当前位置:首页 > 开关电源
  • 明察秋“毫” 科学选型

    明察秋“毫” 科学选型

    起源于上世纪50年代的开关电源,如今已经成为电子、电气设备及家电产品中必不可少的元素之一,重要性不言而喻。因此,深入了解开关电源的基础知识,对电源产品的安装、应用和维护做到事无巨细、明察秋毫,以实现科学选型、合理配置变得尤为重要。 那么在电源产品的实际应用中,您是否对以下问题做到了“明察秋毫”呢? 电源产品的相关参数及测试方法; 电源应用中的异常现象及解决办法; 电源电池的选型和维护; 魏德米勒开关电源产品的实际应用; …… 魏德米勒的资深产品开发工程师将以基础知识配合魏德米勒产品应用的形式,从开关电源的起源、电源地线的作用、电源输出波纹的测量、冗余模块的应用,以及DC UPS的应用等五个方面入手,为您全面解读魏德米勒电源解决方案。

    时间:2020-06-15 关键词: 开关电源 选型 魏德米勒

  • 该如何降低开关电源中的噪声

    该如何降低开关电源中的噪声

    开关电源电路结构与降噪原理  该开关电源的设计目标是稳定20 V输出,输出电流0~2 A可变,用于音响系统。为了突出降低电磁噪声的处理技术,简化电路,用单片开关电源芯片TOP224Y进行设计。TOP224Y内部已包含了PWM调制所需的所有电路以及激励管输出,由它激励变压器,开关频率为100 kHz,内部MOS激励管的耐压为700 V,输出功率小于45 W。电路如图1所示,该电路可以获得更大的输出功率,只需更改部分器件。图1中左边的电路R1,L1,D1,C1至C7是常规的共模滤波和整流电路,获取约300 V的直流电压供DC-DC变换电路使用;最右边电路L5,C11等是普通的LC滤波电路;IC2,D8,R9,R10组成电压反馈电路,形成闭环结构,稳定电源输出电压;中间部分是DC-DC变换器,降噪声的关键是对这一部分的电路进行适当处理。       图1:低噪声开关电源原理图   对于中间部分电路而言,TOP224Y作为PWM控制、激励,都是常规处理。控制端C的工作电压取自变压器的反激励电压,其中D3是整流管,D4是发光二极管,用作指导灯。C端的反馈信号来自IC2的输出。芯片的漏极输出端D连接变压器和R1,D2,其中R1是半导体压敏电阻,与D2一起组成芯片限压保护电路,防止芯片因过压而击穿。该项电路的激励方式采用以正激励为主的正、反混合激励式,变压器有4个绕组,其中2个是基本相似的输出绕组n3,n4,它的同名端关系如图2所示。                 图2:电路续流的路径   DC-DC变换后的整流管使用了三只:D5,D6和D7,没有独立设置续流二极管,不同于其他电源电路。D5为续流而设置的复用二极管,D6和是正激励脉冲整流二极管,D7是反激励电压整流二极管。L4是DC-DC变换后的第一级滤波电感。在正激励期间,变压器输出绕组n3经D6,L4输出电流,第一级滤波电感L4中电流i4增大,同时,变压器自身利益的激励磁电流i1也在增大。   当正激励结束马上就进入反激励阶段,滤波电感L4中电流i4将从原值逐步减小。而变压器中也会保持励磁电流,但它是多绕组结构,励磁电流可以出现在任意一个绕组中,各电流方向以维持原磁场方向为准。如果控制当时的滤波电感电流i4>n1i1/n4,可以将变压器磁芯中的励磁电流全部转移至n4绕组。也就是电流i4流经变压器输出绕组n4,除了维持变压器磁芯磁场,尚有多余,其余量在n4与n3中按匝数比分配。此时,二极管D5马上导通,二极管D6继续导通,而二极管D7仍然截止。变压器绕组无感生电压,不放释放磁场能。随着滤波电感储能的释放,电流i4逐步减小,直至i4=n1i1/n4时,D6进入截止状态。可见D6没有被除数强迫截止,处理得当,可以消除其关断噪声。接着,变压器开始产生反激励电动势而释放储能,二极管D7开始导通,变压器的反激励电压被限制。直到变压器储能释放尽,等待下一个周期的激励。   按照这一方法处理,可以消除整流二极管D6的硬关断噪声,但变压器漏感造成的芯片激励管的硬关断噪声仍然存在,这里的辅助绕组可以起到一定的吸收作用。对于整流二极管的硬开通噪声,仍采用RC电路吸收能量,降低噪声,如图1中的R7,C10电路。

    时间:2020-06-06 关键词: 开关电源 噪声

  • 开关电源中的纹波与噪声的起因以及测量方法

    开关电源中的纹波与噪声的起因以及测量方法

    本文简单地介绍开关电源产生纹波和噪声的原因和测量方法、测量装置、测量标准及减小纹波和噪声的措施。     纹波和噪声产生的原因   开关电源输出的不是纯正的直流电压,里面有些交流成分,这就是纹波和噪声造成的。纹波是输出直流电压的波动,与开关电源的开关动作有关。每一个开、关过程,电能从输入端被“泵到”输出端,形成一个充电和放电的过程,从而造成输出电压的波动,波动频率与开关的频率相同。纹波电压是纹波的波峰与波谷之间的峰峰值,其大小与开关电源的输入电容和输出电容的容量及品质有关。   噪声的产生原因有两种,一种是开关电源自身产生的;另一种是外界电磁场的干扰(EMI),它能通过辐射进入开关电源或者通过电源线输入开关电源。   开关电源自身产生的噪声是一种高频的脉冲串,由发生在开关导通与截止瞬间产生的尖脉冲所造成,也称为开关噪声。噪声脉冲串的频率比开关频率高得多,噪声电压是其峰峰值。噪声电压的振幅很大程度上与开关电源的拓扑、电路中的寄生状态及PCB的设计有关。   利用示波器可以看到纹波和噪声的波形,如图1所示。纹波的频率与开关管频率相同,而噪声的频率是开关管的两倍。纹波电压的峰峰值和噪声电压的峰峰值之和就是纹波和噪声电压,其单位是mVp-p。      图1 纹波和噪声的波形   纹波和噪声的测量方法   纹波和噪声电压是开关电源的主要性能参数之一,因此如何精准测量是一个十分重要问题。目前测量纹波和噪声电压是利用宽频带示波器来测量的方法,它能精准地测出纹波和噪声电压值。   由于开关电源的品种繁多(有不同的拓扑、工作频率、输出功率、不同的技术要求等),但是各生产厂家都采用示波器测量法,仅测量装置上不完全相同,因此各厂对不同开关电源的测量都有自己的标准,即企业标准。   用示波器测量纹波和噪声的装置的框图如图2所示。它由被测开关电源、负载、示波器及测量连线组成。有的测量装置中还焊上电感或电容、电阻等元件。      图2 示波器测量框图   从图2来看,似乎与其他测波形电路没有什么区别,但实际上要求不同。测纹波和噪声电压的要求如下:   ● 要防止环境的电磁场干扰(EMI)侵入,使输出的噪声电压不受EMI的影响;   ● 要防止负载电路中可能产生的EMI干扰;   ● 对小型开关型模块电源,由于内部无输出电容或输出电容较小,所以在测量时要加上适当的输出电容。   为满足第1条要求,测量连线应尽量短,并采用双绞线(消除共模噪声干扰)或同轴电缆;一般的示波器探头不能用,需用专用示波器探头;并且测量点应在电源输出端上,若测量点在负载上则会造成极大的测量误差。为满足第2点,负载应采用阻性假负载。   经常有这样的情况发生,用户买回的开关电源或模块电源,在测量纹波和噪声这一性能指标时,发现与产品技术规格上的指标不符,大大地超过技术规格上的性能指标要求,这往往是用户的测量装置不合适,测量的方法(测量点的选择)不合适或采用通用的测量探头所致。   几种测量装置   1双绞线测量装置   双绞线测量装置如图3所示。采用300mm(12英寸)长、#16AWG线规组成的双绞线与被测开关电源的+OUT及-OUT连接,在+OUT与-OUT之间接上阻性假负载。在双绞线末端接一个4TμF电解电容(钽电容)后输入带宽为50MHz(有的企业标准为20MHz)的示波器。在测量点连接时,一端要接在+OUT上,另一端接到地平面端。      图3 双绞线测量装置   这里要注意的是,双绞线接地线的末端要尽量的短,夹在探头的地线环上。   2 平行线测量装置   平行线测量装置如图4所示。图4中,C1是多层陶瓷电容(MLCC),容量为1μF,C2是钽电解电容,容量是10μF。两条平行铜箔带的电压降之和小于输出电压值的2%。该测量方法的优点是与实际工作环境比较接近,缺点是较容易捡拾EMI干扰。      图4 平行线测量装置   3 专用示波器探头   图5所示为一种专用示波器探头直接与波测电源靠接。专用示波器探头上有个地线环,其探头的尖端接触电源输出正极,地线环接触电源的负极(GND),接触要可靠。      图5 示波器探头的接法   这里顺便提出,不能采用示波器的通用探头,因为通用示波器探头的地线不屏蔽且较长,容易捡拾外界电磁场的干扰,造成较大的噪声输出,虚线面积越大,受干扰的影响越大,如图6所示。      图6 通用探头易造成干扰   4 同轴电缆测量装置   这里介绍两种同轴电缆测量装置。图7是在被测电源的输出端接R、C电路后经输入同轴电缆(50Ω)后接示波器的AC输入端;图8是同轴电缆直接接电源输出端,在同轴电缆的两端串接1个0.68μF陶瓷电容及1个47Ω/1w碳膜电阻后接入示波器。T形BNC连接器和电容电阻的连接如图9所示。      图7 同轴电缆测量装置1      图8 同轴电缆测量装置2      图9 T形BNC连接器和电容电阻的连接   纹波和噪声的测量标准   以上介绍了多种测量装置,同一个被测电源若采用不同的测量装置,其测量的结果是不相同的,若能采用一样的标准测量装置来测,则测量的结果才有可比性。近年来出台了几个测量纹波和噪声的标准,本文将介绍一种基于JEITA-RC9131A测量标准的测量装置,如图10所示。      图10 基于JEITA-RC9131A测量标准的测量装置   该标准规定在被测电源输出正、负端小于150mm处并联两个电容C2及C3,C2为22μF电解电容,C3为0.47μF薄膜电容。在这两个电容的连接端接负载及不超过1.5m长的50Ω同轴电缆,同轴电缆的另一端连接一个50Ω的电阻R和串接一个4700pF的电容C1后接入示波器,示波器的带宽为100MHz。同轴电缆的两端连接线应尽可能地短,以防止捡拾辐射的噪声。另外,连接负载的线若越长,则测出的纹波和噪声电压越大,在这情况下有必要连接C2及C3。若示波器探头的地线太长,则纹波和噪声的测量不可能精确。   另外,测试应在温室条件下,被测电源应输入正常的电压,输出额定电压及额定负载电流。   不正确与正确测量的比较     1探头的选择   图11是用AAT1121芯片组成的降压式DC/DC转换器电路及测量正确和不正确的波形图。若采用普通的示波器探头来测量(如图12所示),由于地线与探头组成的回路面积太大(由剖面线组成的面积),它相当于一根“天线”,极易受到EMI的干扰,其输出的纹波和噪声电压相当大(见图11中右面的示波器波形图中绿色的纹波和噪声波形)。若采用专用的测量探头(如图13所示),它的地线极短,探头与地线组成回路面积较小,受到EMI干扰极小,其输出纹波和噪声波形如图11右面的红色线所示。这例子说明一般通用示波器的探头是不能用的。      图11 AAT1121电路测量波形      图12 用普通示波器探头测得的波形      图13 用专用测量探头测得的波     2 探头与测试点的接触是否良好   以金升阳公司的1W DC/DC电源模块IF0505RN-1W为例,采用专用探头靠测法,排除外界EMI噪声干扰,探头接触良好时,测出的纹波和噪声电压为4.8mVp-p,如图14所示。若触头接触不良时,则测出的纹波和噪声电压为8.4mVp-p,如图15所示。      图14 电源模块IF0505RN-1W测试波形(接触良好)      图15 电源模块IF0505RN-1W测试波形(接触不良)   这里顺便再用普通示波器探头测试一下,其测试结果是纹波和噪声电压为48mVp-p,如图16所示。      图16 电源模块IF0505RN-1W测试波形(普通探头)   减小纹波和噪声电压的措施   开关电源除开关噪声外,在AC/DC转换器中输入的市电经全波整流及电容滤波,电流波形为脉冲,如图17所示(图a是全波整流、滤波电路,b是电压及电流波形)。电流波形中有高次谐波,它会增加噪声输出。良好的开关电源(AC/DC转换器)在电路增加了功率因数校正(PFC)电路,使输出电流近似正弦波,降低高次谐波,功率因数提高到0.95左右,减小了对电网的污染。电路图如图18所示。      图17 开关电源整流波形      图18 开关电源PFC电路   开关电源或模块的输出纹波和噪声电压的大小与其电源的拓扑,各部分电路的设计及PCB设计有关。例如,采用多相输出结构,可有效地降低纹波输出。现在的开关电源的开关频率越来越高;低的是几十kHz,一般是几百kHz,而高的可达1MHz以上。因此产生的纹波电压及噪声电压的频率都很高,要减小纹波和噪声最简单的办法是在电源电路中加无源低通滤波器。     1减少EMI的措施   可以采用金属外壳做屏蔽减小外界电磁场辐射干扰。为减少从电源线输入的电磁干扰,在电源输入端加EMI滤波器,如图19所示(EMI滤波器也称为电源滤波器)。      图19 开关电源加EMI滤波     2 在输出端采用高频性能好、ESR低的电容   采用高分子聚合物固态电解质的铝或钽电解电容作输出电容是最佳的,其特点是尺寸小而电容量大,高频下ESR阻抗低,允许纹波电流大。它最适用于高效率、低电压、大电流降压式DC/DC转换器及DC/DC模块电源作输出电容。例如,一种高分子聚合物钽固态电解电容为68μF,其在20℃、100kHz时的等效串联电阻(ESR)最大值为25mΩ,最大的允许纹波电流(在100kHz时)为2400mArms,其尺寸为:7.3mm(长)×4.3mm(宽)×1.8mm(高),其型号为10TPE68M(贴片或封装)。   纹波电压ΔVOUT为:   ΔVOUT=ΔIOUT×ESR (1)   若ΔIOUT=0.5A,ESR=25mΩ,则ΔVOUT=12.5mV。   若采用普通的铝电解电容作输出电容,额定电压10V、额定电容量100μF,在20℃、120Hz时的等效串联电阻为5.0Ω,最大纹波电流为70mA。它只能工作于10kHz左右,无法在高频(100kHz以上的频率)下工作,再增加电容量也无效,因为超过10kHz时,它已成电感特性了。   某些开关频率在100kHz到几百kHz之间的电源,采用多层陶电容(MLCC)或钽电解电容作输出电容的效果也不错,其价位要比高分子聚合物固态电解质电容要低得多。     3 采用与产品系统的频率同步   为减小输出噪声,电源的开关频率应与系统中的频率同步,即开关电源采用外同步输入系统的频率,使开关的频率与系统的频率相同。     4 避免多个模块电源之间相互干扰   在同一块PCB上可能有多个模块电源一起工作。若模块电源是不屏蔽的、并且靠的很近,则可能相互干扰使输出噪声电压增加。为避免这种相互干扰可采用屏蔽措施或将其适当远离,减少其相互影响的干扰。   例如,用两个K7805-500开关型模块组成±5V输出电源时,若两个模块靠的很近,输出电容C4、C2未采用低ESR电容,且焊接处离输出端较远,则有可能输出的纹波和噪声电压受到相互干扰而增加,如图20所示。   如果在同一块PCB上有能产生噪声干扰的电路,则在设计PCB时要采取相似的措施以减少干扰电路对开关电源的相互干扰影响。      图20 K7805-500并联     5 增加LC滤波器   为减小模块电源的纹波和噪声,可以在DC/DC模块的输入和输出端加LC滤波器,如图21所示。图21左图是单输出,图21右图是双输出。      图21 在DC/DC模块中加入LC滤波器   在表1及表2中列出1W DC/DC模块的VIN端和VOUT端在不同输出电压时的电容值。要注意的是,电容量不能过大而造起动问题,LC的谐振频率必须与开关频率要错开以避免相互干扰,L采用μH极的,其直流电阻要低,以免影响输出电压精度。         6 增加LDO   在开关电源或模块电源输出后再加一个低压差线性稳压器(LDO)能大幅度地降低输出噪声,以满足对噪声特别有要求的电路需要(见图22),输出噪声可达μV级。      图22 在电源中加入LDO   由于LDO的压差(输入与输出电压的差值)仅几百mV,则在开关电源的输出略高于LDO几百mV就可以输出标准电压了,并且其损耗也不大。     7 增加有源EMI滤波器及有源输出纹波衰减器   有源EMI滤波器可在150kHz~30MHz间衰减共模和差模噪声,并且对衰减低频噪声特别有效。在250kHz时,可衰减60dB共模噪声及80dB差模噪声,在满载时效率可达99%。   输出纹波衰减器可在1~500kHz范围内减低电源输出纹波和噪声30dB以上,并且能改善动态响应及减小输出电容。

    时间:2020-06-04 关键词: 开关电源 噪声 纹波

  • 【ZDS示波器高级分析功能】电源分析(上)

    【ZDS示波器高级分析功能】电源分析(上)

    ▌测试内容 ZDS3000/4000系列示波器电源分析插件即使用示波器来对开关电源进行相关测试,可以提高电源 开发人员的工作效率,方便对电源模块进行测试。电源分析插件涉及效率分析、开关元件分析、磁性元件分析、输入分析、输出分析、调制分析六个部分,今天我们主要对前三项进行介绍。 ◆ 效率分析 效率分析主要计算输入端和输出端的功率,以此来估算电源模块的转换效率。 ◆ 开关元件分析 开关电源(SMPS)技术依托电源半导体开关设备,如金属氧化物场效应晶体管(MOSFET)和绝缘门双极晶体管(IGBT)。开关设备在极大程度上决定着开关电源的整体性能。开关设备的关键测量项目包括开关损耗、SOA安全工作区等。 ◆ 磁性分析 磁性元件分析具体分为磁性分析与电感测试,可对磁损耗、电感值、有功功率值等进行测试。 ▌测试步骤 1、测前准备 为了保证测试的准确性,我们必须保证使用正确的测试系统,才能准确的捕获波形进行分析和调试,所以测试前需进行如下准备: (1)设置示波器的采集模式。需根据测试项从四种采集模式中选择合适的一种; (2)电流探头进行消磁调零,以便去掉变压器核心中残余的DC通量,防止数据产生偏差; (3)电压探头和电流探头的偏移校正。需搭配偏移校正夹具。过调整示波器的通道偏移时间参数,从而校正电压探头 和电流钳的传输延迟时间差,如下图所示。 2、接线 注:开关元件分析包括开关损耗、SOA、动态开点电阻、dv/dt和di/dt。 3、参数设置 确认接线无误后即可点击“参数配置”进行测量参数的设定。我们以SOA为例进行演示,在参数配置菜单中,可对坐标系参数、电压电流限定参数等进行设定,测试项意义如图所示。 ▌测试常见问题 1、进行电源分析测试时如何设置示波器的采集模式呢? 示波器提供了四种采集模式:标准模式、峰值模式、平均模式、高分辨率模式。示波器的采集模式就是信号的采集、处理和显示过程。不同的采集模式会产生不同的效果,选择的采集模式可能会影响电源测量的精度。不同采集模式的使用条件和使用测量项举例如下图所示。  2、开关损耗测试前需要了解什么呢? 需要了解开关管的状态。由于开关管是非理想型器件,其工作过程可划分为四种状态,如下图所示。一般来说,主要的能量损耗体现在“导通过程”和“关闭过程”,小部分能量体现在“导通状态”,而“关闭状态”的损耗很小几乎为0,可以忽略不计。 3、为什么开关损耗导通计算公式推荐使用Rds(on)? 导通状态下,开关管通常会流过很大的电流,但开关管的导通电阻很小,通常是毫欧级别,所以导通状态下损耗能量相对来说是比较少的,但亦不能忽略。由于导通时的微小电压,无法准确测量,使用电压乘电流的积分的方法计算的能量损耗误差会很大。相反,导通时电流很大,可以准确测量,因此可以使用电流与导通电阻来计算损耗。导通计算具体公式解释和举例如下图。 4、SOA安全工作区的4条边界代表着什么? 上边界为最大单次脉冲电流; 右边界为最高耐压值; 右上边界为热阻相关损耗限制; 左上为导通电阻制约电流。 免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

    时间:2020-05-27 关键词: 示波器 开关电源

  • 反激式拓扑结构SMPS测试方法,值得你掌握

    反激式拓扑结构SMPS测试方法,值得你掌握

    什么是SMPS测试?它有什么安全问题?电源、工业控制器、DC-DC 转换器、DC-AC 逆变器或 UPS 所运用的开关模式电源转换均具备能效高、尺寸小和重量轻的特点。但对线路供电型开关模式电源进行测试或故障排除期间仍会面临若干难以应对的安全相关挑战,这便需要设计人员采取一定的预防措施。 无论是处理高电压、高温、线路隔离,还是应对最低负载要求和极高动态范围的电压测量,操作都相当有难度。本文将介绍建立一个安全的测试站所需的条件,包括实现输入功耗控制、线路隔离、宽动态范围电压测量和可编程负载控制所需的各类器件。 SMPS 测试安全问题 开关模式电源 (SMPS) 能在最短的转换时间内打开和关闭高电压,从而降低功率损耗。典型的线路供电型 SMPS 存在若干安全相关问题。 这是一个采用反激式拓扑结构的线路供电型电源。该电路的初级侧以黄色突出显示,对线路(电源)输入进行全波整流并将其应用于初级轨。这意味着若使用 120 伏线路,高压轨和低压轨之间出现的电压电平约为 340 伏,若使用 240 伏线路,该值会高于 670 伏。使用 15 伏以下电压的技术人员和工程师可能需要知悉,这些电压可能会致命,所以使用这些器件时必须格外小心。 此整流线路电压将存储于初级储能电容器 C2 上。也就是说,即使将该电源与线路断开,储能电容器上所存储的电荷还是有风险。进行故障排除前,应将电源与线路断开连接,并利用电阻器小心谨慎地对主要储能电容器放电。开关 FET Q2 会在高压轨和低压轨之间切换。即使以高效方式运行,此晶体管也会变得很热,而且它通常会被安装在散热器上。散热器周围的测试操作员应谨慎行事,以防被烧伤。 请注意,该电源的初级和次级区段会采用反激式变压器 L2 和光隔离耦合器 Q4 进行电隔离。次级区段在负极 (-) 输出端接地,初级区段不接地。若使用接地输入仪器(如示波器)进行故障排除,这种接地方式便有问题。将示波器探头的接地连接端与电源初级侧的元件连接可能会导致短路,而且还会损坏主要元件和示波器。 SMPS 通常需要满足一定的最低负载要求才能运行;若负载不得当,电源通常会关闭。 还有一点,鉴于使用的电压之高,故障模式通常会导致严重的后果。例如,短路的桥式整流器 (D1-D4) 可能会向主要储能电容器施加线路电压,进而导致电容器通过排气孔排出电介质,甚至会直接引发爆炸。所以,设计 SMPS 期间可能会出现喷出物。 安全的 SMPS 测试设置 SMPS 测试套件应使用若干常用器件来最大限度地减少安全问题。 隔离变压器主要用于对 SMPS 的初级区段进行电气隔离。一经隔离,便可与初级电路中任意部分的探头接地端连接。这样初级电路便不会发生短路。若隔离变压器(例如 Bel Signal Transformer,型号 DU-2)同时具备初级和次级绕组,则可将其连接至 120 伏或 240 伏标称输入。它可在 240 伏的电压下提供 9 安培 (A) 的电流,亦可在 120 伏 (2 kVA) 的电压下提供 18 安培 (A) 的电流。额定功率高达 10 kVA 的隔离变压器极为常见。 自耦变压器可用于缓慢升高施加于测试器件的线路电压。执行此操作时需监控输入电流,这样便能在灾难性故障出现之前发现故障元件。Staco Energy Products 型号为 3PN1010B 的产品是一款典型的自耦变压器,可在 0-140 伏 (1.4 kVa) 的电压下提供高达 10 A 的电流。请注意,自耦变压器不提供线路隔离,所以必须与隔离变压器配合使用才能实现该功能。 如前所述,对 SMPS 进行测试需使用负载。最常使用的负载为非感应式电阻器,但请注意,阻性负载组也可能变得很热,所以应加以防护以免意外接触。电子负载是能够替代固定阻性负载组的替代方案,其负载可变。运行负载调节和输出电流折返等测试时,负载的控制能力非常重要。如果需进行自动化测试,则可编程功能会是特别重要的考虑因素。 B&K Precision 型号为 8514 的产品是一款额定功率为 1200 W 的典型电子负载,它可通过 USB 进行编程,在 0.1-120 V 的输入电压范围内以恒定电流、电压、电阻或功耗模式运行。电子负载还能模拟随时间而变化的动态负载。 8514 采用的安全外壳为测试器件和测试操作员之间提供一道物理屏障。它能在发生爆炸事故时保护附近的操作员。外壳还可进行专门配置以冷却测试器件和阻性负载组(如有使用)。此类装置通常可快速连接测试器件和断开连接。 线路隔离 单相交流线路具有热线和中性线。中性线在配电系统中接地,但在电源处可能仍高于地电位几伏电压。这会导致该电源的初级区段没有接地参考。将接地示波器探头与初级电路的任意点连接都可能导致短路。很多技术人员和工程师都试图通过移除示波器的接地连接和使示波器“浮动”来解决此问题。这种做法极其危险,因为它会使示波器外壳处于高出地电位几百伏的环境。接触示波器的任何人员都可能触电身亡。 浮动示波器的替代方案是使用隔离变压器,相关连接如图 2 所示。这样便能将测试电源与交流线路分开。使用隔离变压器后,可在初级电路中的任意点进行接地连接,并将该点作为接地参考。虽然采用这种方法可以进行电压测量,但使用专为测量高电压而设计的差分探头会更合适。差分探头具备两个输入端(都不接地),可测量输入端之间的电压差。只要用一个输入端的电压减去另一端的电压便能算出电压差。 差分探头的差分测量会衰减两个输入端共有的任何电压信号(称为共模信号)。共模信号的衰减量是差分探头的品质因数,被称为共模抑制比 (CMRR),以分贝 (dB) 表示。 高压差分探头在匹配差分输入之前使用高衰减来测量高压。如图 3 所示,电阻器 R1 和 R2 会形成一个补偿衰减器,而电阻器 R3 和 R4 又会形成另一个。将衰减器的输出施加至采用三个运算放大器的差分放大器的输入端。只要认真匹配元件和确保对称的 PCB 布局,便能获得较准确的 CMRR。 CMRR 非常重要,因为 SMPS 中的电压测量可能需要高动态范围。电源的初级侧持续转换 340 伏电压,并且转换时间相对较快。这些信号可辐射至整个器件。试着测量电源 FET 上的栅极驱动信号。此信号低于 10 伏,受到这些高压共模信号的影响,很难看到。使用具有较高 CMRR 的差分探头可抑制干扰信号。 诸如 Cal Test Electronics 型号为 CT3681 的探头运用了 X100 或 X1000 用户可选衰减特性。这些探头的最大额定电压为 700 V (X100) 或 7 kV (X1000),CMRR 在 50 Hz 和 20 kHz 时分别为 -80 dB 和 -60 dB,带宽为 70 MHz。这类探头的优势在于在输出端使用标准 BNC 连接器,而非专有探头接口,这使得它们可与所有示波器兼容。 尽管线路供电型 SMPS 极为流行和实用,但在测试期间还是会存在安全问题。不过如文中所述,只要结合可靠的工程实践并采用常用元件(如隔离变压器、自耦变压器、电子负载和差分探头),便能显著降低这些风险。以上就是反激式拓扑结构SMPS测试方法,希望能给大家帮助。

    时间:2020-05-23 关键词: 转换器 开关电源 smps

  • 开关电源的一些测试方法,值得你收藏

    开关电源的一些测试方法,值得你收藏

    什么是开关电源,它的测试方法你知道吗?1、反复短路测试 测试说明 在各种输入和输出状态下把模块输出短路,模块应实现保护或回缩,反复多次短路,故障排除后,模块应该能自动恢复正常运行。 测试方法: a、空载到短路:在输入电压全范围内,将模块从空载到短路,模块应能正常实现输出限流或回缩,短路排除后,模块应能恢复正常工作。让模块反复从空载到短路不断的工作,短路时间为1s,放开时间为1s,持续时间为2小时。这以后,短路放开,判断模块是否能够正常工作。 b、满载到短路:在输入电压全范围内,将模块从满载到短路,模块应能正常实现输出限流或回缩,短路排除后,模块应能恢复正常工作。让模块从满载到短路然后保持短路状态2小时。然后短路放开,判断模块是否能够正常工作。 c、短路开机:将模块的输出先短路,再上市电,再模块的输入电压范围内上电,模块应能实现正常的限流或回缩,短路故障排除后,模块应能恢复正常工作,重复上述试验10次后,让短路放开,判断模块是否能够正常工作。 判定标准: 上述试验后,电源模块开机能正常工作;开机壳检查,电路板及其他部分无异常现象(如输入继电器在短路的过程中触电是否粘住了等),合格;否则不合格。 2、反复开关机测试 测试说明: 电源模块输出带最大负载情况下,输入电压分别为220v,(输入过压点-5v)和(输入欠压点+5v)条件下,输入反复开关,测试电源模块反复开关机的性能。 测试方法: a、输入电压为220v,电源模块快带最大负载,用接触器控制电压输入,合15s,断开5s(或者可以用ac source进行模拟),连续运行2小时,电源模块应能正常工作; b、输入电压为过压点-5v,电源模块带最大负载,用接触器控制电压输入,合15s,断开5s(或者可以用ac source进行模拟),连续运行2小时,电源模块应能正常工作; c、输入电压为欠压点-5v,电源模块带最大负载,用接触器控制电压输入,合15s,断开5s(或者可以用ac source进行模拟),连续运行2小时,电源模块应能正常工作。 判断标准: 以上试验中,电源模块工作正常,试验后电源模块能正常工作,性能无明显变化,合格;否则不合格。 3、输入低压点循环测试 测试说明: 一次电源模块的输入欠压点保护的设置回差,往往发生以下情况:输入电压较低,接近一次电源模块欠压点关断,带载时欠压,断后,由于电源内阻原因,负载卸掉后电压将上升,可能造成一次电源模块处于在低压时反复开发的状态。 测试方法: 电源模块带满载运行,输入电压从(输入欠压点-3v)到(输入欠压点+3v)缓慢变化,时间设置为5~8分钟,反复循环运行,电源模块应能正常稳定工作,连续运行最少0.5小时,电源模块性能无明显变化。 判定标准: 一次电源模块正常连续运行,最少0.5小时后性能无明显变化,合格;否则不合格。 4、输入瞬态高压测试 测试说明: pfc电路采用平均值电路进行过欠压保护,因此在输入瞬态高压时,pfc电路可能会很快实现保护,从而造成损坏,测试一次电源模块在瞬态情况下的稳定运行能力以评估可靠性。 测试方法: a、额定电压输入,用双踪示波器测试输入电压波形合过压保护信号,输入电压从限功率点加5v跳变为300v,从示波器上读出过压保护前300v的周期数n,作为以下试验的依据。 b、额定输入电压,电源模块带满载运行,在输入上叠加300v的电压跳变,叠加的周期数为(n-1),叠加频率为1次/30s,共运行3小时。 判定标准: 一次电源模块在上述条件下能够稳定运行,不出现损坏或其他不正常现象,合格;否则不合格。 5、输入电压跌落及输出动态负载 测试说明: 一次模块在实际使用过程中,当输入电压跌落时,电源模块突加负载的极限,况是可能发生的,此时功率器件、磁性元件工作在最大瞬态电流状态,试验可以检验控制时序、限流保护等电路及软件设计的合理性。 测试方法: a、将输入电压调整为在欠压点+5v(持续时间为5s)、过压点-5v(持续时间为5s)之间跳变,输出调整在最大负载(最大额定容量,持续时间为500ms)、空载(持续时间为500ms)之间跳变,运行1小时; b、将输入电压调整为欠压点+5v(持续时间为5s)、过压点-5v(持续时间为5s)之间跳变,输出调整在最大负载(最大额定容量,持续时间为1s)、空载(持续时间为500ms)之间跳变,运行1小时。 判定标准: 在上述条件下,应能稳定运行,不出现损坏或其他不正常现象,合格;否则不合格。若出现损坏情况,记录故障问题,以提供分析损坏原因的依据。 6、高压空载,低压限流态运行试验 测试说明: 高压空载运行是测试模块的损耗情况,尤其是带软开关技术的模块,在空载情况下,软开关变为硬开关,模块的损耗相应增大。低压满载运行是测试模块在最大输入电流时,模块的损耗情况,通常状态下,模块在低压输入、满载输出时,效率最低,此时模块的发热最为严重。 测试方法: a、将模块的输入电压调整为输入过压保护点-3v,模块的输出为最低输出电压,空载运行,此时,模块的占空比为最小,连续运行2小时,模块不应损坏; b、将模块的输入电压调整为欠压点+3v,模块的输出为最高输出电压的拐点状态,此时模块的占空比为最大,连续运行2小时,模块不应出现损坏; c、将模块的输入电压调整为效率最低点时的输入电压,模块输出为最高输出电压的拐点状态,连续运行2小时,模块不应损坏; d、将模块的输入电压调整为过压点-3v,模块的输出为最高输出电压的拐点状态,此时模块的占空比为最大,连续运行2小时,模块不应出现损坏; e、将模块的输入电压调整为效率最低点时的输入电压,模块输出为最高输出电压的拐点状态,连续运行2小时,模块不应损坏。 注意:上述的测试,必须在规格书规定的最高工作温度下进行。 判定标准: 在上述条件下工作,模块没有出现损坏,合格;否则不合格。 7、电源特殊波形试验 测试说明: 检验电源模块在电网波形畸变可能形成的尖锋、毛刺和谐波情形下稳定运行能力。以下几种波形必须输入进行试验: (1)毛刺输入测试波形 电网的毛刺是电网中最常见的波形,毛刺的大小和幅值并没有限值,一般情况下,通过振荡波输入测试和振铃输入波形,基本上可以模拟电网中的毛刺输入,但还需做以下毛刺输入试验特点:电网尖锋有过冲并会跌落到0v,过冲和跌落脉宽很窄,一般不会大于100ms,过冲幅度一般不超过100v。跌落的相位并不仅只限于峰值点,在任何相位都有可能发生。这种波形在实际电网中很常见,开通任何开关都会造成该现象。 (2)电压削波波形输入 这种波形也是电网中很常见的,特点是:电网从不定的相位突然跌落到0v,然后直到下个半波开始才恢复。在iec1004-4-11中对于波形的跌落是从大于半个周期开始的,但实际电网中还是存在很多类似的跌落时间小于半个周期的波形。测试时要求,输入电压波形从90度开始跌落,跌落1/4个周期,长时间工作2小时。 (3)电网的半个波头陡升至倍电压,这个波形主要是用来模拟实际电网中会突然出现的谐振过电压,而且在这种情况下,模块的输入过电压保护线路不起作用,这种冲击对于有pfc的电路是存在危险的。测试内容:a、在输入电压为180v,输出满载的情况下,用ac source模拟该波形,要求180v工作3分钟,然后电压突然增加到380v,持续100ms,然后恢复到180v,让模块在这种情况下长时间工作1小时,不应损坏;b、设置ac source使得输入电压为0v,持续5分钟,然后电压突然增加到380v,持续100ms,然后恢复到0v,让模块在这种情况下长时间工作1小时,不应损坏。 测试方法: 利用ac source对模块供电,模块满载输出;用ac source模拟尖锋、毛刺和谐波电压输入,每种特殊的电压输入工作2小时,测量输入电流和输出电压。模块应能稳定运行,试验中注意x电容,辅助电源,软启动电阻等其他可能出现问题的地方。 判定方法: 在实际中可能出现尖锋、毛刺、谐波电压情形下能稳定运行,不损坏,合格;否则不合格。 8、有源pfc性能测试 测试说明: 带有源pfc的电源模块,对电网尖锋、毛刺合和谐波比较敏感,应进行全面仔细的测试。 测试方法: 利用ac source交流源作为输入电压源,输出分别带半载、满载,测试输入电流波形和电压波形,同时监测pfc后的电压;测试电网在尖锋、毛刺、谐波情况下输入电压、电流的相位及幅值关系;测量pfc开关管的电流和电压,验证在全电压范围和毛刺、尖锋、谐波等情况下开关管和其他功率器件的安全性及电流跟踪电压变化的能力。 判定标准: pfc测试可以作为可靠性参考,出现严重问题时,应及时解决。 9、操作电压测试 测试说明: 电网中存在多种操作过电压,其中最常见的时空载线路合闸过电压,这种过电压对模块的威胁也较大,本项测试在于验证模块抗操作过电压的能力。 测试方法: 过电压线路的模拟十分简单,原理如下: 其中电感的参数为10mh(供参考:ees的模块测试方法中,没有接地电容,输入电阻与电感串联,电阻值为0欧、电感为8mh和电阻为79欧、电感为10mh两种情况的测试),电容为16.7uf,测试波形如下(未画出)。 将被测试的设备连接在电容两端,在k合闸瞬间,在电容两端会产生过电压,用来模拟在上电过程中,过电压对设备的损害程度。作为极限测试项目,输入接l、n线,将被测试的设备接在电容两端,频繁开关机,重复频率为1次/5分钟,连续测试5小时。对于三相输入设备,输入接在l、l线上,被测试设备接在电容两端,重复频率为1次/5分钟,连续测试2小时。 判定标准: 在测试过程中出现短时功能下降或性能劣化,但能自动恢复的,合格;但出现性能永久性劣化或需要人工干预才能恢复的,不合格。以上就是开关电源的测试方法解析,希望能给大家帮助。

    时间:2020-05-22 关键词: 测试 短路 开关电源

  • 改善电源噪声的最实用的方法,值得你收藏

    改善电源噪声的最实用的方法,值得你收藏

    你知道改善电源噪声的方法吗?开关电源电路是一个极其复杂的结构,无论是从元器件的选择还是布局,都是有可能导致电源出现噪声现象。众所周知,常见产生噪声的主要原因,一般会采用 RC、RCD 等吸收电路,吸收电容常常选用高压陶瓷电容。下面我们一起看看什么方法才是改善电源噪声? 由于变压器一些机制从而产生噪声,这些机制包括:由于相对运动导致磁芯两部分间的吸引力使其移动,压迫将其分隔的介质;还有撞击导致两块磁芯的表面能接触,它们响应磁通激励而移动会使二者碰撞或刮擦;还有弯曲导致磁芯中间腿存在的裂隙,可使磁芯各部分沿其间吸引力的方向;这些机制产生噪声的大小根据各自所处的不同位置决定,当然变压器的问题也是有办法解决的,首先变压器要采用均匀浸渍,从而能有效填充线圈与线圈之间、线圈与骨架之间、骨架与磁芯之间的固有空隙,降低活动部件发生位移的可能性,必要时可以再磁性元件与线路板接触面填充白胶或喷涂三防漆,进一步减小机械振动的空间,有效降低噪声。 还有廉价的陶瓷电容中的非线性绝缘材料通常含有大比例的钛酸钡,在正常工作温度下产生压电效应。因而,这些元件会比线性绝缘成分的电容产生更多的噪声;对于电容问题,我们可以把吸收回路用的高压陶瓷电容换成电致伸缩效应很小的聚脂薄膜电容,这样可以基本消除电容产生的噪声。 最后就是线路印制板信号干扰导致噪声,为了解决这种问题,在设计的过程中,我们都会在场效应管 DS 两端加吸收电路,减小尖峰,可以有效的减小电源模块的输出噪声。事实证明,在模块输入输出端加电容,配合好的 PCB 布局可以更进一步的减小模块的输出纹波与噪声。PCB 板的布局,根据电流的流向上放电容,电源模块纹波噪声都不再是问题。以上就是改善电源噪声的方法,希望能给大家帮助。

    时间:2020-05-15 关键词: PCB 开关电源 电源设计

  • 开关电源输出纹波和噪声的减少的方法,你知道吗?

    开关电源输出纹波和噪声的减少的方法,你知道吗?

    什么是开关电源输出纹波和噪声?应该如何降低?纹波主要在五个方面:输入低频纹波、高频纹波、寄生参数引起的共模纹波噪声、功率器件开关过程中产生的超高频谐振噪声和闭环调节控制引起的纹波噪声。 1、低频纹波是与输出电路的滤波电容容量相关。电容的容量不可能无限制地增加,导致输出低频纹波的残留。交流纹经 DC/DC 变换器衰减后,在开关电源输出端表现为低频噪声,其大由 DC/DC 变换器的变比和控制系统的增益决定。电流型控制 DC/DC 变换器的纹波抑制比电压型稍有提高。但其输出端的低频交流纹波仍较大。若要实现开关电源的低纹波输出,则必须对低频电源纹波采取滤波措施。可采用前级预稳压和增大 DC/DC 变换器闭环增益来消除。 低频纹波抑制的几种常用的方法: a、加大输出低频滤波的电感,电容参数,使低频纹波降低到所需的指标。 b、采用前馈控制方法,降低低频纹波分量。 2、高频纹波噪声来源于高频功率 开关变换电路,在电路中,通过功率器件对输入直流电压进行高频开关变换而后整流滤波再实现稳压输出的,在其输出端含有与开关工作频率相同频率的高频纹波,其对外电路的影响大小主要和开关电源的变换频率、输出滤波器的结构和参数有关,设计中尽量提高功率变换器的工作频率,可以减少对高频开关纹波的滤波要求。 高频纹波抑制的目的是给高频纹波提供通路,常用的方法有以下几种: a、提高开关电源工作频率,以提高高频纹波频率,有利于抑制输出高频纹波 b、加大输出高频滤波器,可以抑制输出高频纹波。 c、采用多级滤波。 3、由于功率器件与散热器底板和变压器原、副边之间存在寄生电容,导线存在寄生电感,因此当矩形波电压作用于功率器件时,开关电源的输出端因此会产生共模纹波噪声。减小与控制功率器件、变压器与机壳地之间的寄生电容,并在输出侧加共模抑制电感及电容,可减小输出的共模纹波噪声。 减小输出共模纹波噪声的常用方法: a、输出采用专门设计的 EMI 滤波器。 b、降低开关毛刺幅度。 4、超高频谐振噪声主要来源于高频整流二极管反向恢复时二极管结电容、功率器件开关时功率器件结电容与线路寄生电感的谐振,频率一般为 1-10MHz,通过选用软恢复特性二极管、结电容小的开关管和减少布线长度等措施可以减少超高频谐振噪声。 开关电源都需对输出电压进行闭环控制,调节器参数设计的不适当也会引起纹波。当输出端波动时通过反馈网络进入调节器回路,可能导致调节器的自激振荡,引起附加纹波。此纹波电压一般没有固定的频率。在开关直流电源中,往往因调节器参数选择不适当会引起输出纹波的增大。 这部分纹波可通过以下方法进行抑制: a、在调节器输出增加对地的补偿网络,调节器的补偿可抑制调节器自激引起的纹波增大。 b、合理选择闭环调节器的开环放大倍数和闭环调节器的参数,开环放大倍数过大有时会引起调节器的振荡或自激,使输出纹彼含量增加,过小的开环放大倍数使输出电压稳定性变差及纹波含量增加 . 所以调节器的开环放大倍数及闭环调节器的参数要合理选取,调试中要根据负载状况进行调节。 c、在反馈通道中不增加纯滞后滤波环节 . 使延时滞后降到最小 . 以增加闭环调节的快速性和及时性,对抑制输出电压纹波是有益的。以上就是开关电源输出纹波和噪声的减少的方法,希望能给大家帮助。

    时间:2020-05-14 关键词: 开关电源 纹波 超高频谐振

  • PCB四步法的方法,你会吗?

    PCB四步法的方法,你会吗?

    什么是PCB四步法?你知道多少?对于开关电源PCB设计还是比较复杂,没有几年的经验,不可能设计的天衣无缝。针对这一问题,小编找到一高人整理出一份秘籍,大家是不是开始期待了呢,赶紧随着小编的步伐,记得自己做笔记! 首先是要有合理的走向 如输入/输出、交流/直流、强/弱信号、高频/低频、高压/低压等。它们的走向应该是呈线形的(或分离),不得相互交融。其目的是防止相互干扰。最好的走向是按直线,但一般不易实现,最不利的走向是环形,所幸的是可以设隔离带来改善。对于是直流,小信号,低电压PCB设计的要求可以低些。所以“合理”是相对的。 选择好接地点:接地点往往是最重要的 小小的接地点不知有多少工程技术人员对它做过多少论述,足见其重要性。一般情况下要求共点地,如:前向放大器的多条地线应汇合后再与干线地相连等等。现实中,因受各种限制很难完全办到,但应尽力遵循。这个问题在实际中是相当灵活的。每个人都有自己的一套解决方案。如能针对具体的电路板来解释就容易理解。 合理布置电源滤波/退耦电容 一般在原理图中仅画出若干电源滤波/退耦电容,但未指出它们各自应接于何处。其实这些电容是为开关器件(门电路)或其它需要滤波/退耦的部件而设置的,布置这些电容就应尽量靠近这些元部件,离得太远就没有作用了。有趣的是,当电源滤波/退耦电容布置的合理时,接地点的问题就显得不那么明显。 线条线径有要求埋孔通孔大小适当 有条件做宽的线决不做细;高压及高频线应园滑,不得有尖锐的倒角,拐弯也不得采用直角。地线应尽量宽,最好使用大面积敷铜,这对接地点问题有相当大的改善。焊盘或过线孔尺寸太小,或焊盘尺寸与钻孔尺寸配合不当。前者对人工钻孔不利,后者对数控钻孔不利。容易将焊盘钻成“c”形,重则钻掉焊盘。导线太细,而大面积的未布线区又没有设置敷铜,容易造成腐蚀不均匀。即当未布线区腐蚀完后,细导线很有可能腐蚀过头,或似断非断,或完全断。所以,设置敷铜的作用不仅仅是增大地线面积和抗干扰。 过孔数目焊点及线密度 有些问题在电路制作的初期是不容易被发现的,它们往往会在后期涌现出来,比如过线孔太多,沉铜工艺稍有不慎就会埋下隐患。所以,设计中应尽量减少过线孔。同向并行的线条密度太大,焊接时很容易连成一片。所以,线密度应视焊接工艺的水平来确定。焊点的距离太小,不利于人工焊接,只能以降低工效来解决焊接质量。否则将留下隐患。所以,焊点的最小距离的确定应综合考虑焊接人员的素质和工效。 总结:通过学习希望能帮助到,想学PCB设计的工程师们,在日后的时间里,你也会成为专家级别的工程师。以上就是PCB四步法,希望能给大家帮助。

    时间:2020-05-12 关键词: 开关电源 电源滤波 退耦电容

  • PCB设计的车载信息系统电源模块怎么布局?

    PCB设计的车载信息系统电源模块怎么布局?

    你知道PCB设计之车载信息系统电源模块如何完美布局吗?随着电子产品不间断的更新换代以及功能性的多样化,消费者对产品的高要求的标准下,车载信息系统模块怎么布局才是最完美的? 车载信息系统产品电源一般是是由外界提供12V电源输入,通过各种LD0和DC-DC电源芯片转化供给各功能模块使用。其中,LDO电源芯片虽然有其占用面积小,成本低,稳定性好,低噪声等多方优点,但由于受限于输入输出电压差不能太大影响,一般选择用于电源降压转换。而开关电源芯片因其效率高、输出电流大,静态电流低,输入电压范围宽等优点,被选择用在输入电源和输出电压较大的时候。不过由于开关电源是高频率和大变化输出工作模式,其纹波和噪声大,如果处理不当,会严重干扰到电子系统的正常工作,当然,其本身也会受到其它电子设备干扰的影晌。所以,在PCB设计上,DC-DC电源芯片要求要严谨和细致。 下面以DC-DC电源芯片(TPS43331)为例,介绍其PCB设计需要关注点。 第一、输入电容的地,芯片的地以及输出电容的地要尽量靠近; 第二、反馈电阻要靠近FB脚,并且远离SW信号,否则容易造成系统不稳定,并且取样需要从输出电容取(一般是最后…个电容上引出); 第三、 SW PIN出来的线要短,粗,即电感要靠近输出pin脚; 第四、输出线宽大小应注意电流量,转换层的via孔大小和数量应与电流匹配; 第五、电源的地回路尽量短,反馈电阻的地要尽可能的靠近电源芯片地,电源芯片的地尽量远离热点地; 第六、远离敏感信号源和器件。 总结:在车载信息系统电源模块的设计中注意以上几点,就可以轻松搞定了。以上就是PCB设计之车载信息系统电源模块如何完美布局的方法,希望能给大家帮助。

    时间:2020-05-12 关键词: 开关电源 DC-DC 车载信息系统

  • LED路灯电源外部防雷与内部防雷相结合 在雷雨天气能正常工作

    LED路灯电源外部防雷与内部防雷相结合 在雷雨天气能正常工作

    适用于路灯照明的LED开关电源产品,目前已经成为LED电源新产品研发的重要分支,也是很多工程师们需要天天打交道的“老方向”之一。那么,对于这种适用于路灯公共照明的LED开关电源,我们应该如何做到有效的防雷设计呢?用哪些方法可以让LED路灯电源在雷雨天气中安全工作呢? 外部防雷与内部防雷相结合 首先要为大家介绍的第一种方法,就是使用外部+内部的二合一防雷技术了。现在一般的LED开关电源外部都会采用导体材料进行制作,这样电压本身就相当于一个避雷针,在设计上必须安装引下线和地网,这些系统构成外部防雷系统。该系统可避免LED路灯因直击雷引起火灾及人身安全事故。内部防雷系统是指路灯内部通过接地、设置电压保护等方式对设备进行保护。该系统可防止感应雷和其他形式的过电压侵入,造成电源毁坏、这是外部防雷系统无法保证的。这两者之间是相辅相成的,互为补充。内部防雷系统在很多器件上例如外壳、进出保护区的电缆、金属管道等都要连接外部防雷系统或者设置过压保护器,并进行等电位连接。 防雷等电位连接 除了上面所说的LED开关电源二合一防雷技术之外,还有一种方法是目前工程师们在设计过程中常用到的,那就是防雷等电位连接法。通常情况下,为彻底消除雷电引起的毁坏性的电位差,电源线、信号线、金属管道等都要用过压保护器进行等电位连接,各个内层保护区的界面处也要进行局部等电位连接,各个局部等电位连接处要互相连接,最后与主等电位处相连。这种方法非常简单,也是目前LED路灯电源设计中最常见的。 设置雷电保护区 目前LED路灯电源除了电影设备外,还会在其内部设置一些通信设备,以此来控制路灯的开关及亮度,这些设备及电源都需要安置在雷电保护区内,保护区域直接受外壳屏蔽。此处的电磁场要弱得多。 设置防雷模块和过压保护模块 除了上面提到的三种办法之外,在LED开关电源的设计过程中,工程师们还可以设置防雷或过压模块,以此来防止雷击对电源本身所造成的伤害。防雷器的作用是在最短时间内将被保护系统连入等电位系统中,使设备各端口等电位。同时将电路中因雷击而产生的巨大脉冲能量经短路线释放到大地,降低设备各接口端的电位差,从而起到保护LED路灯电源内部设备的作用。

    时间:2020-05-11 关键词: LED 开关电源

  • 怎样看出变频器好坏?

    怎样看出变频器好坏?

    一个东西的好坏,是相对而言的,变频器作为一个用来驱动电机运转的电源,它的功能是调速,在接线正常,参数合理,负载没有故障的前提下,电机的转速如果能被按照要求来控制到,波动误差小于设备要求,这个变频器就是好的变频器。 变频器的好坏是看不出来的,判别一个变频器好坏最简单的方法就是通电检测;检测时最好在变频器输出端接入一台功率小于变频器额定功率的电机,这样可以知道它内部的软件好坏,特别是通电后在低频大扭矩是考验变频器算法的直接有效的方法,在更改好参数之后,将变频器调制5HZ以内,看负载电机扭矩是否减弱多少,看电机转速是否均匀变化,再就是观察变频器的输出波形是否完美,还有就是短时间频繁启停,看看电流电压峰值,这些方法都能检验变频器软件的性能。 通电之前用万用表1KΩ档位检查它的输入侧R、S、T;输出侧的U、V、W的电阻值来确定变频器是否可以通电检测。 先断开变频器的进线R、S、T及出线∪、V、W,然后测量整流电路及逆变电路是否正常。 1、测试整流电路部分。 将万用表调到电阻X1KΩ档,红表笔接到P端,黑表笔依次接到R、S、T端,应该有大约几十千欧的阻值,并且基本一样。将黑表笔接到P端,红表笔依次接到R、S、T,有一个接近于无穷大的阻值。将红表笔接到N端,重以上步骤,应该有相同的结果。如果阻值三相不平衡或者红表笔接P端时,电阻无穷大,可以判定电路已出异常,整流桥故障。见下图所示。 2、检测逆变电路。 将红表笔接到P端黑表笔依次接到U、V、W上,应该有几十 千欧的阻值,并且各相阻值基本一样,将黑表笔到P端,红表笔依次接到U、V、W,有一个接近于无穷大的阻值。将黑表笔接到N端,重复以上过程应测得到相同结果,否则可确定逆变模块故障。 只有待上述检测为正常时,才可进行上电测试。在上电前后根据故障显示内容,断定故障 及原因。看是否有正常显示结果。如下图所示。 整个通电检测时要特别小心,一旦出现冒烟现象,或者有异常声响、异味马上将其输入电源切断,看此时变频器显示面板上的故障代码是什么。 如果一切正常,此时可以按面板上的设置键,进行面板操作或端子控制,频率设定,加减速度设置等等。 不同生产厂家的变频器,则需要看对应的使用说明书进行。 只有这样才能够初步判断变频器是否可以用。 怎样看出变频器好坏? 满足速度要求的变频器就是正常的 一般通用型变频器,频率往往会精确到小数点一位,比如0.01HZ,对于50HZ的额定频率而言,0.01÷50=0.01%,但是这个仅仅是显示上的分辨率而已,实际上往往是达不到的,一般V/F开环控制的变频器,精度可以控制在±0. 5%以内,而很多负载,一般转速波动范围在1-5%内都可以满足工艺要求的,特别是风机水泵类的,精度要求是相对比较粗糙的,因为只要变频器控制电机带负载运行时候,转速波动小于5%,都是正常的变频器。 如果变频器控制电机转速波动超过了5%,也未必意味着变频器就是坏了的,可能只是一些参数没有调整好引起的,比如V/F比值设置不合理,加减速时间过短,都可能会引起加减速波动厉害,这时候重新调整一下参数就可以解决问题了。 对于矢量控制的变频器,因为有了编码器反馈,最高精度可以做到0.01%的,和变频器显示值得分辨率一致,这种当然是稳态下的精度,实际上加减速时候也会有很大波动的,而且一般的设备,也不会要求这么高,一般在0.05%左右已经能满足大多数设备的控制需求的。 矢量控制,依赖于电机模型的参数的获取精确程度,同时和变频器里边的一些增益和积分等参数的调整有很大关系,很多时候你认为变频器不行了,因为电机加速无力,转速波动很厉害,往往也是参数问题,调整一下就好了。 变频器坏了,基本上都是无法拖动电机运行的 真正因为硬件问题引起的转速波动的变频器是非常少的,因为变频器设计有很多保护功能,比如过流,过压,欠压,过热,过载,缺相等报警,当发生这些报警,而且无法复位的情况发生时候,就可以认为变频器是有硬件问题了,当然前提是外围线路正常,电机和负载没有任何问题。 如果通电没有显示,往往是开关电源烧了,造成主板没有供电工作,显示屏也没有显示。 还有一些情况是空载运行正常,而带负载就过流过载报警,这些一般是驱动回路有问题了,或者模块耐压不足造成的。 如果是加减速过流,往往是母线电容老化了,这种情况当然也要维修更换电容的。 至于发生短路跳闸,冒烟或者运行时候有异味,当然可以人为是里边有元件烧了,也不能继续使用了。 有些是主板坏了显示正常,但是无法接受控制逻辑而启动运转,在恢复出厂值,重新设置排除参数调乱的情况下,也可以认为是变频器坏了。

    时间:2020-05-09 关键词: 变频器 开关电源 控制电机

  • 变频器开关电源带载能力差故障检修方法图解

    变频器开关电源带载能力差故障检修方法图解

    开关电源维修,一直以来都是一个头疼的问题,因内部线路复杂,元件居多,一旦发生故障,需要逐个排查,等确定哪个元件损坏后,才能检修和测试。若故障排查不到位,有漏网之鱼,直接推翻之前的测试,更换的元件也会再度损坏。 开关电源维修检修思路 1、保险丝熔断: (1)一般状况下,保险丝熔断,阐明电源的内部线路有问题,因电源作业在高电压、大电流的状态下,电网电压的动摇、浪涌都会引起电源内电流瞬间增大,让保险丝熔断。 (2)遇到上面的状况,要点查看电源输入端的整流二极管,高压滤波电解电容,逆变功率开关管等零件,看这些元器件是否被击穿、有开路、损坏状况。 (3)若确定是保险丝熔断,先查看电路板上的各个元件,看这些元件的外表有没有被烧糊,有没有电解液溢出,假如没有,可用万用表丈量开关管有无击穿短路。 (4)特别注意一点,不能在查出某元件损坏时,直接替换后就开机,可能因其它高压元件仍有毛病,又将替换的元件损坏,必定要对电路的一切高压元件进行全面查看后,完全排除保险丝熔断的一切因素,然后检修,最终开机。 2、无直流电压输出或电压输出不稳定: (1)如果保险丝是完好的,在有负载情况下,各级直流电压无输出,可能是电源中出现开路、短路现象;过压、过流保护等故障;还有辅助电源故障;振荡电路没有工作,电源负载过重,高频整流滤波电路中整流二极管被击穿,滤波电容漏电。 (2)用万用表测量次级元件,排除高频整流二极管击穿、负载短路的情况后,如果输出数值是零,可以肯定判断电源的控制电路出了故障;若有部分电压输出,表明前级电路工作正常,故障在高频整流滤波电路中。 (3)高频滤波电路,主要由整流二极管、及低压滤波电容组成直流电压输出,其中整流二极管击穿,会让该电路没有电压输出,滤波电容漏电,也会造成输出电压不稳的故障,可用万用表静态,测量对应元件,确定损坏的元件、并检修。 3、电源负载能力差: (1)电源负载能力差,是一个常见的故障,一般出现在老式、或工作时间长的电源中,主要是各元器件老化,开关管的工作不稳定,没有及时散热。 (2)重点检查稳压二极管是否发热漏电,整流二极管损坏、高压滤波电容损坏等,当确定一个故障后,对应检修。 变频器开关电源带载能力差故障检修方法图解 变频器开关电源电路见下图。开关变压器的N1N2N3回路元件为了分析的方便,做了另行标注(相关元件值为实际值),其它元件标注序号和取值仅供参考。 此为单管自激振荡分流稳压式开关电源,故障为拔下MCU主板各路输出电压正常。接上主板,开关电源打嗝(出现间歇振荡)。前检修者遍查无果,接手后顺了下电路,感觉有点怪异:反馈光耦PC1的34脚好像是倒了?细看,可不真是倒了。 先是排除了过载原因。剩下的振荡与稳压回路,合起来算也就十个八个元件,全查一遍也不费劲儿。全查了一遍,无问题。 问题郁结于PC1的接法,出厂就这样的啊。倒过来一试应该没有问题吧,倒过来,打嗝现象更严重了。显然不是问题所在。 对比类似电路,其R2取值偏大,用100欧姆电阻代换,恢复正常。 还是郁闷于PC1的接法,想得久了不由哑然失笑:PC1的输出侧为光敏三极管,而三极管——测量过其放大倍数的人均有此经验:三极管反向也能通啊,只不过不如正向应用通得好罢了。如此利用反向电流控制T2,实现分流式稳压控制也是成立的啊。 如此得出结论:带载能力差,实质上是R2取值过大,使T1激励能力偏小所致。因而试图将PC1的3/4引脚“正”过来的做法,和人渴了反而吃盐一样,此“拨乱反正”的做法是加剧了T1激励能力偏弱的境地,因而故障表现反而是加重了(医生开错了方下错了药就是这种现象啊)。 但PC1的反用,许是正好应了“歪打正着”那句俗语,反正设计员也恰好过了关,对光耦的这种用法也真是没有谁了。

    时间:2020-05-04 关键词: 变频器 开关电源 整流二极管

  • 常见的电源中磁性元件设计中错误概念,你知道吗?

    常见的电源中磁性元件设计中错误概念,你知道吗?

    你知道电源中磁性元件设计中的8个常见错误概念吗?为了使电源设计者在设计过程中,避免犯同样的错误,为此,我们针对在学习和研发中遇到的一些概念性的问题进行了总结,希望能给大家提供一个借鉴。 1、填满磁芯窗口——优化的设计 很多电源设计人员认为在高频磁性元件设计中,填满磁芯窗口可以获得最优设计,其实不然。在多例高频变压器和电感的设计中,我们可以发现多增加一层或几层绕组,或采用更大线径的漆包线,不但不能获得优化的效果,反而会因为绕线中的邻近效应而增大绕组总损耗。因此在高频磁性元件设计中,即使绕线没把铁芯窗口绕满,只绕满了窗口面积的25%,也没有关系。不必非得想法设法填满整个窗口面积。 这种错误概念主要是受工频磁性元件设计的影响。在工频变压器设计中,强调铁芯和绕组的整体性,因而不希望铁芯与绕组中间有间隙,一般都设计成绕组填满整个窗口,从而保证其机械稳定性。但高频磁性元件设计并没有这个要求。 2、“铁损=铜损”——优化的变压器设计 很多电源设计者,甚至在很多磁性元件设计参考书中都把“铁损=铜损”列为高频变压器优化设计的标准之一,其实不然。在高频变压器的设计中,铁损和铜损可以相差较大,有时两者差别甚至可以达到一个数量级之大,但这并不代表该高频变压器设计不好。 这种错误概念也是受工频变压器设计的影响。工频变压器往往因为绕组匝数较多,所占面积较大,因而从热稳定、热均匀角度出发,得出“铁损=铜损”这一经验设计规则。但对于高频变压器,采用非常细的漆包线作为绕组,这一经验法则并不成立。在开关电源高频变压器设计中,确定优化设计有很多因素,而“铁损=铜损”其实是最少受关注的一个方面。 3、漏感=1%的磁化电感 很多电源设计者在设计好磁性元件后,把相关的技术要求提交给变压器制作厂家时,往往要对漏感大小要求进行说明。在很多技术单上,标注着“漏感=1%的磁化电感”或“漏感<2%的磁化电感”等类似的技术要求。其实这种写法或设计标准很不专业。电源设计者应当根据电路正常工作要求,对所能接受的漏感值作一个数值限制。在制作变压器的过程中,应在不使变压器的其它参数(如匝间电容等)变差的情况下尽可能地减小漏感值,而非给出漏感与磁化电感的比例关系作为技术要求。因为漏感与磁化电感的关系随变压器有无气隙变化很大。无气隙时,漏感可能小于磁化电感的0.1%,而在有气隙时,即使变压器绕组耦合得很紧密,漏感与磁化电感的比例关系却可能达到10% 因此,不要把漏感与磁化电感的比例关系作为变压器设计指标提供给磁性元件生产商。否则,这将表明你不理解漏感知识或并不真正关心实际的漏感值。正确的做法是规定清楚可以接受的漏感绝对数值,当然可以加上或减去一定的比例,这个比例的典型值为20%。 4、漏感与磁芯磁导率有关系 有些电源设计者认为,给绕组加上磁芯,会使绕组耦合更紧密,可降低绕组间的漏感;也有些电源设计者认为,绕组加上磁芯后,磁芯会与绕组间的场相互耦合,可增加漏感量。 而事实是,在开关电源设计中,两个同轴绕组变压器的漏感与有无磁芯存在并无关系。这一结果可能令人无法理解,这是因为,一种相对磁导率为几千的材料靠近线圈后,对漏感的影响很小。通过几百组变压器的实测结果表明,有无磁芯存在,漏感变化值基本上不会超过10%,很多变化只有2%左右。 5、变压器绕组电流密度的优化值为2A/mm²~3.1A/mm² 很多电源设计者在设计高频磁性元件时,往往把绕组中的电流密度大小视为优化设计的标准。其实优化设计与绕组电流密度大小并没有关系。真正有关系的是绕组中有多少损耗,以及散热措施是否足够保证温升在允许的范围之内。 我们可以设想一下开关电源中散热措施的两种极限情况。当散热分别采用液浸和真空时,绕线中相应的电流密度会相差较大。 在开关电源的实际研制中,我们并不关心电流密度是多大,而关心的只是线包有多热?温升是否可以接受? 这种错误概念,是设计人员为了避免繁琐的反复试算,而人为所加的限制,来简化变量数,从而简化计算过程,但这一简化并未说明应用条件。 6、原边绕组损耗=副边绕组损耗”——优化的变压器设计 很多电源设计者认为优化的变压器设计对应着变压器的原边绕组损耗与副边绕组损耗相等。甚至在很多磁性元件的设计书中也把此作为一个优化设计的标准。其实这并非什么优化设计的标准。在某些情况下变压器的铁损和铜损可能相近。但如果原边绕组损耗与副边绕组损耗相差较大也没有多大关系。必须再次强调的是,对于高频磁性元件设计我们所关心的是在所使用的散热方式下,绕组有多热?原边绕组损耗=副边绕组损耗只是工频变压器设计的一种经验规则。 7、绕组直径小于穿透深度——高频损耗就会很小 绕组直径小于穿透深度并不能代表就没有很大的高频损耗。如果变压器绕组中有很多层,即使绕线采用线径比穿透深度细得多的漆包线,也可能会因为有很强的邻近效应而产生很大的高频损耗。因此在考虑绕组损耗时,不能仅仅从漆包线的粗细来判断损耗大小,要综合考虑整个绕组结构的安排,包括绕组绕制方式、绕组层数、绕线粗细等。 8、正激式电路中变压器的开路谐振频率必须比开关频率高得多 很多电源设计人员在设计和检测变压器时认为变压器的开路谐振频率必须比变换器的开关频率高得多。其实不然,变压器的开路谐振频率与开关频率的大小并无关系。我们可以设想一下极限情况:对于理想磁芯,其电感量无穷大,但也会有一个相对很小的匝间电容,其谐振频率近似为零,比开关频率小得多。 真正与电路有关系的是变压器的短路谐振频率。一般情况下,变压器的短路谐振频率都应当在开关频率的两个数量级以上。以上就是电源中磁性元件设计中的8个常见错误概念,希望能给大家帮助。

    时间:2020-05-03 关键词: 开关电源 设计 磁性元件

  • 开关电源变压器咚咚作响的原因可能是什么?

    开关电源变压器咚咚作响的原因可能是什么?

    你知道开关电源变压器发生异响的造成因素吗?工程师们工作中,会遇到很多问题也会解决很多问题,现在揭晓为什么开关电源变压器发生异响? (1)变压器的工艺问题 ①役漆烘F不到位,导致燃芯不牢固引起机械振动而宣布晌市: ②气隙的长度不适合,导致变爪器的T.作状态不安稳而宣布响声: ③线包没有绕紧也或许导致响声; ①磁芯组合有气隙存在,高频时引起空气振动而宣布响声(变压器假如通过真空全投,一-般不会发声) (2)变压器的环路问题 变压器的环路问题即指变压器的环路发作振动然后引起变爪器发作啉叫。 ①电路板布线不妥,然后形成1扰引发振动,导致响声: ②反馈回路参数设置不妥,导致环路不安稳以致发作振动而宣布响声: ③环路中元器材的质量问题,如输入滤波电容容量缺乏,输川整流快恢复二极管质量欠好,功率MOS管质量欠好,RCD 反冲吸收回路的高压电容或二极管质量欠好等等,这些问题都有或许导致震动而引起响声。 (3)变爪器的铁心问题 变压器铁心发作饱和时,线圈中电流增大,变乐器发热并发作自激震动,线圈的振动引起周围空气的振动然后宣布响声。 (4)开关电源的负载问题 ①开关电源在空载或轻载的情况下,在某些T.作点处会发作振动现象,表现为变乐器的啉叫和输出的不安稳。 发作这种现象是因为空载/轻载时,开关瞬时注册时刻过大然后形成输山能量太大,进而电压过冲也很大,需求较长的时刻去恢复到正常电瓜,因此开关需停此作业-段时刻,这样开关就T.作于间敬性工。作形式,使变瓜器发作较低频率(有规则的问歇性全截u!;周期或占空比剧烈改变的频率)的振动。 ②变压器T.作在严峻的超载状态,时刻都有焚毁的可叮能逐个这就是许多电源焚毁前“惨叫”的由来。以上就是开关电源变压器发生异响的可能因素,希望能给大家帮助。

    时间:2020-05-02 关键词: 开关电源 变压器 环路问题

  • 你了解开关电源变压器引脚接线吗?

    你了解开关电源变压器引脚接线吗?

    什么是开关电源变压器?它的工作原理是什么?开关电源变压器不是常规的变压器!它既是开关型振荡器的蓄能槽路电感!又是开关管的负载及反馈组件!变压输出仅是其中一功能!常见的开关变压器振荡线圈有两脚,三脚,四脚,五脚,六脚,次级根据输出电压档级而定!电压档次越多!次级线脚就越多! 开关电源变压器同开关管共同构成了自激式或他激式的间歇震荡器,使直流电压调制成一个高频脉冲电压,最终起到能量传递和转换的作用。当把开关管导通时,变压器把电能转换成磁场能用以储存起来,当把开关管截止时就将其释放出来。在正激式电路中,当使开关管导通时,输入电压就会直接向负载供给并把能量储存于储能电感中。当开关管截止时,然后由储能电感进行续流向负载传递。更简单的说开关电源变压器的作用就是把输入的直流电压转换成我们使用中需要的各种低压。 开关变压器引脚接线 应该是1边4个头,另外一边2个头,两个头的那边应该是次级,4个头那边应该是两个线圈,采用万用表简单测试一下,电阻高的那个绕组1端接电源+,另外一端接功率管的集电极,余下的那个绕组就应该是反馈绕组了。具体接线,你搜索一下手机充电器电路,就明白了,不麻烦的。反馈绕组接法不正确电路不会起振,调换一下该绕组的两个线头就应该可以了。 辅助电源的开关变压器 上图是提供辅助电源(待机电源)的开关变压器。一般来说,4脚一边是高压侧(输入),3脚一边为低压侧(输出)。由于各种电源的设计都不一样,引脚具体定义必须实看线路板背面的走线才能确定。 这个变压器既很少出故障,也没有什么可测量的:4脚一边与3脚一边应该完全不通;4脚一边应该两两相通,如果线圈内部有短路(通常会连带烧毁周边器件)也测不出来。以上就是开关电源变压器的解析,希望能给大家帮助。

    时间:2020-05-02 关键词: 开关电源 变压器 引脚接线

  • 中国移动发布了2020-2021年组合式开关电源产品集中采购中标结果

    中国移动发布了2020-2021年组合式开关电源产品集中采购中标结果

    中国移动今日发布2020年至2021年组合式开关电源产品集中采购中标候选人公告,杭州中恒电气、中兴通讯等四厂商中标。 根据此前发布的招标公告,本次集采内容为48V组合式开关电源产品,采购规模约37544套,采购满足期为1年。 中标候选人的投标报价及中标情况如下: 杭州中恒电气股份有限公司,投标价格:362380177.47(不含税),中标份额为40%; 中兴通讯股份有限公司,投标价格:330745367.38(不含税),中标份额为30%; 维谛技术有限公司,投标价格:397789467.16 (不含税),中标份额为20%; 东莞铭普光磁股份有限公司,投标价格:380461516.89(不含税),中标份额为10%。 

    时间:2020-05-01 关键词: 中国移动 开关电源

  • 医疗设备开关电源的一些技巧,你知道吗?

    医疗设备开关电源的一些技巧,你知道吗?

    你知道医疗设备开关电源的一些维修技巧吗?随着医学电子技术的高度发展,医疗设备的种类也越来越多,医疗设备与现代医疗诊断、治疗关系日益密切,任何医疗设备都离不开安全稳定的电源,且大部分为开关电源。在日常诊断与治疗过程中往往会遇到设备因电源故障而无法使用,此时就需要医疗服务机构的临床医学工程师结合自身经验和专业知识为临床部门提供迅速、高效的服务。由于医疗设备的特殊性,设备电源互换性差,有的甚至缺少技术图纸,这给维修工作带来极大的不便。 医疗设备开关电源一般可以分为AC/DC 和DC/DC 两大类,一次电源AC/DC 变换器输入为50/60Hz、220V 交流电,必须经整流、滤波,体积较大的滤波电解电容是不可少的,且交流输入必须加上EMC 滤波及使用安全标准的器件。二次电源DC/DC 变换器用以进行功率转换,它是开关电源的核心部分,此外还有启动、过流与过压保护、噪声滤波等电路。输出采样电路检测输出电压变化,并与基准电压比较,误差电压经过放大及脉宽调制(PWM)电路,再经过驱动电路控制功率器件的占空比,从而达到调整输出电压大小的目的。基本结构见图1。 开关电源损坏从损坏元件上大致可分为:① 感性、容性和阻性器件损坏;② 功率半导体器件损坏;③ PWM IC损坏;④ 光电耦合器损坏;⑤ 其他,如晶振、风扇等电源器件损坏。 按电源工作流程上可分为:① 交流输入故障;② DC/DC 变换器故障;③ 驱动电路故障;④ PWM 电路故障;⑤取样电路故障。开关电源故障种类繁多,在此不能一一详列,下面结合实际维修实例对以上2 种分类中典型维修技术进行探讨。 1 输入电路故障 医疗设备开关电源的输入电路一般包括开关、熔断丝、交流抗干扰电路和软启动电路等。开关、熔断丝和交流抗干扰电路故障很容易发现,其中开关损坏可以直接更换,但熔断丝损坏最好检查一下负载是否严重短路,并换上同样安培数的熔断丝通电时监测总输入电流。交流抗干扰电路故障一般因电容器使用时间长而失效较常见。软启动电路是开关电源保护电路之一,开关电源的输入电路大都采用整流加电容器滤波电路设计,在输入电路合闸瞬间。由于电容器上的起始电压为0,会形成很大的瞬间冲击电流。 为此,医疗设备开关电源一般都在输入电路中设置防冲击电流的软启动电路。 常见的软启动电路有热敏电阻防冲击电流电路、SCR-R 电路、继电器与电阻构成的电路、采用定时触发器与限流电阻的电路,以及过零触发的光耦可控硅与双向可控硅构成的电路等。下面以热敏电阻防冲击电流、电路为例简单说明其工作原理:热敏电阻分为正温度系数热敏电阻(PTC)和负温度系数热敏电阻(NTC)。PTC 常态阻值较低。当有过大的异常电流流过时,因PTC 自身发热使其电阻值迅速增加,变大电阻,起限流的作用;NTC 热敏电阻在电源接入瞬间,阻值较大,达到限制冲击电流的作用。 当电路处于正常工作状态时,电阻发热而使其阻值变小。 NTC 热敏电阻防冲击电流电路由于热敏电阻的热惯性,重新恢复原始阻值需要时间,当电源断电后又快速接通时起不到限流作用。输液泵及部分小功率医疗设备电源中很多便采用PTC热敏电阻限流或NTC 热敏电阻防冲击电流电路设计。其中,PTC 热敏电阻在遭遇雷电或强电流的时候容易损坏,始终呈低阻态而通电便烧熔断丝。而NTC 热敏电阻往往出现开路故障,导致一次电源DC 无AC 接入。 2 光电耦合器故障 光耦合器(OpTIcal Coupler)亦称光电耦合器,简称光耦。是以光为媒介来传输电信号的器件,通常把红外线发光二极管与光敏半导体封装在同一管壳内,当输入端加电信号时,发光二极管发出光线,光敏半导体接受光线就产生电信号,从输出端流出,从而实现“电- 光- 电”转换。它广泛应用于信号隔离、开关电路、脉冲放大、固态继电器(SSR)等电路中。另外,利用线性光耦合器可构成光耦反馈电路,通过调节控制端电流改变占空比,达到精密稳压的目的。 光耦能实现电气隔离,还有抗干扰能力强、使用寿命长、传输效率高等优点[3]。但遇到光耦合器性能下降导致电路故障在医疗设备开关电源中还是比较多的。 例1 :Philips BV25 X 线机的电源不少临床医学工程人员都接触过。其中,因光电耦合器性能不良导致无法开机几乎成为该电源的通病。BV25 主电源采用了无触点软启动电路设计。当220V 接入时,一路变压器提供一组28V 和多组7V 电源,28V 经整流稳压后得到+15V 电压向电源控制板提供电源,7V 供给各组光耦合器。电源板上H1 若为绿灯,则大致可判断28V 和7V 输出正常。可控硅V1-V3及光耦(4N25)B1-B6 性能不良均会导致开机失败,判断V3 是否损坏需拆下测量,否则容易误判。 例2 : OHMEDA 2000 婴儿温箱, 温度到设定值后继续上升,报“E013”。查维修手册提示为“Header notswitching off”。排除thermal switch 故障后,最大可能是SSR内光耦合器的性能不良所致,更换该器件后温箱工作正常。 医疗设备开关电源和其他开关电源一样,功率器件是必不可少的。其中用的较多的有功率二极管、可控硅(SCR)和功率场效应管等。在维修过程中,功率器件是重点检查对象,此类器件的损坏,会导致开机保护或烧熔断丝。在维修中发现该类器件损坏时,除更换同参数器件外,还必须检查外围高压电容及限流或电流检测电阻。 例1 :Alcon Universal II 型超声乳化仪开机面板无显示,“Standby”灯闪烁,开关电源有“吱吱”声,可大致判断电源有保护动作。该电源用到了 UC3842、UC3843 和UC3854等PWM IC,各IC 电流检测端均提示过流,且各供电端电压跳变。排除PWM IC 及外围电路损坏后,重点检查功率器件,其中一路电源的开关管(IRF460)击穿,更换该场效应管后又检查了其外围电路,发现与其连接的C26 高压电容(1KV)已击穿,更换C26 后通电,主+24V 输出正常,将机器所有连线恢复,各组电压正常且整机工作稳定。 例2 :SHIMADZU OPESCOPE 50N 型X 线机监视器无显示,指示灯闪烁,该X 线机总供电为220V,而监视器供电为110V,送修前操作人员单独对监视器加220V 后指示灯不亮。该监视器电源采用STR 54041 开关电源厚膜模块设计,其DS 极已击穿,且D1722 被击穿,更换后接假负载各路电源输出正常,恢复电路连线后指示灯亮,机内有“嗒嗒”声,但仍无显示,后检查发现行管Q9 和保险电阻R71损坏,更换后整机工作正常。 3 PWM IC及外围电路故障 电源控制芯片与开关管组合在医疗设备开关电源中应用很普遍,一个电源甚至还会多处用到。PWM 开关稳压或稳流电源的基本工作原理就是在输入电压、内部参数及外接负载变化的情况下,控制电路通过被控制信号与基准信号的差值进行闭环反馈,调节主电路开关器件的导通脉冲宽度,使得开关电源与输出电压或电流等被控制信号稳定。 PWM 的开关频率一般固定,控制取样信号可以构成单环、双环或多环反馈系统,实现稳压、稳流及恒定功率的目的。 同时,可以实现一些附带的过流保护、抗偏磁及均流等功能。 在维修开关电源时,当整流滤波电路、开关管正常情况下,通常要检测PWM IC 及外周电路是否正常,这样会达到事半功倍的效果。PWM IC 基本上都存在IC 供电、基准电压、驱动脉冲、电流检测及取样调整电路等。PWM IC供电一般是主电源经一电阻降压所得,通常称为启动电阻,若该电阻开路或变大,提供给IC 供电低将导致电源不启动。 当供电正常时,重点检查基准电压及驱动脉冲是否正常,然后监测电流传感端电压是否正常,接着要仔细检测传感支路。判断PWM IC 自身故障的方法一般是通过测量引脚间阻抗或给供电端输入标称电压,观察基准电压是否准确。 例1 :北美GS 麻醉机+5V、+12V 电源板无输出。该机器开关电源初级PWM IC 芯片为UC3845,保险和主要功率器件完好,计划先检查PWM IC 芯片供电、基准电压和电流检测端引脚电压,发现+300V 正常,7 脚无电压输入。 原因是100K 启动电阻开路。更换后,PWM IC 供电正常,6 脚输出脉冲波形稳定,+5V、+12V 输出电压正确。 例2 :Stryker 腔镜监视器, 电源由开关管BUK456、UC3824 及外围电路组成。UC3842 因第6 脚与5 脚短路而损坏,BUK456 的DS 极击穿,电流检测电阻开路,且脉冲输出端串联电阻开路,更换上述器件后,工作正常。若只是更换外围电路损坏器件,而未发现UC3842 自身损坏,换上的器件在开机瞬间会重新损坏。因此,在维修中要排除PWM IC 自身故障。 4 其他电源部件故障 在维修当中,往往会遇到一些并非电子器件完全损坏所致的故障。如电容容量变小、线路板部分隐蔽性接触不良、电源灰尘过多或散热不良导致电源不稳定及部分风扇控制电路故障致电源停振等。由于这类问题通过传统检测方法有些困难,因此,根据经验和分析采取替换方式排除。 在维修医疗设备电源时,首先要对灰尘进行处理,可用吸尘器和大功率冷风机清除,在处理过程中要减少人体静电和防止线路板电容器对人体放电。对有大量风扇的电源一定要检查风扇的转速,特别是那些带转速控制或速度检测的风扇,不确定时可采取替换法解决。 例1 :日立7170A 生化仪+5V 开关电源,开机正常工作几分钟后,电源指示灯由绿变灭,+5V 输出停止,散热风扇无明显异常,功率部件和PWM IC 正常,但在做完清洁后未接风扇电源无输出。换上普通的2 线CPU 风扇依然无输出,将该风扇测速线接上并连入线路板后,电源输入正常且可连续工作。因此,可得出原风扇因时间较长转速降低致电源停振的结论。以前,+24V 也出现过此类问题,当时因设备使用较急更换了新的电源模块后恢复正常。 例2 :TOSHIBA 240A 型B 超连续工作时间较长后电源外壳发烫,且经常出现过温保护。该类故障一般是因为内部灰尘过多或内部风扇转速变低致整个电源工作环境变差所致。将电源拆下彻底除尘,更换电源底部和背面风扇后电源温度明显下降,机器工作正常,且1 年未出现故障。 5 小结 医疗设备种类繁多,大功率、大电流的开关电源在医疗设备中应用相当广泛。开关电源故障占医疗设备故障的60% 以上。因此,掌握开关电源的维修是每个临床医学工程人员的基本技能,也是难点。本文只结合实际维修经验对医疗设备开关电源的维修技术进行了探讨,希望更多同行专家提出宝贵意见并对医疗设备开关电源作进一步研究。以上就是医疗设备开关电源的一些维修技巧,希望能给大家帮助。

    时间:2020-04-30 关键词: 开关电源 pwm 医疗设备

  • 高频变压器的常用知识,你知道吗?

    高频变压器的常用知识,你知道吗?

    你知道什么是高频变压器吗?什么是开关电源?开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。那么什么是高频开关电源?高频开关电源工作原理是什么?本文将为您详细解读高频开关电源,感兴趣的朋友们快来学习一下吧! 什么是高频开关电源 高频开关电源是什么意思?高频开关电源(也称为开关型整流器SMR)通过MOSFET或IGBT的高频工作,开关频率一般控制在50-100kHz范围内,实现高效率和小型化。 从交流电网输入、直流输出的全过程,包括: 1、输入滤波器:其作用是将电网存在的杂波过滤,同时也阻碍本机产生的杂波反馈到公共电网。 2、整流与滤波:将电网交流电源直接整流为较平滑的直流电,以供下一级变换。 3、逆变:将整流后的直流电变为高频交流电,这是高频开关电源的核心部分,频率越高,体积、重量与输出功率之比越小。 4、输出整流与滤波:根据负载需要,提供稳定可靠的直流电源。 按TRC控制原理,有三种方式: 一、脉冲宽度调制(Pulse Width Modulation,缩写为PWM) 开关周期恒定,通过改变脉冲宽度来改变占空比的方式。 二、脉冲频率调制(Pulse Frequency Modulation,缩写为PFM) 导通脉冲宽度恒定,通过改变开关工作频率来改变占空比的方式。 三、混合调制 导通脉冲宽度和开关工作频率均不固定,彼此都能改变的方式,它是以上二种方式的混合。高频开关电源不需要大幅度提高开关速度就可以在理论上把开关损耗降到零,而且噪声也小。 高频开关电源工作原理 高频开关电源工作原理:开关电源的工作过程相当容易理解,在线性电源中,让功率晶体管工作在线性模式,与线性电源不同的是,PWM开关电源是让功率晶体管工作在导通和关断的状态,在这两种状态中,加在功率晶体管上的伏-安乘积是很小的(在导通时,电压低,电流大;关断时,电压高,电流小)/功率器件上的伏安乘积就是功率半导体器件上所产生的损耗。 与线性电源相比,PWM开关电源更为有效的工作过程是通过“斩波”,即把输入的直流电压斩成幅值等于输入电压幅值的脉冲电压来实现的。以上就是高频变压器的知识解析,希望能给大家帮助。

    时间:2020-04-30 关键词: MOSFET 开关电源 脉冲宽度调制

  • 军用开关电源可靠性技术,你了解吗?

    军用开关电源可靠性技术,你了解吗?

    你知道军用开关电源可靠性技术吗?本文对影响军用 PWM 型开关稳压电源可靠性的因素作出较为详细的分析比较,并从工程实际出发提出一些提高开关电源可靠性的建议。 电子产品,特别是军用稳压电源的设计是一个系统工程,不但要考虑电源本身参数设计,还要考虑电气设计、电磁兼容设计、热设计、安全性设计、三防设计等方面。因为任何方面那怕是最微小的疏忽,都可能导致整个电源的崩溃,所以我们应充分认识到电源产品可靠性设计的重要性。 2、开关电源电气可靠性设计 2.1 供电方式的选择 集中式供电系统各输出之间的偏差以及由于传输距离的不同而造成的压差降低了供电质量,而且应用单台电源供电,当电源发生故障时可能导致系统瘫痪。分布式供电系统因供电单元靠近负载,改善了动态响应特性,供电质量好,传输损耗小,效率高,节约能源,可靠性高,容易组成 N + 1 冗余供电系统,扩展功率也相对比较容易。所以采用分布式供电系统可以满足高可靠性设备的要求。 2.2 电路拓扑的选择 开关电源一般采用单端正激式、单端反激式、双管正激式、双单端正激式、双正激式、推挽式、半桥、全桥等八种拓扑。单端正激式、单端反激式、双单端正激式、推挽式的开关管的承压在两倍输入电压以上,如果按 60 %降额使用,则使开关管不易选型。在推挽和全桥拓扑中可能出现单向偏磁饱和,使开关管损坏,而半桥电路因为具有自动抗不平衡能力,所以就不会出现这个问题。双管正激式和半桥电路开关管的承压仅为电源的最大输入电压,即使按 60 %降额使用,选用开关管也比较容易。在高可靠性工程上一般选用这两类电路拓扑。 2.3 控制策略的选择 在中小功率的电源中,电流型 PWM 控制是大量采用的方法,它较电压控制型有如下优点:逐周期电流限制,比电压型控制更快,不会因过流而使开关管损坏,大大减小过载与短路的保护;优良的电网电压调整率;迅捷的瞬态响应;环路稳定,易补偿;纹波比电压控制型小得多。生产实践表明电流控制型的 50W 开关电源的输出纹波在 25mV 左右,远优于电压控制型。 硬开关技术因开关损耗的限制,开关频率一般在 350kHz 以下,软开关技术是应用谐振原理,使开关器件在零电压或零电流状态下通断,实现开关损耗为零,从而可将开关频率提高到兆赫级水平,这种应用软开关技术的变换器综合了 PWM 变换器和谐振变换器两者的优点,接近理想的特性,如低开关损耗、恒频控制、合适的储能元件尺寸、较宽的控制范围及负载范围,但是此项技术主要应用于大功率电源,中小功率电源中仍以 PWM 技术为主。 2.4 元器件的选用 因为元器件直接决定了电源的可靠性,所以元器件的选用非常重要。元器件的失效主要集中在以下四个方面: (1) 制造质量问题 质量问题造成的失效与工作应力无关。质量不合格的可以通过严格的检验加以剔除,在工程应用时应选用定点生产厂家的成熟产品,不允许使用没有经过认证的产品。 (2) 元器件可靠性问题 元器件可靠性问题即基本失效率的问题,这是一种随机性质的失效,与质量问题的区别是元器件的失效率取决于工作应力水平。在一定的应力水平下,元器件的失效率会大大下降。为剔除不符合使用要求的元器件,包括电参数不合格、密封性能不合格、外观不合格、稳定性差、早期失效等,应进行筛选试验,这是一种非破坏性试验。通过筛选可使元器件失效率降低 1 ~ 2 个数量级,当然筛选试验代价 ( 时间与费用 ) 很大,但综合维修、后勤保障、整架联试等还是合算的,研制周期也不会延长。电源设备主要元器件的筛选试验一般要求: ① 电阻在室温下按技术条件进行 100 %测试,剔除不合格品。 ② 普通电容器在室温下按技术条件进行 100 %测试,剔除不合格品。 ③ 接插件按技术条件抽样检测各种参数。 ④ 半导体器件按以下程序进行筛选: 目检 → 初测 → 高温贮存 → 高低温冲击 → 电功率老化 → 高温测试 → 低温测试 → 常温测试 筛选结束后应计算剔除率 Q Q=(n / N)×100% 式中: N—— 受试样品总数; n—— 被剔除的样品数; 如果 Q 超过标准规定的上限值,则本批元器件全部不准上机,并按有关规定处理。 在符合标准规定时,则将筛选合格的元器件打漆点标注,然后入专用库房供装机使用。 (3) 设计问题 首先是恰当地选用合适的元器件: ① 尽量选用硅半导体器件,少用或不用锗半导体器件。 ② 多采用集成电路,减少分立器件的数目。 ③ 开关管选用 MOSFET 能简化驱动电路,减少损耗。 ④ 输出整流管尽量采用具有软恢复特性的二极管。 ⑤ 应选择金属封装、陶瓷封装、玻璃封装的器件。禁止选用塑料封装的器件。 ⑥ 集成电路必须是一类品或者是符合 MIL - M - 38510 、 MIL - S - 19500 标准 B - 1 以上质量等级的军品。 ⑦ 设计时尽量少用继电器,确有必要时应选用接触良好的密封继电器。 ⑧ 原则上不选用电位器,必须保留的应进行固封处理。 ⑨ 吸收电容器与开关管和输出整流管的距离应当很近,因流过高频电流,故易升温,所以要求这些电容器具有高频低损耗和耐高温的特性。 在潮湿和盐雾环境下,铝电解电容会发生外壳腐蚀、容量漂移、漏电流增大等情况,所以在舰船和潮湿环境,最好不要用铝电解电容。由于受空间粒子轰击时,电解质会分解,所以铝电解电容也不适用于航天电子设备的电源中。 钽电解电容温度和频率特性较好,耐高低温,储存时间长,性能稳定可靠,但钽电解电容较重、容积比低、不耐反压、高压品种 (>125V) 较少、价格昂贵。 关于降额设计: 电子元器件的基本失效率取决于工作应力 ( 包括电、温度、振动、冲击、频率、速度、碰撞等 ) 。除个别低应力失效的元器件外,其它均表现为工作应力越高,失效率越高的特性。为了使元器件的失效率降低,所以在电路设计时要进行降额设计。降额程度,除可靠性外还需考虑体积、重量、成本等因素。不同的元器件降额标准亦不同,实践表明,大部分电子元器件的基本失效率取决于电应力和温度,因而降额也主要是控制这两种应力,以下为开关电源常用元器件的降额系数: ① 电阻的功率降额系数在 0.1 ~ 0.5 之间。 ② 二极管的功率降额系数在 0.4 以下,反向耐压在 0.5 以下。 ③ 发光二极管电压降额系数在 0.6 以下,功率降额系数在 0.6 以下。 ④ 功率开关管电压降额系数在 0.6 以下,电流降额系数在 0.5 以下。 ⑤ 普通铝电解电容和无极性电容的电压降额系数在 0.3 ~ 0.7 之间。 ⑥ 钽电容的电压降额系数在 0.3 以下。 ⑦ 电感和变压器的电流降额系数在 0.6 以下。 (4) 损耗问题 损耗引起的元器件失效取决于工作时间的长短,与工作应力无关。铝电解电容长期在高频下工作会使电解液逐渐损失,同时容量亦同步下降,当电解液损失 40 %时,容量下降 20 %;电解液损失 0 %时,容量下降 40 %,此时电容器芯子已基本干涸,不能再予使用。为防止发生故障,一般情况下应在图纸上标明铝电解电容器更换的时间,到期强迫更换。 2.5 保护电路的设置 为使电源能在各种恶劣环境下可靠地工作,应设置多种保护电路,如防浪涌冲击、过压、欠压、过载、短路、过热等保护电路。 3、电磁兼容性 (EMC) 设计 开关电源因采用脉冲宽度调制 (PWM) 技术,其脉冲波形呈矩形,上升沿与下降沿均包含大量的谐波成分,另外输出整流管的反向恢复也会产生电磁干扰 (EMI) ,这是影响可靠性的不利因素,因而使电磁兼容性成为系统的重要问题。 如图 1 所示,产生电磁干扰有三个必要条件:干扰源、传输介质、敏感的接收单元, EMC 设计就是破坏这三个条件中的一个。 图 1 形成电磁干扰的三个条件: 对于开关电源而言,主要是抑制干扰源,干扰源集中在开关电路与输出整流电路。采用的技术包括滤波技术、布局与布线技术、屏蔽技术、接地技术、密封技术等。 EMI 按传播途径分为传导干扰和辐射干扰。传导噪声的频率范围很宽,从 10kHz ~ 30MHz ,我们虽然知道产生干扰的原因,但从效率上来讲,通过控制脉冲波形的上升与下降时间来解决未必是一个好办法,解决办法之一是加装电源 EMI 滤波器、输出滤波器及吸收电路,参见图 2 。 电源 EMI 滤波器实际上是一种低通滤波器,它毫无衰减地把 50Hz 或 400Hz 交流电能传递给电子设备,却大大衰减传入的干扰信号,同时又能抑制设备本身产生的干扰信号,防止它窜入电网,危害公网其它设备。选择 EMI 滤波器是根据插入损耗的大小来选择滤波器网络结构和元器件参数,根据实际要求选择额定电压、额定电流、漏电流、绝缘电阻、温度条件等参数。电源 EMI 滤波器最好安装在机壳电源线进口的插座附近。抑制输出噪声的对策基本上按 10kHz ~ 150kHz 、 150kHz ~ 10MHz 、 10MHz 以上三个频段来解决。 10kHz ~ 150kHz 范围内主要是常态噪声,一般采用通用 LC 滤波器来解决。 150kHz ~ 10MHz 范围内主要是共模成分的噪声,通常采用共模抑制滤波器来解决。共模扼流圈要采用导磁率高、频率特性较佳的铁氧体磁性材料,电感量在( 1 ~ 2 ) mH 、电容量在 3300pF ~ 4700pF 之间,如果控制低频段的噪声,可以适当加大 LC 的取值。在 10MHz 以上频率段的对策是改进滤波器的外形。输出整流二极管的反向恢复也会引起电磁干扰,这种情况可以采用 RC 吸收电路来抑制电流的上升率,通常 R 在 (2 ~ 20)Ω 之间, C 在 1000pF ~ 10nF 之间, C 应选用高频瓷介电容。 良好的布局和布线技术也是控制噪声的一个重要手段。为减少噪声的发生和防止由噪声导致的误动作,应注意以下几点: ① 尽量缩小由高频脉冲电流所包围的面积。 ② 缓冲电路尽量贴近开关管和输出整流二极管。 ③ 脉冲电流流过的区域远离输入输出端子,使噪声源和出口分离。 ④ 控制电路和功率电路分开,采用单点接地方式,大面积接地容易引起天线作用,所以建议不要采用大面积接地方式。 ⑤ 必要时可以将输出滤波电感安置在地回路上。 ⑥ 采用多只低 ESR (等效串联电阻)的电容并联滤波。 ⑦ 采用铜箔进行低感低阻配线。 ⑧ 相邻印制线之间不应有过长的平行线,走线尽量避免平行,采用垂直交叉方式,线宽不要突变,也不要突然拐角。禁止环形走线。 ⑨ 滤波器的输入和输出线必须分开。禁止将开关电源的输入线和输出线捆扎在一起。 对于辐射干扰主要应用密封屏蔽技术,在结构上实行电磁封闭,要求外壳各部分之间具有良好的电磁接触,以保证电磁的连续性。目前为减少重量大都采用铝合金外壳,但铝合金导磁性能差,因而外壳需要镀一层镍或喷涂导电漆,内壁贴覆高导磁率的屏蔽材料。外壳永久连接处用导电胶粘牢或采用连续焊缝结构,需拆卸的可以用导电橡胶条压紧来保证电磁连续性。导电材料要求导电性能高、有弹性、具有最小的宽厚比。 4、电源设备可靠性热设计 除了电应力之外,温度是影响设备可靠性最重要的因素。电源设备内部的温升将导致元器件的失效,当温度超过一定值时,失效率将呈指数规律增加,温度超过极限值时将导致元器件失效。国外统计资料表明电子元器件温度每升高 2℃ ,可靠性下降 10 %;温升 50℃ 时的寿命只有温升 25℃ 时的 1/6 。需要在技术上采取措施限制机箱及元器件的温升,这就是热设计。热设计的原则,一是减少发热量,即选用更优的控制方式和技术,如移相控制技术、同步整流技术等,另外就是选用低功耗的器件,减少发热器件的数目,加大加粗印制线的宽度,提高电源的效率。二是加强散热,即利用传导、辐射、对流技术将热量转移,这包括采用散热器、风冷 ( 自然对流和强迫风冷 ) 、液冷 ( 水、油 ) 、热电致冷、热管等方法。 强迫风冷的散热量比自然冷却大十倍以上,但是要增加风机、风机电源、联锁装置等,这不仅使设备的成本和复杂性增加,而且使系统的可靠性下降,另外还增加了噪声和振动,因而在一般情况下应尽量采用自然冷却,而不采用风冷、液冷之类的冷却方式。在元器件布局时,应将发热器件安放在下风位置或在印制板的上部,散热器采用氧化发黑工艺处理,以提高辐射率,不允许用黑漆涂覆。喷涂三防漆后会影响散热效果,需要适当加大裕量。散热器安装器件的平面要求光滑平整,一般在接触面涂上硅脂以提高导热率。变压器和电感线圈应选用较粗的导线来抑制温升。 5、安全性设计 对于电源而言,安全性历来被确定为最重要的性能之一,不安全的产品不但不能完成规定的功能,而且还有可能发生严重事故,造成机毁人亡的巨大损失。为保证产品具有相当高的安全性,必须进行安全性设计。电源产品安全性设计的内容主要是防止触电和烧伤。 对于商用设备市场,具有代表性的安全标准有 UL 、 CSA 、 VDE 等,内容因用途而异,容许泄漏电流在 05mA ~ 5mA 之间,我国军用标准 GJB1412 规定的泄漏电流小于 5mA 。电源设备对地泄漏电流的大小取决于 EMI 滤波器电容 Cy 的容量,如图 2 所示。从 EMI 滤波器角度出发电容 Cy 的容量越大越好,但从安全性角度出发电容 Cy 的容量越小越好,电容 Cy 的容量根据安全标准来决定。若电容 Cx 的安全性能欠佳,电网瞬态尖峰出现时可能被击穿,它的击穿虽然不危及人身安全,但会使滤波器丧失滤波功能。为了防止误触电,插头座原则上产品端 ( 非电源端 ) 为针,电网端 ( 电源端 ) 为孔;电源设备之输入端为针,输出端为孔。 为了防止烧伤,对于可能与人体接触的暴露部件 ( 散热器、机壳等 ) ,当环境温度为 25℃ 时,其最高温度不应超过 60℃ ,面板和手动调节部分的最高温度不超过 50℃ 。 6、三防设计 三防设计是指防潮设计、防盐雾设计和防霉菌设计。 在设计时,对于密封有要求的元器件应采取密封措施;对于不可修复的组合装置可采用环氧树脂灌封;所用元器件、原材料的吸湿度应较小,不得使用含有棉、麻、丝等易霉制品;对密封机箱、机柜应设置防护网,以防昆虫和啮齿动物进入;直接暴露在大气中装置的外顶部不应采用凹陷结构,避免积水导致腐蚀;可以选用耐蚀材料,再通过镀、涂或化学处理使电子设备及其零部件的表面覆盖一层金属或非金属保护膜,隔离周围介质;在结构上采用密封或半密封形式来隔绝外部不利环境;对印制板及组件表面涂覆专用的三防清漆可以有效地避免导线之间的电晕、击穿,提高电源的可靠性;电感、变压器应进行浸漆、端封,以防潮气进入引发短路事故。 7、结语 以上建议只适用于军用电源,对于商用和工业用产品可以在某些方面作出不同的选择。总之,电源设备可靠性的高低,不仅与电气设计,而且同元器件、结构、装配、工艺、加工质量等方面有关。可靠性是以设计为基础,在实际工程应用上,还应通过各种试验取得反馈数据来完善设计,进一步提高电源的可靠性。以上就是军用开关电源可靠性技术,希望能给大家帮助。

    时间:2020-04-30 关键词: 可靠性 开关电源 军用

首页  上一页  1 2 3 4 5 6 7 8 9 10 下一页 尾页
发布文章

技术子站

更多

项目外包