测试。例如仪表盘的CAN总线通讯测试; 各个嵌入式控制器测试。这些模块都是典型的嵌入式设备; 其他电子设备测试。例如汽车门锁、汽车钥匙、胎压、车载收音机、离合器等。 每个部分的测试技术和方法都有自己的特点,而控制器则是典型的嵌入式设备,其测试手段也和通常的嵌入式设备测试大同小异,在这里不做分析,下面针对余下三个方面一一分析介绍。 电子零部件测试 汽车上使用了众多的电子零部件,例如广播天线、各种传感器、各种灯具等。而考虑到零件生产测试的独立性和部件在汽车上的使用情况,下面着重分析汽车传感器及其测试技术。   传感器是汽车计算机系统的输入装置,它把汽车运行中各种工况信息,如车速、各种介质的温度、发动机运转状况等,转化成电讯号输给计算机,以便发动机处于最佳工作状态。根据传感器在汽车中的作用,可以分类为测量温度、压力、流量、位置、气体浓度、速度、光亮度、干湿度、距离等功能的传感器。不同类型的传感器在汽车上也会有许多不同的应用, 例如压力传感器。汽车压力传感器有很多种,用途也不一样: 1、机油压力传感器——用于测量润滑油的压力; 2、燃油压力传感器——用于测量燃油泵后的燃料管内燃油压力; 3、共轨压力传感器——测量柴油发动机共轨喷射系统中轨内燃油压力; 4、车用空调高低压传感器——测量车内空调系统中冷凝剂的压力; 5、空气压力传感器——用于测量进气、增压涡轮后端以及进气歧管内空气压力; 6、胎压传感器——测量轮胎内气压; 7、缸压传感器——测量汽缸内压力; 8、差压传感器——测量尾气颗粒捕捉器两端压力差; 9、刹车压力传感器——测量刹车液压或气压压力。 传感器的输出信号类型主要有: 电压。例如绝大多数的压力传感器输出的是直流电压,电压范围通常在0.5~4.5VDC;   电流。例如上海某仪表厂的NS-I1型压力变送器输出电流为4~20mA; 频率。大部分转速传感器以及扭矩传感器输出的信号为频率。例如JN338型扭矩传感器输出的就是10K~15KHz的频率信号; 波形及其他类型。例如北京某发动机研究所设计的爆震传感器输出的就是一个类似于噪声的波形。 传感器测试对设备的要求最主要的一点就是精度,因为传感器输出的信号范围相对来说比较小,而测试范围却比较大。拿NS-I1型压力传感器来说,首先其输入压力范围最高可以从0到100MPa,而输出只是4~20mA,1uA换算出来的绝对压力值将近5Kpa;其次,传感器本身要求的精度为0.1%,那么对测试设备的要求就远远优于这个指标,因此适合传感器测试的设备主要为高精度数字万用表。例如RIGOL的DM3068万用表,其20mA直流电流测试精度达到0.05%/年,直流电压精确度更是达到了0.0035%/年。   与传感器工作在一起的是信号处理单元和执行机构,在这些机构的设计过程中需要以传感器设计输出信号作为激励,再测试电路的响应以及执行机构的运行状况。而在实验室环境让一些传感器实时输出信号作为激励是不现实的,例如机油压力、燃料压力等传感器,这就给产品设计和测试带来了第一个技术上的挑战:激励信号的模拟问题;有些实验是要基于较长时间的动态信号,而要模拟这个信号就需要首先捕捉这个信号,那么就需要仪器有较长的记录范围,而测试信号波形的仪器首选示波器,反映在示波器中就是波形存储深度这个参数。   在这个应用过程中,需要采用示波器采集——信号源模拟的模式,仪器设计者发挥自己的聪明才智,设计了一个“无缝互联”的功能。即:使用数据线(有的使用U盘中转一次)连接示波器和信号源,然后直接将示波器采集到的信号波形数据传输给信号源,让信号源直接模拟这个信号。   综上所述,整个传感器测试的过程中对仪器的要求有以下几点: 高压测试 汽车点火器的测试是整个汽车测试中唯一的高压测试。 点火线圈在点火时会产生上万伏的瞬间电压,测试这个点火波形的时候主要测试下面几个参数: 1、电压 点火器的输出电压必须大于一定的限值,否则难以激发出电火花,造成点火失败; 2、波形 点火器的电压波形应该呈现单脉冲式(有的型号呈现出连续多脉冲的波形),脉冲不能出现震荡,否则可能有漏电;   3、脉宽 点火脉冲需要持续一段时间,否则可能因为电火花持续时间过短,而造成点火失败。   频域测试 汽车中遥控钥匙和广播天线等设备的测试需要测试频率准确度,发射功率,调制度;对胎压检测模块还需要确定接收灵敏度指标。这些测试可以用频谱分析仪和射频信号源完成。 通信网络测试 汽车的各个电路模块和控制单元是通过汽车通讯网络连接在一起进行工作的,而在汽车中最常用的网络协议,当属CAN总线了。 CAN属于现场总线的范畴,它是一种有效支持分布式控制或实时控制的串行通信网络。在汽车中,CAN总线担负着连接传感器终端和控制单元、执行机构,使整个汽车系统呈现一体化、网络化的重要责任,其传输速度可以达到1Mbit/s。当然在不同的系统间其位传输速率有可能是不一样的。较之目前许多RS-485基于R线构建的分布式控制系统而言, 基于CAN总线的分布式控制系统在以下方面具有明显的优越性: l 网络各节点之间的数据通信实时性强 l 开发周期短 l 已形成国际通用标准   在CAN总线的测试过程中,我们往往关注以下几个方面的参数: 1,CAN_L和CAN_H的对称性 CAN总线的两条数据线呈差分方式传输,分别命名为CAN_H和CAN_L,他们以2.5V电压为对称中心分布。在实际的系统中,这两条线可能会因为传输延迟、毛刺等原因造成不对称,导致数据传输异常。   2,CAN解码 对于一个总线信号,在测试过程中不可避免的要对总线上传输的数据进行解析,因此就需要测试设备具备对CAN总线解码的功能。 3,“眼图测试” CAN总线在传输过程中会因为负载效应,两条数据线分别被拉低和抬高,形成了类似于光纤测试中眼图的效果,而CAN总线的测试也需要测试这个“眼睛”的张开程度,即图九中CAN_L(蓝色线)的高电平减去CAN_H(黄色线)的低电平的幅度。   CAN以外,汽车上常用的总线协议还有LIN总线和FlexRay总线,其测试手段和CAN总线有相似之处,在这里不再介绍。 老化测试或者耐久测试 汽车是在陆地上长时间高速行驶的机电装置,人们对他的安全性能和舒适性能要求比较高,因此对于某些装置需要进行老化和耐久测试,以验证装置的可靠性和安全使用期限。在这种测试需求的装置中,最典型的就是制动器,俗称刹车。 制动器分为摩擦式和电磁式等多种类型,汽车中常用的是摩擦式制动器。制动器测试的时候需要测试多路信号,例如转速传感器的信号、电源信号、制动力矩(通过力矩传感器)等,因此需要多通道示波器;而在进行耐久性测试的时候往往需要连续不断的测试数十万次,而人工测试显然很难完成这个艰巨任务,因此需要自动化测试系统来完成这项工作。 其他电子设备测试 在汽车上除了用到车身控制器、仪表盘、传感器等等通用设备以外,根据汽车的配置不同,还会配备有其他的一些电子设备。例如汽车遥控门锁、制动器、车载音响、点火器等等。这些设备的测试往往有自己的特点。

    时间:2019-10-19 关键词: 汽车电子 测量仪器 电子系统

  • 长治市打造智慧交通

    长治市打造智慧交通

     货运车辆绕道不进站检测,电子系统自动抓拍没商量;发现违法超限超载车辆,治超信息管理系统远程指挥就近路面巡查人员前往检查……近年来,长治市在保持路面治超和源头治超高压态势的同时,大力推进科技治超,精准化、常态化、智能化治理超限超载问题,为建设智慧交通、维护人民生命财产安全、服务全市经济社会发展提供了保障。 走进市治超办治超监控中心,只见偌大的电子屏上清晰地显示着各个检测站的实时动态,“这是全市治超信息管理系统平台,它如同一个大的数据库,可以上传、记录各检测站内的情形,并将每辆车的车牌、重量以及检测画面存档,监控人员能随时调取。它还可以通过对讲系统合理调度稽查人员,及时对违法车辆进行检查。”工作人员介绍,这套系统已完成市级平台与12个县级平台、12个公路超限站、6个无人值守系统,县级平台与重点源头企业的信息化建设及联网,目前正在试运行阶段,效果十分好,不仅执法效率大幅提高,而且治超过程实现公开化,确保了阳光执法、公正执法。 货车超限超载一直是困扰道路交通安全的突出问题,为了破解这一难题,长治市积极创新手段,构建科技治超新体系。建设自动抓拍系统是长治市科技治超的另一个重要举措。一些车主为了逃避检测,绞尽脑汁绕道行驶,跟执法人员“躲猫猫”,针对这种情况,长治市建设了自动抓拍系统,对不进站检测的货运车辆进行抓拍,交警部门根据抓拍信息依法实施处罚。长治市还在主要公路沿线无治超检测站点的路段设置了13套无人值守系统,其中潞城3个,壶关、襄垣、沁源各2个,长子、屯留、沁县、潞州各1个,进行全天候管控,弥补治超监管漏洞,遏制超限超载乱象。 不用再“守株待兔”或靠人海战术,在科技的支撑下,长治市治超水平明显提高,仅去年就检测车辆826万辆次,查处违法车辆781辆,卸载货物4964.94吨,治超工作考核排名全省第三。今年,长治市将进一步加大科技治超力度,完成县级平台与所有公示源头企业联网,完善市、县超限站无纸化执法及办公等功能,实现市与县平台、超限站、源头企业联网全覆盖,同时深入推进非现场执法工作,形成强大的治超监测网络,让超限超载车辆寸步难行,使货运行业向绿色健康方向发展,加快长治市高质量发展步伐。

    时间:2019-07-22 关键词: 智慧交通 智能化治理 电子系统

  • 英飞凌力推车身电子系统级解决方案

    英飞凌力推车身电子系统级解决方案

      随着汽车市场的激烈竞争,人们对汽车驾乘舒适性和个性化的不断追求,以往许多只有高级车辆才具有的功能,目前正在加速进入中档乃至低端车辆。而这些功能中绝大部分都与车身电子相关联,包括自动灵巧的车门区域控制、精确的动态胎压监测系统、个性化的智能灯控系统、数字化显示系统、动态智能小环境空调系统以及其它舒适电子系统等。  上述这些功能,对许多人来说,似乎都似曾相识,但可能很少有人想过未来的先进技术究竟是什么样,更少有人去深入思考其技术的复杂性以及这些功能的实现所受到的种种制约。思考一下就不难想象,上述任何一种功能,要落实到中低端车辆时,都将面临着严峻的挑战。   作为汽车电子的领先厂商之一,英飞凌公司为解决上述挑战提供了一系列的整体解决方案。在刚刚落幕的2007年英飞凌汽车车身电子解决方案研讨会上,英飞凌公司就如何解决上述种种挑战,为与会的工程师们提供了很好的答案。   分布式车门解决方案更适合中国市场   为了实现车门区域的完美设计,业界推出了多种解决方案。总体上,目前车门解决方案可分为三大类:   第一类是中央处理架构。在这种架构中,采用功能强大的中央控制模块。所有的终端负载(包括门控、灯控、面板、反射镜、窗户以及雨刷和除霜等)全部采用导线直接连接。这种方案的致命缺点是线束过多过长,终端模块多,可靠性差,耗油量大等。“虽然这种处理架构目前还是中国乃至亚洲市场上的主流方案,但考虑到上述种种弊端,该方案在欧美已经逐渐减少,尤其是在欧洲,已经基本上被淘汰。只剩下个别小型车辆中还在使用。”英飞凌公司汽车、工业及多元化电子市场的高级经理刘鲁伟说道。   第二类是中央和分布式相结合的控制方案。在这种方案中,每个主要负载都用一个电子控制单元(ECU)来控制,各ECU与中央处理器之间的通信通过LIN和CAN来实现。该方案的优点是重量轻、线束极少、可靠性高、节油等,但缺点是成本过高,当往中低端车辆推广时面临较大的成本压力,故目前仅被某些高端车辆(如宝马和奥迪等)采纳。 图1:英飞凌TLE8201门模块方框图   第三类控制处理架构为分布式门模块处理架构。在这种架构中,没有功能强大的中央处理器,而是采用分布式门模块。该模块承担所控区域中的所有负载的控制功能。包括门本身、窗户、锁、踏板灯、警示灯和其他各种信号灯、各种镜子以及相关的面板显示等。该架构中,并行使用了CAN和LIN总线。  CAN用于车前门的复杂控制传输,而LIN则应用于后门等简单控制的传输。该方案的一个主要特点就是没有中心,相互之间节省了总线收发器的数量。从而降低了成本。这种方案的功能和架构目前具有广泛的代表性。“基于成本和复杂度等考量,该方案在欧洲已成为主流方案,也特别适合亚洲市场上的中低端车辆,故也是英飞凌公司目前在亚洲市场主推的方案。”该公司技术工程师陈琪介绍。   英飞凌公司支持这种方案的门模块为TLE8200系列。主要功能包括用于驱动主控门锁电机的全桥、多个支持死锁、镜位、折叠和除霜的半桥。还有多个驱动大电流的高性能电子开关,标准的SPI接口等。这些开关取代了原有的继电器方案,在可靠性方面得到了很大改善,也根除了继电器动作引起的机械噪声。  另外,内含标准的16位SPI,以及各种保护功能,包括过温、过压和过流保护等,还具有完善的诊断功能。另外,刘鲁伟还介绍:“通过采用这种方案,与第一种方案比较,仅这一项所节省的平均油料就高达0.2~0.3L/每百公里。” 图2:英飞凌公司带有SPI I/O的半桥驱动器示意图   作为该方案中的总线模块,功能也比较完善,主要包括中央门锁和安全锁控制、门灯控制;后视镜X/Y轴调节、折叠和除霜加热;电动玻璃升降和堵转检测;完整的保护和诊断功能:蓄电池反接保护,过压、欠压、过热、短路保护和相关故障状态反馈,负载电流及负载开路检测;系统具有休眠和外部唤醒功能等。重要的是使线束接到了最少,可靠性得到了极大提高。   不过,根据一些用户的观点不难分析出,作为几家主要的汽车电子半导体供应商,虽然其产品各有千秋,但大同小异,而英飞凌公司的产品线比较全,能够为工程师的方案设计提供了较大的方便。   坚持直接式TPMS方案不动摇   如何有效控制高速行驶中的轮胎爆胎,一直是世界性的难题。据有关资料显示,中国由于轮胎问题引起的重大安全事故已经超过10%以上。为了解决这一问题,业界研发出了TPMS这种主动安全技术。如今,TPMS的重要性越来越显现,已经成为越来越多车辆的标配。   而目前,TPMS分为两大类,一种是间接式方案,一种是直接式方案。   在间接式方案中,采集的原始变量不是胎压本身,而是中间变量,即车轮的转速。它是基于ABS传感器技术来实现的。检测车轮的转速,将其与存储的标准值进行比较,然后根据比较结果来判断胎压是否正常。  这种技术具有可复用车内ABS传感器,简单,无需电池,可靠性高等优点。但其缺点也是比较明显的,比如,精度过低,只有欠压较多时,ABS传感器才会有反应,另外,由于汽车不可能总是直线行驶,故理论上车轮的转速都是不一致的,这就会形成许多错误告警,还有就是只能用于具有ABS的车辆。正是因为这些不足,在发达国家已经逐步推广更先进的直接式TPMS技术。   直接式TPMS技术,顾名思义,传感器传感参数就是压力本身。将压力传感器直接植入每一个轮胎中,进而可以每时每刻监测每只轮胎的压力。无线收发器将传感器感应的数据通过无线方式传送到驾驶室内,从而无论是高速行驶状态,还是慢速转弯时,车主都可以动态获得精确的数据。当然也会设定标准范围,当超出该范围时,产生告警信息。   直接式传感器的特点是直接、准确、免维、可靠,从而能够提高安全技术的有效性。但其缺点就是复杂,需要为轮胎内的传感器提供能量。正是这些缺点,影响了一些用户对这种技术的信心。   英飞凌公司采用的正是直接式TPMS方案。方案中包括射频TPMS模块SP30,TDK5100系列发射器,TDA5200系列的接收器,以及RISC微控制器以及采用公司专利技术的三层堆叠的传感器等。完善的产品链自成系统,具有最高的匹配性,采用的是ASK/FSK调制方案,工作在350MHz和450MHz免许可频段。除了能够实现精确的胎压监测外,还能提供准确的温度检测和加速度检测。压力范围为100-450kPa,而温度范围和加速度范围则分别为-40~+125℃和-12~115g。该模块实现了极小的误差,在常态下的压力误差仅为±7kPa。所有功能均在仅有104.5平方毫米的柔性PCB上实现。   通过上述比较,两种方案各自的特点已经比较明了,这里无意做出孰优孰劣的结论,读者自有合理的判定。该公司刘鲁伟经理对其直接式方案也表现得无比自信,他说:“间接式的性能根本无法达到用户的要求,也无法与我们的产品相比。  人们往往担心能量问题,但是目前我们植入轮胎的传感器产品的电池寿命已经达到十年。试问,哪只轮胎的寿命可以达到十年呢?”另外,他还表示,能量的应用本身也有技巧,比如模块中的收发器要用很大一部分能量,如果采样频率设计得更合理一些的话,节省能量的空间还很大。关于这一点,公司还有待对应用设计工程师作进一步的正确引导。

    时间:2019-04-23 关键词: 英飞凌 嵌入式开发 解决方案 车身 电子系统

  • NEC电子车身电子系统的控制电源设计

    NEC电子车身电子系统的控制电源设计

      随着对更多功能及更高可靠性的需求持续增长,汽车电子的种类和复杂性也在迅速增加。汽车内有许多种电子子系统,比如底盘电子、驾驶员信息电子和车身电子。车身电子子系统提供座椅调节、车内照明和雨刷等功能。智能化设计使得车身控制模块(BCM)能更有效、可靠地驱动负载。  BCM是汽车内最重要的模块之一。BCM被用来控制不需专用控制器的常用“车身”功能,包括车窗、车镜、车门锁和车灯控制,以及接收发自车钥匙和胎压监测器信息的RF接收器等功能。此外,BCM还具有通过网络总线在不同模块间传输数据的网关作用。因为BCM连接多个汽车总线,所以它是为汽车增加新功能的理想平台。当汽车电子设计工程师想为汽车添加新的功能,但又没有太多时间、空间或预算来增加新模块时,他们常可通过为BCM编写新软件并借助其连网能力来实现这些功能。  显然,对BCM的需求因车而异,但一个应用趋势是开发一种可覆盖多种车型的单一模块,以便汽车制造厂降低开发和维护成本。对每种车型只需进行一些配置工作,就可在多个汽车平台上更迅速地部署该模块,从而缩短产品整体上市时间。  BCM的工作可大致分为两部分:控制部分,包括MCU、传感器输入和车内网络;电源部分,包括可提供大功率信号以驱动各种负载的功率器件。设计电源部分时需了解用于车身电子的各种负载特性。例如,LED因其低功耗、优异的鲁棒和可靠性,所以正迅速取代白炽灯。电子马达也用于实现升降车窗、改变座椅位置及调整车镜等机械功能。阻性元件则被用在座椅加热及后车窗除霜应用中。  将控制和电源电路整合到一个模块需要解决一些挑战。当BCM设计人员开始新设计时,他们必须考虑控制和电源部分的全部可能的器件选择,然后,在考虑了所有设计因素的情况下,决定如何将两者结合起来以最好地满足需求。设计人员在选择合适的器件组合时,必须考虑的设计因素主要有:功耗预算、散热、鲁棒性以及成本。例如,电源部分传统上一般只采用功率继电器,但最近的设计已显现出向固态方案转变的迹象。固态电子可提供更鲁棒的方案,以降低总体成本。此外,通过将这些固态器件与智能数字控制器结合起来,设计人员可实现以前不可能完成的诊断和故障防范保护功能。最终,设计人员的目标是生成一种具有成本效益、能完全满足应用需要并具有高可靠性以符合严苛汽车标准的BCM。  图1是基于NEC电子的32位MCU V850ES/Fx3的BCM原理框图,它给出了模块与传感器输、电源部分的连接。采用MCU的好处是能将控制问题分给硬件外设和软件算法来解决。与用硬件实现控制的方法相比,这种模块设计方法具有更多的灵活性。此外,采用MCU还能在系统内进行诊断(甚至实施自诊断),从而使系统更鲁棒。    图1:基于32位MCU V850ES/Fx3的车身控制模块原理框图。  在实现车身模块的控制部分时,最关键的决策是选用一款带合适外设、可满足应用对性能和成本预算要求的MCU,比如NEC电子的V850ES/Fx3 MCU等方案。V850ES/Fx3基于V850 32位CPU内核,并针对汽车车身应用进行了优化。V850内核是为嵌入式系统设计的,它具有高性能处理能力、快速中断响应速度及高效数据传输能力等实时性能。该内核还包括一款专用的、为每一个中断源配备独立向量的中断控制器,从而可以快速响应各种请求。片上直接存储器访问(DMA)单元可对存储器和系统总线进行访问,可在无需CPU干预情况下进行数据传输。  特别是,V850ES/Fx3 MCU集成了多种车身模块特别需要的先进外设。例如,定时器对车身应用非常重要,它被用于调度任务、捕捉RF脉冲等外部信号,更重要的是它能生成控制车内LED等所需的脉宽调制(PWM)信号。V850ES/Fx3 MCU就能提供多个具有可编程能力、可运行多种模式的定时器宏,它还能同步各定时器以增加PWM能力。为满足OEM对网络不断增加的需要,该MCU系列集成了5条控制器局域网(CAN)通道,每个通道具有独立的信息缓存器和无需CPU干预就可以滤除信息的屏蔽寄存器。针对低速的局域互连网(LIN)应用,V850ES/Fx3 MCU支持8条LIN信道,并具有一个用硬件处理LIN协议的多LIN主控(MLM)单元,从而节省了CPU资源。该MCU具有多达40个模数转换通道来处理模拟信号,这些信道具有管脚诊断、自动放电及灵活的触发资源。    除对智能片上外设的需求外,嵌入式汽车电子中一个压倒性趋势是使用闪存。例如,V850ES/Fx3 MCU的代码闪存空间从6?kB到1MB,它还有其它的片上存储器可用作数据存储器来存储需耐久(high-endurance)的数据。  车身电子应用对MCU最苛刻的要求之一是在车不发动时MCU仍要保持工作。在此情况下,MCU必须支持待机模式,以可接收的功耗水平提供必需的功能。V850ES/Fx3 MCU拥有NEC电子的用于低功耗模式的MF2嵌入式闪存工艺技术,它能使MCU仅运行诸如内部时钟和系统所需的周期性定时器等必需的外设,此时耗电仅为10到15uA,从而可满足最苛刻的功耗要求。集高密度闪存与低漏电流逻辑双美与一身,在使整个MCU拥有出类拔萃性价比的同时还可降低功耗。  随着对更多功能及更高可靠性的需求持续增长,汽车电子的种类和复杂性也在迅速增加。汽车内有许多种电子子系统,比如底盘电子、驾驶员信息电子和车身电子。车身电子子系统提供座椅调节、车内照明和雨刷等功能。智能化设计使得车身控制模块(BCM)能更有效、可靠地驱动负载。  BCM是汽车内最重要的模块之一。BCM被用来控制不需专用控制器的常用“车身”功能,包括车窗、车镜、车门锁和车灯控制,以及接收发自车钥匙和胎压监测器信息的RF接收器等功能。此外,BCM还具有通过网络总线在不同模块间传输数据的网关作用。因为BCM连接多个汽车总线,所以它是为汽车增加新功能的理想平台。当汽车电子设计工程师想为汽车添加新的功能,但又没有太多时间、空间或预算来增加新模块时,他们常可通过为BCM编写新软件并借助其连网能力来实现这些功能。  显然,对BCM的需求因车而异,但一个应用趋势是开发一种可覆盖多种车型的单一模块,以便汽车制造厂降低开发和维护成本。对每种车型只需进行一些配置工作,就可在多个汽车平台上更迅速地部署该模块,从而缩短产品整体上市时间。  BCM的工作可大致分为两部分:控制部分,包括MCU、传感器输入和车内网络;电源部分,包括可提供大功率信号以驱动各种负载的功率器件。设计电源部分时需了解用于车身电子的各种负载特性。例如,LED因其低功耗、优异的鲁棒和可靠性,所以正迅速取代白炽灯。电子马达也用于实现升降车窗、改变座椅位置及调整车镜等机械功能。阻性元件则被用在座椅加热及后车窗除霜应用中。  将控制和电源电路整合到一个模块需要解决一些挑战。当BCM设计人员开始新设计时,他们必须考虑控制和电源部分的全部可能的器件选择,然后,在考虑了所有设计因素的情况下,决定如何将两者结合起来以最好地满足需求。设计人员在选择合适的器件组合时,必须考虑的设计因素主要有:功耗预算、散热、鲁棒性以及成本。例如,电源部分传统上一般只采用功率继电器,但最近的设计已显现出向固态方案转变的迹象。固态电子可提供更鲁棒的方案,以降低总体成本。此外,通过将这些固态器件与智能数字控制器结合起来,设计人员可实现以前不可能完成的诊断和故障防范保护功能。最终,设计人员的目标是生成一种具有成本效益、能完全满足应用需要并具有高可靠性以符合严苛汽车标准的BCM。  图1是基于NEC电子的32位MCU V850ES/Fx3的BCM原理框图,它给出了模块与传感器输、电源部分的连接。采用MCU的好处是能将控制问题分给硬件外设和软件算法来解决。与用硬件实现控制的方法相比,这种模块设计方法具有更多的灵活性。此外,采用MCU还能在系统内进行诊断(甚至实施自诊断),从而使系统更鲁棒。    图1:基于32位MCU V850ES/Fx3的车身控制模块原理框图。  在实现车身模块的控制部分时,最关键的决策是选用一款带合适外设、可满足应用对性能和成本预算要求的MCU,比如NEC电子的V850ES/Fx3 MCU等方案。V850ES/Fx3基于V850 32位CPU内核,并针对汽车车身应用进行了优化。V850内核是为嵌入式系统设计的,它具有高性能处理能力、快速中断响应速度及高效数据传输能力等实时性能。该内核还包括一款专用的、为每一个中断源配备独立向量的中断控制器,从而可以快速响应各种请求。片上直接存储器访问(DMA)单元可对存储器和系统总线进行访问,可在无需CPU干预情况下进行数据传输。  特别是,V850ES/Fx3 MCU集成了多种车身模块特别需要的先进外设。例如,定时器对车身应用非常重要,它被用于调度任务、捕捉RF脉冲等外部信号,更重要的是它能生成控制车内LED等所需的脉宽调制(PWM)信号。V850ES/Fx3 MCU就能提供多个具有可编程能力、可运行多种模式的定时器宏,它还能同步各定时器以增加PWM能力。为满足OEM对网络不断增加的需要,该MCU系列集成了5条控制器局域网(CAN)通道,每个通道具有独立的信息缓存器和无需CPU干预就可以滤除信息的屏蔽寄存器。针对低速的局域互连网(LIN)应用,V850ES/Fx3 MCU支持8条LIN信道,并具有一个用硬件处理LIN协议的多LIN主控(MLM)单元,从而节省了CPU资源。该MCU具有多达40个模数转换通道来处理模拟信号,这些信道具有管脚诊断、自动放电及灵活的触发资源。    除对智能片上外设的需求外,嵌入式汽车电子中一个压倒性趋势是使用闪存。例如,V850ES/Fx3 MCU的代码闪存空间从6?kB到1MB,它还有其它的片上存储器可用作数据存储器来存储需耐久(high-endurance)的数据。  车身电子应用对MCU最苛刻的要求之一是在车不发动时MCU仍要保持工作。在此情况下,MCU必须支持待机模式,以可接收的功耗水平提供必需的功能。V850ES/Fx3 MCU拥有NEC电子的用于低功耗模式的MF2嵌入式闪存工艺技术,它能使MCU仅运行诸如内部时钟和系统所需的周期性定时器等必需的外设,此时耗电仅为10到15uA,从而可满足最苛刻的功耗要求。集高密度闪存与低漏电流逻辑双美与一身,在使整个MCU拥有出类拔萃性价比的同时还可降低功耗。  电源控制  设计BCM模块的第二个挑战是生成电源部分。该部分设计与模块必须驱动的负载种类息息相关。简单的LED灯是类常见负载。控制LED最直接的方法是利用MCU输出脚控制LED工作电流的通断。而利用PWM信号点亮LED则可带来更愉悦的视觉观感。利用PWM信号,允许以对人眼来看,LED似乎一直点亮的这样一个频率通断LED。通过加大/减小占空比,设计人员可增加或减小流经LED的平均电流以有效调节LED亮度,它类似影剧院照明控制。采用红、绿和蓝色LED,对每色都进行PWM控制,设计人员可生成任意色彩的复合光。该功能进一步增加了对MCU内PWM信道的需求。  BCM模块的第二类负载是电机,例如用于热通风和空调系统中的风扇电机。电机还用于调节座椅位置以及驱动雨刷系统。与控制LED类似,采用PWM,设计人员可有效控制调节标准直流电机的转速。另外,用模/数转换器采样PWM信号使设计人员可检测出可能的故障。在车身电子应用中,会用到各种电机。它们包括有刷直流、无刷直流甚至三相电机。每种电机要求独特的控制特性,在设计电源部分时,必须将此要求考虑在内。  车身电子中的第三类负载是加热元件,例如,用于加热座椅产生热能的发热元件。为有效加热,这些大功率电阻要求车身模块能提供足够电流。传统上,采用简单的12V继电器为大功率应用提供所需电流。继电器是又大又重的机电器件,且不如全电子方案可靠,对车用器件来说这是个致命短板。鉴于这些缺陷,已用功率MOSFET取代某些传统的继电器应用,MOSFET是为传递大电流设计的,是种完全的固态方案。MOSFET解决了继电器存在的体积、重量和可靠性问题。为该固态开关增添智能将进一步强化其功能,此时,它也被称为智能功率器件或IPD。典型的IPD在单一封装内同时整合了功率MOSFET和控制电路。与MOSFET一样,IPD是替换典型继电器的更小、更轻、功耗更低的器件。IPD集MOSFET的大电流和高可靠性与热失控和短路保护和诊断等特性与一身,是比MOSFET更优异的产品。  图3显示的是一款带内置短路和过热保护及负载电流感应的高端IPD。另外,为减少模块内的EMI,IPD具有限制输出电流快速波动的开关控制功能。  此类IPD常用于在诸如车内外灯照明和加热等车身应用中替代继电器(图4)。基于IPD裸片的小尺寸,一个四路IPD模块可替代4个标准继电器。在这种情况下,驱动刹车和转向信号灯的4个继电器可被一个IPD模块代替。另外,因IPD比继电器各个维度都小巧,ECU工程师可减小PCB和整个模块的体积。减少模块体积和器件数加之采用IPD带来的增加了的可靠性,可生产出质量更高及更具成本效益的产品。  因IPD对许多设计人员来说是种相对新的产品,当决策到底该采用哪类产品时,了解其主要特性是重要的。典型情况,是确定IPD在多大电压下,要能提供多大电流。许多供应商将首先根据这些参数排列其器件。一旦做出该决定,则当选择一款具体IPD时,还有其它若干因素要考量。如以前提到的,IPD可为控制单元提供诊断数据。可通过诸如串行外设接口(SPI)等网络协议或独立端口通信来实现诊断数据传输。对具有SPI总线的系统来说,SPI连接很方便。但,对需要以快于SPI能提供的速度接收IPD反馈信号的系统来说,标准端口信号不失为上佳选择。有支持这两种方式的IPD,所以,模块设计人员必须考虑总体系统需求来选出最适合的通信方法。    导通电阻,有时写作R(ON),是器件工作时,其两端的等效电阻。大的导通电阻会带来许多问题,它会在器件两端造成显著压降、导致更大功耗,并因此加大器件发热。为解决此问题,目前生产的器件的R(ON)值可低达8mΩ。当选择IPD时,设计人员会一如既往地选择可满足系统要求具有最低R(ON)的器件。另一个应考虑的重要因素是控制电路与模拟电源部分的连接。有两种常用IPD:单基和多基片形态。在单基IPD内,其控制和电源部分是做在同一片硅基上的。在多基片IPD中,控制和电源分做在不同硅基上。之所以有这两种方式,原因在各自所需的底层技术。高密度逻辑所需的工艺技术无法提供大电流,从而要采用多基片技术来实现大电流器件。当电流要求不很高时,可用相同技术设计电源和逻辑,设计人员可免除两个不同基片带来的复杂性和成本以及随后的绑定和封装问题。虽然单基和多基方案的选择通常是由IPD供应商决定的,设计人员应一直意识到所采用的具体工艺技术以确保器件满足需求。    最后,封装也很重要。目前,在用越来越精微的工艺制造IPD,从而允许更小的封装并支持多通道封装。设计人员几乎总在寻求最小的封装,且不放过任何有可能用多通道封装取代多个IPD的机会。  总之,为设计一个可靠、具成本效益的系统,需要把握设计的两个主要部分——控制和电源。为了这两个部分能在整个系统内最好地配合工作,在为它们选择器件时,要应对各自面临的挑战。  作者:Adam Prengler  汽车电子平台解决方案工程师  NEC电子

    时间:2019-04-08 关键词: 电子 嵌入式开发 电源 车身 电子系统

  • 电子系统保护浪涌抑制

    电子系统保护浪涌抑制

      避免电子产品出现电路系统故障及管理上电浪涌电流的方法已经取得了长足发展,从简单的保险丝或P通道FET发展成了更为高级的解决方案。这些高集成解决方案不但可以管理浪涌流入系统,同时也能确保传输元件(通常为FET)在安全工作区(SOA)内。这可显着改进系统诊断的控制与故障遥测。本文将讨论系统保护的增强型解决方案以及主要相关问题。  简单的系统保护  电气电路最简单的保护形式就是适当额定值的保险丝。深入研究您当前应用的适当解决方案,会发现有各种保险丝可供选择,包括但不限于快熔丝、慢熔丝、多晶硅熔丝与智能熔丝等。之所以存在不同类型的保险丝,是因为每种保险丝都有自己的优缺点。  快熔丝顾名思义:能快速熔断,也就是说很可能出现错误跳变,导致产品回收。因此,选择这种保险丝时应注意额定值降低要高于50%,即5A轨的保险丝额定值应高于10A,以避免应用错误故障。  慢熔丝开始熔断时间较长,但仍会出现错误跳变,因此额定值调低通常至少在50%。  多晶硅熔丝的优势在于:如果故障消除就能自动恢复,但也会产生一点成本。每次跳变的后续跳变点阈值会降低,即更容易跳变。因此,错误跳变的几率会随时间的推移而增大。  智能熔丝或三端熔丝是可按需熔断或在过流时熔断的器件。这种保险丝成本通常比上述保险丝高,需要电源电压保持在一定的高度,才能熔断保险丝。否则在故障情况下,所有元件都会很热,而且可能无法安全关断。  上述所有4种解决方案都存在可能导致错误跳变的两大问题。首先,它们都无法限制上电时或限电后进入系统的浪涌电流;其次,由于需要额定值调低,它们可能会在系统故障情况下允许大量电流通过,导致故障电路系统过热,造成更严重故障。例如,5A额定值的12V系统可能会试图使用10A或更高电流额定值的保险丝。如果良好功率电源发生短路,故障电路可能就会出现高达120W的功率。  浪涌管理  大多数错误跳变都是浪涌电流造成的。最大限度减少浪涌电流的低成本方法可能是采用P通道FET和两个电阻器及电容器实施(图1)。  当然,这种电路在输入电压出现那一刻就已经开始接触了,因此通常要在检测到功率良好信号之前保持电路断开。图2显示了采用视窗比较器的可行实施方案,其可确保12VAC适配器电压处于10.8V至13.2V之间。只要TPS3700等宽泛电源电压视窗比较器发现适配器在有效电压视窗中,就可启用通过Q1的电源路径。图1.简单的浪涌管理解决方案图2.采用TPS3700作为AC适配器检测器  上述方法可能对某些设计方案可行,但也存在一些内在问题:  1. 根据负载电容的大小,两种方法可能都会影响FET的安全工作区(SOA);  2. 一旦启用,就无法限制进入负载的电流;  3. 如果负载短路,FET可能会在启动时发生故障,这可能在保险丝之前出现,最好使用额定功率消耗远远高于应用所需的FET来降低风险,而这又会导致解决方案成本上升。  在系统启动或系统级故障发生时,必须有更好的系统保护方法。

    时间:2019-03-28 关键词: 电源技术解析 保护浪涌抑制 电子系统

  • 狮航空难黑匣子录音曝光:听了让人发冷!

    据路透社报道,去年10月29日坠海的印度尼西亚狮航JT610航班黑匣子录音内容首次公开。录音显示,在飞机坠毁前,机组人员还在翻操作手册,但最终没有找到解决方案。 但之前的调查显示,这架航班上波音提供的手册,根本没有提到如何应对这样的情况。其生还的可能性为0%,可以想象到他们的绝望。 根据此前的报道,2018年10月29日,当地时间早上6点20分,狮航飞机在印度裔机长的驾驶下从雅加达起飞。 2分钟后,副机长向空管部门汇报飞机出现“操作问题”。 随后9分钟内,狮航JT610航班驾驶舱内出现混乱。机上电子系统警告驾驶员“飞机失速”,机头开始下坠。机长试图让飞机爬升,但电子系统仍显示“失速”,机头继续下坠。 在这一过程中,驾驶舱内几乎无人说话。最后机长让副机长驾驶飞机,开始亲自翻阅操作手册。 坠机前1分钟,机长要求空管部门疏通3000英尺以下航线,请求飞机5000英尺的飞行高度,获批。这也是机长最后一句话,副机长则祈祷“真主至上”。   随后飞机坠海失联,机上189人全部遇难。

    时间:2019-03-21 关键词: 波音 驾驶飞机 电子系统

  • 宇宙射线对汽车电子系统的损伤分析

    设想一下:如果你驱车以每小时75英里的速度在高速公路上疾驰,一边驾驶着2006才购买的新车,一边欣赏着Steve Miller的Greatest Hits乐曲。突然间,引擎管理系统或稳定控制系统失效。 如果出现这一幕,您不仅仅可能会遭遇严重或可能是致命的车祸,而且车厂也可能被毁誉一旦,假设类似情况不止你一个的话。 随着汽车从纯机械设备向现代高度集成的线控驾驶汽车电子系统发展,设计工程现在面临越来越多的挑战。它们必须持续把复杂的电子设备添加到每一个后续车型年,与此同时,仍然要维持高标准的品质和可靠性,并满足严格的低成本和大批量生产的要求。 传统上,这些开发商一直采用微控制器(MCU)、ASIC和硕大的线束来实现和控制这些系统并扩展每一代汽车的性能。目前,这些技术已经逼近了它们的极限,并因复杂性呈指数增长而引发了对可靠性问题的关注。为了解决这些问题,许多设计工程师正在转向采用FPGA作为下一代汽车电子设计的灵活和低成本的解决方案。 太空射线引发的故障 为了确保现代汽车中各种系统的功能运转正常,必须对元器件提出可靠性数据的要求。虽然人们掌握元器件可靠性的大部分原理,但是,在选择可编程逻辑器件如FPGA的过程中,要把一些独特的问题纳入应该考虑的因素。 明确地说,技术决策人要预见到将影响可编程逻辑系统的故障源。虽然来自太空(宇宙射线)的中子轰击的概念听起来就像蹦出Star Trek的插曲,中子导致的错误现实上对许多类型的电子设备都有危害。 中子导致的固件错误(firm error)已经从一件麻烦事变为重大问题。例如,如果中子导致基于SRAM(基于静态)的FPGA的(以下简称:SRAM FPGA)配置单元被扰乱,就可能导致功能丧失。如果出现这种情况,它就可能造成主系统失常。展望未来,这种问题将更为严重,因为将来的深亚微米制造工艺将持续为基于FPGA的汽车电子系统的设计工程师带来实实在在的挑战。 在集成电路内部由中子造成的单事件扰乱(SEU)可能在各种类型非易失性存储单元中都会出现。上述SRAM FPGA采用内部存储单元来保持FPGA的配置状态或(个性)。这些存储器单元面对更为严重的可靠性威胁。当内容被改变的时候,它被称为“软错误”,因为是数据错误,而功能不受影响。虽然该器件可以采用校正数据成功地重新写入,对SRAM数据和寄存器可以分别采用EDAC(错误检测和校正)或TMR(隧道磁阻)。软错误可能导致数据丢失或“系统出现意外故障”。 如果SRAM FPGA配置存储器单元受到破坏,那就称为“固件错误”,因为这些错误不易检测或校正并且本质上不是瞬时现象。一旦在FPGA中出现固件错误,必须采用初始配置对该器件进行重新载入。在一些情况下,必须重新上电以清除故障,然后,重新配置。 这些配置单元中,只要有一个遭遇中子导致的SEU,后果都是严重的。如果配置为被扰乱并改变状态,它可能会改变整个器件的功能,导致重大数据崩溃或向系统中的其它电路发送虚假的信号。在极端情况下,如果固件错误长期未被检测到其存在,那么,就能变成“硬故障(hard errors)”并对器件本身或包含该器件的系统造成破坏。这类问题的常见例子是:中子导致的稳故障把信号导向错误的路径,从而造成短路。 对于采用SRAM FPGA的、执行重要任务的汽车电子应用系统,中子导致的错误有着重要的影响。现有的检测技术,每隔一定间隔读回FPGA的配置,对防止系统内的错误毫无帮助。 此外,能够检测受破坏配置的读回电路本身就易于遭受SEU或破坏。进一步说,在检查汽车系统抗中子导致的错误中,随着易受影响的FPGA技术的广泛应用,人们要求把创新的质量认证体系添加到AEC-Q100标准之中,以补充JEDEC标准 89的不足。当前检测和校正FPGA固件错误的方案增加了系统设计的额外复杂性,并增加了电路板的大小和物料的成本,从而增加了发现中子导致的错误的“成本”。 中子导致的固件错误可能对整个系统按时间计算的故障(FIT)率影响很大。由于难以检测和几乎不可能诊断,软和稳故障可能引发维护和服务问题,从而有可能造成担保费用攀升。在三种主流FPGA技术

    时间:2019-03-18 关键词: 汽车 宇宙射线 损伤 技术教程 电子系统

  • 汽车电子系统开发方案介绍

    汽车电子系统开发方案介绍

    车控电子产品是软硬件结合的嵌入式系统。为了节约资源,缩短产品开发周期,一般应采取软硬件同步开发的方案。 1、车控电子产品的开发流程   车控电子产品是软硬件结合的嵌入式系统。为了节约资源,缩短产品开发周期,一般应采取软硬件同步开发的方案。车控电子产品的开发工具对软硬件的同步开发、调试提供了很好的支持。车控电子产品的软件开发分为功能描述、软件设计、代码生成、操作系统环境下高级调试等步骤。车控电子产品的硬件开发分为硬件描述、硬件设计、硬件调试等步骤。当软件设计完成后,通过使用相应的工具,完成在虚拟ECU平台上的验证。当硬件设计完成后,与硬件一起进行软硬件集成调试。通过这种开发方式,缩短了产品上市的时间。软硬件并行的开发方案 2.车控电子产品软件开发流程  汽车车控电子产品软件开发流程是“V”形开发流程。“V”形开发流程分为五个阶段,即功能设计、原型仿真、代码生成、硬件在回路仿真-HIL、标定。  在功能设计阶段使用的主要工具是MATLAB。通过使用MATLAB提供的Simulink、Stateflow等工具,完成控制方案的设计、功能模块的设计、控制算法的设计等任务,并进行初步的仿真模拟工作。在原型仿真阶段使用的主要工具是dSPACE。使用dSPACE提供的快速控制原型-RCP工具完成离线的仿真工作。在开始该阶段之前,需要使用Real Time Workshop、Targetlink等工具完成由Simulink、Stateflow等产生的代码向标准 C代码的转换工作。  3.车控电子产品代码生成过程     在进行向标准 C代码的转换的过程中,可以根据需要加入符合OSEK规范的嵌入式实时操作系统。在代码生产阶段使用的主要工具是CodeWarrior。通过使用CodeWarrior提供的编译器、调试器等工具,完成从标准C代码向目标硬件平台上的产品代码的转换工作。下图表示了车控电子产品的代码生成过程。 车控电子产品代码生成过程 4.汽车电子系统划分   汽车电子产品可分为两大类:1. 汽车电子控制装置,包括动力总成控制、底盘和车身电子控制、舒适和防盗系统。2. 车载汽车电子装置,包括汽车信息系统(车载电脑)、导航系统、汽车视听娱乐系统、车载通信系统、车载网络等。下图所示为汽车电子系统的划分示意图。

    时间:2018-12-13 关键词: 方案 汽车 嵌入式开发 电子系统

  • 富士通汽车电子系统高速MCU解决方案

    概述 随着汽车电子化程度的不断深入,微控制器在汽车电子中的地位不断提升,扮演着提高操控性、智能性、即时性及娱乐性的核心角色。 产品除了需要满足功能性需求,高标准及高可靠性外,随着人们对环境问题的日益重视,“生态型“汽车的研究也已被各大厂商提上了日程, 因此功耗问题也越来越多的受到关注。 通过使用富士通新开发的16位CISC中央处理器F2MC-16FX作为核心,这些微控制器产品能够实现高性能、低功耗系统。在将最大操作频率从传统的24Mhz加速到56MHz,其处理性能已经得到了将近5倍的提高(与相同的频率对比,大约是2.5倍)。F2MC-16FX系列是控制车身控制模块、汽车空调设备、仪表板、车灯、各种感应器等的最佳选择。 点此查看全文

    时间:2018-12-12 关键词: 汽车 富士通 解决方案 嵌入式处理器 电子系统

  • 汽车电子系统设计变革:多核处理器成基本选择

    汽车产业应该改变开发系统的设计方式。减少电子控制单元(ECU)的数量,以及集成更多的功能,是推动这种变化的两个主要因素。由于更多的功能通常要求ECU具有更高的性能和计算能力,因此,上述两个因素似乎陷入了众所周知的两难处境。 减少ECU数量主要是为了节省成本,包括功耗、电磁兼容(EMC)、印刷电路板()面积和问题。减少ECU,也能降低ECU之间的通讯,从而降低系统复杂性和成本。 减少ECU数量可以从多个方面影响成本: 硬件成本:更有效率的系统架构可以降低目前在不只一个控制单元中存在的硬件冗余。而且,更少的节点和多工器以及更加分散的负载,可以降低汽车网络系统的复杂程度,并使之更加简洁。 开发成本:ECU数量减少,使系统得到简化,而且可能基于AUTOSAR和GENIVI等汽车电脑平台,或QNX和Microsoft 等自有平台,显然有利于缩短开发时间。由于可重复使用许多软件成分,使用这类平台将进一步降低软件成本,也可以根据地区或细分市场的要求,在生产链的最后阶段选择汽车配置。 维护成本:灵活和精干的控制单元也有利于系统更新和升级,尤其是在依赖标准软件平台的时候。 根据上述因素判断,似乎未来的汽车系统将类似于基于PC的架构,其中软件将扮演更加重要的角色。IHS公司设想,这将是软件定义汽车的时代,导航、远程信息处理和通讯等硬件功能都将作为软件应用,由几个中央ECU加以处理。另外,系统更新和升级也可以通过下载新的软件包以远程方式实现。 上面提到的集成问题也与计算能力等系统性能要求有关。由于未来的汽车中集成新的功能,预计计算能力需要大幅提高。这些功能包括信息娱乐、远程信息处理和导航等。此外,传统的动力总成、底盘和功能也将增添功能,而这些功能需要更多的技术,尤其是计算能力。逐步改善的安全性与更高的燃油效率,将需要更多更新的电子器件,其中多数需要更高的计算能力。 虚拟可以服务于多任务系统,并有利于使汽车ECU合理化,从而实现成本更低和更有效率的。但是,虚拟系统只能用于中低性能的系统。虚拟能够为现有系统提供便宜和平稳的,帮助原有系统过渡到下一代和高端系统,这些系统基于开放源操作系统。 因此,IHS公司认为,多核架构长期来看将是的基本选择,可以满足正在浮现的以及未来对高性能、维修控制以及功耗的要求。 市场供应情况与指标 多核处理器已经用于汽车系统。飞思卡尔半导体提供速度为的双核处理器。作为厂商,是率先采用多核架构的厂商之一,已经在赛车中采用了飞思卡尔的。预计也将在未来的1系列、3系列和X3车型中采用多核系统。 ARM最近宣布推出Cortex-R5和Cortex-R7 MPCore处理器,用于3G和4G移动设备,同样也面向汽车与工业应用。该ARM处理器系列覆盖很宽的高性能、实时嵌入应用,正好满足汽车市场的需要。 这些新产品特别适合要求高性能及高可靠性的嵌入应用。这些处理器提供一系列强调安全性的功能,包括所有外部总线中的错误管理、冗余双核系统和差错检验码(ECC)。这些产品还支持高频中断,以及快速及确定性的数据传输,用于实时的高安全性应用。 Luca De Ambroggi是IHS公司资深分析师。

    时间:2018-11-27 关键词: 汽车 多核 处理器 嵌入式处理器 电子系统

  • Linear推出无人操作军用系统需要性能较高的电子系统

    Linear推出无人操作军用系统需要性能较高的电子系统

    现代无人操作军用系统已经成为全世界武装部队不可或缺的组成部分,国防行业不断对这类系统进行密集的开发,以使其能够发挥大范围攻击、监视和作战支持的作用。无人操作系统也许是如今的国防行业中最具活力的领域,全球年支出超过 55 亿美元,到 2024 年,预计这一数字将接近 100 亿美元[1].无人驾驶航空器 (Unmanned Aerial Vehicle, UAV) 领域令人吃惊的一面是,系统种类极其丰富,从有些重量不到 20 克的纤巧纳米无人驾驶航空器 (Nano UAV,NUAV) 到中型 UAV,例如质量为 450 千克、有效载荷能力为 150 千克的守望者 (Watchkeeper),直至起飞重量超过 5000 千克的 MQ-9 收割者 (MQ-9 Reaper) (以前名为捕食者 B (Predator B)),跨度之大、种类之多令人叹为观止。UAV 无论大小,在平衡其性能和任务续航时间时,尺寸、重量和功率 (Size, Weight and Power,SWaP) 都是需要考虑的关键因素。有大量电子系统可以采用,但是在本文中,考虑电子系统时的关注点将落在以下几个方面:·空中运行安全性和自主运行·传感器和数据处理·通信和信息安全·电源系统早期无人操作系统简介现代 UAV 的起源可以追溯到 100 多年前,不过人们可能将 1930 年代用作空中目标打击练习的无线电控制无人驾驶飞机视作最知名的 UAV 鼻祖。英国制造了 400 多架这种飞机,当时以“蜂王”这个名字闻名于世,据说由于这种飞机而诞生了“无人驾驶飞机”这个术语。这种飞机要求,飞行时始终处于遥控飞机的飞行员的视线之内。不过没过多久,人们就开始尝试超出视距范围的自主飞行了。在 1940 年,爱德华·索伦森 (Edward M. Sorensen) 为他的地面站发明申请了专利,在这项发明中,使用频率调制技术控制飞机,并读回视距范围以外的飞行信息。之所以有了这项专利,是因为人们认识到,需要一种自动防止故障的模式,保持飞机平飞,并同时建立一个备份控制系统。随着战时武器有效载荷的发展,以及后来在 1950 年代和 1960 年代侦查平台的发展,无人操作军用系统的复杂性也提高了。1960 年代早期的瑞恩 (Ryan) 无人驾驶飞机采用了基本的制导系统,该系统由可编程定时器、回转罗盘和高度表组成,决定着离港飞行高度层、航向和飞行时间,这种飞机还提供倒转和降落伞辅助着陆功能。尽管这些都是相当基本的功能,但是用胶片相机获得影像的战略意义以及半自主系统的优势是很容易看到的,因此人们想更加齐心协力地进行进一步的开发。空中飞行安全性和自主运行显然,飞行安全问题是至关重要的,人们已经就此问题展开了广泛的辩论,以确定怎样管制天空,才能使 UAV 的存在不会影响到现有空中交通的安全性,同时使军用和民用 UAV 的应用开发不受制约。在视线范围内飞行的小型 UAV 依靠遥控飞机的飞行员来判断是否会发生碰撞,而自主或半自主运行的较大型 UAV 要想躲避空中碰撞,则需要复杂的检测和躲避系统。人们正在为此开发多种传感器,例如修改传统飞机应答器、可视和红外摄像机、激光探测与测距 (Light Detection and Ranging,LiDAR) 系统以及常规雷达系统。将来自这些传感器系统的数据转换成能够反映所处环境的图片,然后自主做出飞行决定,这需要非常复杂的软件和硬件资源,而且对于分享民用空域的 UAV 而言,还需要在满足现有协议要求的前提下运行。在友好空域中飞行时,使用地面雷达和交通绘图资源降低机载系统复杂性、扩大监测范围,也许是一种选择,不过采用这种方式时,在数据链路可靠性、延迟等其他问题上要做出折中。ASTREA 计划显示,可以采用自主检测和躲避技术,但是这种技术是在 Jetstream 飞机上采用的,这种飞机没有 UAV 的功耗、尺寸和重量限制。调整这种技术以使其能够用于大部分 UAV 是个很大的挑战,不过采用先进的现场可编程门阵列 (FPGA)、数字信号处理 (DSP) 和高性能模拟电子器件,可以使这种技术实现微型化。给这类电子系统供电也不是个简单任务,FPGA 需要严格的电源准确度以及低压和大电流,这就要求仔细设计电源链,以最大限度降低功耗、减少产生的热量。一种方法是使用数字电源系统管理 (PSM) 技术,这种技术通过动态调节电压和频率,可以降低功耗,从而有助于延长较小型 UAV 的任务续航时间。PSM 还提高了可靠性,并提供遥控和监视功能,以及能量使用记录和“黑匣子”故障记录功能。 图 1:数字电源系统管理 传感器和数据处理即使最小型的、手动启动的 NUAV 也可以携带多个摄像机和照相机完成监视任务,而多种版本的 MQ-9 收割者能够满足各种不同的猎杀及监视需求。携带武器的版本可能载有摄像机、红外夜视摄像机以及在有云或烟雾时使用的合成孔径雷达 (SAR),还有用于制导弹药的激光测距仪和目标照明系统。提供诱饵和干扰功能的版本也已开发出来,同时战术数据链路系统能够直接向有人驾驶飞机发送目标信息及影像数据。在信号情报 (SIGINT) 领域预计将进行更多开发工作,随着信号情报系统的进步,航程更长的版本将提供超过 40 小时的任务续航时间。由于机载传感器的迅速增加以及任务续航时间的延长而产生了大量数据,这些数据必须压缩和存储或通过实时数据链路发送,这势必导致某些方面的折中,例如带宽、质量和可能的影像数据损失。每增加一种新的有效载荷能力,都会增大电源系统的负担。不过幸运的是,印刷电路板级电源解决方案的开发也取得了进步,最近几年功率密度得到了显著改进,凌力尔特公司的 Module (微型模块) 稳压器解决方案就是一种进步的技术。每个小型模块都含有一个完整的高效率电源,其外形尺寸适合对尺寸要求很严格的应用,而且可靠性非常高。图 2 显示了一个例子。 图 2:LTM4644 Module 稳压器 通信与信息安全UAV 的通信链路可以分为两部分:·飞行控制数据链路 - 用于远程命令 (上行链路) 和遥测 (下行链路) 信息,以在 UAV 响应操作人员指令或按照 GPS 坐标自主飞行执行任务计划时,对 UAV 进行监控。一般情况下,采用扩展频谱技术的 56kbps 链路可以满足飞行控制数据链路的需求,上行链路可以用 128 位加密算法和前向纠错加以保护。·传送有效载荷传感器信息的通信链路 – 被看作是单独的通信链路,高清视频可能要求高达 10Mbps 的带宽,同时运行 COFDM、MPEG-4 或类似调制方案。诸如收割者等大型 UAV 一般会结合使用租用的专用卫星中继线路 (Ku 频段) 和地面 (C 频段) 通信线路,有充足的空间放置大型天线,而其他类型的无人机也许在工业、科研和医疗 (ISM) 频段运行,例如 2.4GHz (WLAN) 和 5.8GHz 频段。与空中交通控制系统及协议的集成是实现 UAV 完全自主运行的另一个障碍,因为 UAV 需要响应语音命令,提供航向和飞行高度层信息,并通过 VHF 无线电频道及合成语音确认系统,确认已接受命令。信息安全风险包括故意或偶然的干扰;假冒或拦截命令及控制信号;通信通道衰减。在常规的有人驾驶飞行中,为了避开任何非常靠近的空中飞行物,飞行员可以立即动手控制飞机,显然在使用 UAV 的情况下,飞行员始终要依靠通信链路以及机载传感器的稳定运行。风险总是可以减轻的,即使是非常小和按照一套设定 GPS 坐标飞行的 UAV,也可以升高飞行高度,以恢复丢失的 GPS 信号,在达到离港续航时间限制时自动返回基站。作为应变措施,防欺诈 GPS 系统结合使用 GPS 接收器和惯性测量单元,对接收到的 GPS 信号进行统计分析也有助于确定是否有人尝试欺骗系统。当然,所有这些通信系统都需要电源,而且敏感的无线电接收器需要一些噪声非常低的电源,这样无线电灵敏度才不会因电源而降低。新的芯片工艺技术和新颖的 IC 设计方法已经导致出现了一系列开创性产品,这些产品既能提供前所未有的高效率,噪声又非常低,例如 LT8640 Silent Switcher 和 LT3042 超低噪声、超高 PSRR RF 线性稳压器。 图 3:LT8640 Silent Switcher 稳压器 电源系统本文之前已经强调过,一些 IC 级电源技术进步支持了 UAV 及传感器有效载荷的持续变化,不过,机载动力源的选择也是影响总体性能的核心因素。随着人们日益专注于开发成本更低、尺寸更小、重量更轻的 UAV,内燃型动力源的吸引力下降了,燃料电池技术成为可能的选择,尤其是对续航时间长、平均功率需求低的任务而言。美洲狮 (Puma) 系列小型 UAV 正在试验的一种燃料电池将飞行时间从 150 分钟 (使用 LiSO2 电池时) 延长到将近 5 小时,整个燃料电池系统重约 2 千克,功率与重量之比约为 1kW/千克。 图 4:UAV 动力源的功率与重量之比 Power-to-Weight Ratio:功率与重量之比Solar PV:太阳能光伏电池Lithium-Ion Battery Types:锂离子型电池Fuel Cells:燃料电池Piston/Radial Engines:活塞 / 径向引擎Turbofan/Turboprop Engines:涡扇 / 涡桨发动机Increasing Complexity and Cost:复杂性和成本逐渐提高燃料电池的位置在电池和内燃机解决方案之间,具备环保优势,但确实面临一些燃料处理和存储问题,不过通过在可更换燃料盒中存储颗粒状氢,可以克服这类问题。小型 UAV 和 NUAV 最有可能继续使用锂离子电池,视配置不同而不同,用单节电池就能使 NUAV 飞行大约 30 分钟。较长续航时间和较大型的型号将需要多节电池设计,这类设计可受益于用 LTC3300 等 IC 实现的电池容量平衡技术,这种技术可最大限度延长系统运行时间。飞行高度很高、充当伪卫星的 UAV,例如谷歌以及其他公司正在开发、将来拟用于提供互联网服务的 UAV,也可以用太阳能动力取代电池。这类系统需要在因辐射作用增强可能导致单粒子翻转的环境中保持可靠运行,因此复杂性会提高,而且也许需要专门规定所使用 IC 的特性,并对这些 IC 进行专门测试。结论现在,无人操作系统在武装部队中起着不可或缺的作用,军方提供的大量资金促进了这类系统的快速开发,开发焦点尤其集中在较小型、价格较低的 UAV 系统上。随着传感器有效载荷和 UAV 平台电子系统变得越来越复杂,电源链和机载动力源的效率对于提供足够高的运行性能变得至关重要了,新型 IC 电源解决方案正在帮助实现 SWaP 目标。飞行高度很高的 UAV 和续航时间非常长的任务正在推进对太阳能、燃料电池等新型电源的需求,而使用新型电源又意味着需要新型 IC。

    时间:2018-10-30 关键词: 性能 电源技术解析 较高 电子系统

  • 万用表在电子系统测试测量中的使用技巧

    “万用表”是万用电表的简称,它是我们电子制作中一个必不可少的工具。用途多,量程广,使用方便是万用表的优点。万用表能测量电流、电压、电阻、有的还可以测量三极管的放大倍数,频率、电容值、逻辑电位、分贝值等。万用表有很多种,现在最流行的有机械指针式的和数字式的万用表。它们各有优点。掌握万用表的使用方法是电子技术的一项基本技能。小小万用表,有很多的技术原理和使用技巧,不信,您看看我们这期半月谈的专题!万用表分为指针式和数字式,它们各有方便之处,很难说谁好谁坏,最好是能够备有指针和数字式的各一个。业余电子制作有一个指针式的MF30型万用表也就可以了,这可是一种经典型号。还有元老级的MF500型万用表,廉价的MF50万用表,一般都可以在电讯商店买到。万用表的三个基本功能是测量电阻电压电流,所以老前辈们叫它三用表。现在的万用表添加了好多新功能,尤其是数字式万用表,如测量电容值,三极管放大倍数,二极管压降等,更有一种会说话的数字万用表,能把测量结果用语言播报出来。对于电子初学者,建议使用指针式万用表,因为它对我们熟悉一些电子知识原理很有帮助。指针式万用表使用与原理将为我们介绍一些机械指针式万用表的原理和使用方法。万用表最大的特点是有一个量程转换开关,各种功能就是靠这个开关来切换的。基本上,用A-来表示测直流电流,一般毫安档和安培档各又分几档。V-表示测直流电压,高级点的万用表有毫伏档,电压档也分几档。V~是用来测交流电压的。A~测交流电流。Ω欧姆档测电阻,对于指针式万用表,每换一次电阻档还要做一次调零。调零就是把万用表的红表笔和黑表笔搭在一起,然后转动调零钮,使指针指向零的位置。hFE是测量三极管的电流放大系数的,只要把三极管的三个管脚插入万用表面板上对应的孔中,就能测出hFE值。注意PNP管的E、B、C三极分别是P型、N型、P型半导体,NPN管正好相反。使用两条线测量电阻非常方便,但会产生测量误差。通过使用4条线及源端子和测量端子分开的万用表,几乎可以消除这种误差。遗憾的是,增加额外的引线和连接提高了测量的复杂程度。您需要连接增加的引线,在从电压变成电阻时,可能不得不更换夹子和探头。现在,有一种新概念,使用万用表简单准确地测量电阻将教给您如何只用两条引线,进行4线电阻测量。

    时间:2018-09-07 关键词: 测试测量 万用表 使用技巧 电子系统

首页  上一页  1 2 3 下一页 尾页
发布文章

技术子站

更多

项目外包