当前位置:首页 > 伺服系统
  • 自动纠偏器工作原理

    自动纠偏器工作原理

      自动纠偏器   自动纠偏装置是一种修正卷材在向前运动中出现的侧边误差的机械装置,位移式纠偏是通过更改卷材在进口和出口跨度来实现卷材侧边修正。      自动纠偏器工作原理   由纠偏感应器B发出红外光/超声波/激光/可见光监测卷材的运行,将信号发送给控制器A。控制器发现卷材有位置漂移后,根据控制者预先设定的指令,通过驱动器D控制纠偏框架C摆动,纠正卷材位置。卷材自动纠偏系统使用光电传感器,检测卷材边缘位置,将测得的位置误差信号送入控制器,经过控制单元判断处理后,控制驱动电机,将发生偏差位置的卷材纠正到正确的位置。   FIFE纠偏系统提供几种不同的检测方式:检边、跟线或对中。 其驱动系统使用低速同步、变频调速、步进及伺服电机驱动,驱动行程与卷材偏移量成严格的比例关系。系统还可以配合不同的探头使用,以适合检测不同卷材的需要,如:红外线光电、模拟量红外线光电等。微电脑数字式控制器为系统各项功能提供精确的控制。      自动纠偏装置具有工作稳定,高精确,反应灵敏,持久耐用及安装调试简单的特点,广泛应用于:包装机械,印刷机械,标签设备,纸处理加工设备,塑料和橡胶机械,纺织设备,金属加工设备,卫生用品生产线等新兴行业的生产流水线中。   自动纠偏器的作用   偏控制器是电子纠偏系统的心脏。Fife符合CE认证标准的纠偏控制器可以提供您所需要的纠偏控制,帮助您的生产线有效而且高效的运转。和适当的感应器、驱动器、等纠偏组件组合,Fife纠偏控制器可以提供高精度、均衡、闭环、有着高动态响应的伺服系统。

    时间:2020-06-01 关键词: 伺服系统 纠偏控制

  • 常见的伺服控制系统节能改造方式

    常见的伺服控制系统节能改造方式

    伺服节能原理大体上是和变频器差不多的,主要节能原理是忙时和闲时。它可以根据使用量来调整输入量。像注塑机一样,它的工作负荷是不定量的。是周期性的变化,伺服节能电机和伺服节能控制系统一起调整使得当注塑机不需要这么多的油量的时候,通过控制,就不输出这么多。从而实现伺服节能控制。 伺服节能---徕卡节能 以压铸机伺服节能及注塑机节能改造为例,目前大多数压铸机及注塑机改造使用较多的还是永磁同步电机+定量泵(柱塞泵)+同步伺服驱动器进行改造。而机器本身最初的异步电机+定量泵,则因为流量控制不精准,耗电量大,直接被淘汰。这样的同步伺服相当于直接更换了机器本身的动力系统,改造成本大,同时维护成本高。 伺服节能改造的下面几种方式最常见: 1、V变频器+异步电机,即变频节能,没有反馈系统,控制精度低、降低生产效率。 2、矢量驱动器+同步电机+速度和压力反馈,即同步伺服节能,节电效果好、安装复杂、价格高、维护成本高。 3、矢量驱动器+异步电机+电流反馈+定量泵,即异步伺服节能,安装简单、节电效果好、维护成本低、性价比高。 新型伺服改造形式,以压铸机和注塑机为例,在原有压铸机及注塑机基础上进行改造,可以不用更换原有动力系统,只需要加装一个油泵电机伺服控制器,减少节能改造成本,同时维护方便。 徕卡节能伺服节能改造优点: 1、提升注塑机、压铸机、油压机等液压设备的工作效率 2、单独系统运行,不影响液压设备本身 3、节电效果明显,节电率一般达到30%~80% 4、注塑机及压铸机等液压设备本身的三相异步电机无退磁隐患 5、降低油温、噪音,改善车间工作环境 企业节能的方法只有减少浪费。浪费了的能量都变为热能,使油温升高。定量泵在低流量时浪费能量,而变量泵则能补其不足。然而异步电机在低负载时有低的效率,而且是以恒速转动。伺服电机克服了这两个缺点,便能够更节能。以伺服电机驱动油泵在节能、精准度及低噪音能媲美全电机。成品越好能节约的能量越多。

    时间:2020-06-01 关键词: 工业控制 伺服系统

  • 机器人发展将带给中国经济社会变化

    机器人发展将带给中国经济社会变化

    2017年,我国工业机器人产量达到131079台,同比增长81%。13万台,约占全球产量的1/3。我国工业机器人产业“一路小跑”的发展势头,也从一个侧面证明——中国经济转型升级步伐在持续加快。中国是工业机器人的全球第一大市场。多份不同来源的统计资料共同显示,我国工业机器人产销量近年来保持连续快速增长,产业规模日益扩大。根据国际机器人联合会(IFR)测算,我国工业机器人的销售额有望从2012年的10.6亿美元增至2020年的58.9亿美元。 IFR今年2月最新发布的数据显示,2016年韩国凭借631台/万人成为机器人密度最高的国家。新加坡、德国、日本、美国这一数字相应为488、309、303和189。而中国为68台/万人,低于全球制造行业74台/万人的平均水平,仅为韩国的10%左右。到2020年,我国工业机器人使用密度将达到过150台/万人,这意味着随着经济的发展和制造业的升级,工业机器人产业发展仍存在广阔的空间。 工业机器人的应用也反映出各地经济的发展态势,有风向标的作用。 目前,“机器换人”已经在浙江、广东等地成为潮流。究其原因,一方面,是这些制造业大省近年来发生的劳动力结构性短缺、劳动力成本上升等社会变革带来的影响;另一方面,则体现出国人将自己从高风险、重复而繁重的体力劳动中解放出来的意愿不断提高。“‘机器换人’,对很多企业而言,已不是想不想做的事情,而是不能不做的任务。”深圳一家生产高档玩具的企业的负责人告诉中国经济导 大量使用人工难以为继。“为此,我曾有意将工厂搬往东南亚等地区,但是其中蕴含的各类风险着实不小。如果机器人能让生产成本上涨减缓甚至有所下降,我当然更希望能将工厂留在国内。”当然,“机器换人”并非简单地排斥人工,而是通过更多技术人员操作机器人,实现“人机协同”工作,这样产品质量提升了,工厂效益提高了,国际竞争力也增强了。像在制造业集中的广东省东莞市,有资料显示,推行“机器换人”以来,东莞市的产品合格率平均从86.1%提升到90.7%,相对可减少用工近20万人,单位产品成本平均下降9.43%。 客观地讲,国产工业机器人在系统集成和应用端的优势明显,但关键零部件的稳定性与国外存在差距是不争的事实,这也是中国机器人产业发展的掣肘之处。整体而言,我国工业机器人超过六成以上的市场份额仍由以ABB、安川、库卡和发那科“四大家族”为代表的国外机器人企业占据,关键零部件主要依赖进口。 业内人士认为,预计3~5年内机器人三大核心零部件,即减速器、伺服系统和控制器的国产替代高潮将出现,2025年有望实现工业机器人零部件全部国产化,这得益于我国产、学、研整体创新能力的增强。 除了技术进步、加快国产化之外,为了企业能够用得起机器人,各地也想出了不少好办法。例如,在提出打造“机器人之都”战略目标的重庆,全国首家以机器人命名的融资租赁企业——重庆两江机器人融资租赁有限公司2014年成立,3年多来合同金额累计已超过35亿元,为长安、力帆等企业提供了2000余台机器人。该公司常务副总裁申辉昌表示,通过融资租赁可以减少企业的一次性资金投入,让企业提前使用更大价格折扣的机器人。 制造业是中国经济的中流砥柱,2010年,中国成为世界第一制造业大国;2017年中国827122亿元的GDP里面,工业为279997亿元。 从销量看,汽车制造业、计算机、通信和其他电子设备制造业、通用设备制造业以及电气机械和器材制造业使用工业机器人的数量最多,总和超过总销量的50%,与此同时,以家具制造、食品制造、酒、饮料和精制茶制造业等为代表的轻工行业销量增速良好,成为亮点。“中国机器人要怎么发展?还是要抓准新领域。”珠海格力机器人有限公司总经理沈显东则认为,汽车产业的机器人应用被国外机器人巨头占据重要份额,这与汽车产业本身在发达国家发展较早相关,在中国,高铁、新能源等新产业是中国机器人最富有竞争力的领域。 此外,多位业内人士告诉中国经济导报记者,中国3C、陶瓷、家电、物流等新兴领域自动化应用步伐加快,为机器人企业带来了更多机遇。 甚至白酒这个中国历史最悠久的产业也引入了智能制造。上甑是白酒酿造中的核心工序,经验丰富的老师傅要在酒糟的蒸汽冒出之前撒料,只有做到“轻、松、薄、准、匀、平”,才能保证酒的质量和产量。然而,酿酒车间内的温度超过60℃,工作环境异常艰苦,工人受到各种因素影响,出酒率得不到保障。为此,武汉奋进智能机器有限公司研发的机器人已经进入酒厂,代替人工进行上甑,更提高了出酒率和酒的品质。该公司董事长徐击水告诉中国经济导报记者,目前仅在白酒酿造领域,企业年产机器人50~60台,受到市场欢迎。

    时间:2020-06-01 关键词: 工业机器人 伺服系统

  • 智能柔性关节机器人的成功秘诀

    智能柔性关节机器人的成功秘诀

    智能柔性执行器SCA,其具有高度集成、高精度、总线控制、柔性功能、低成本等特点。和人一样,决定机器人灵活度的是关节。智能柔性执行器一直是机器人,尤其是服务机器人研发生产的难点。SCA是如何攻克这一难题的,该技术究竟有何过人之处?智能柔性执行器,即柔性关节对机器人的重要性不言而喻。机器人的所有动作都离不开关节。 业界根据人的肌肉和骨骼模拟出机器人关节的自由度,通常我们所说的多少个自由度就是多少个关节,比如工厂里机四轴机械臂,其中的一轴就是一个关节。对一台机器人来说,关节成本占硬件总成本的70%以上。而且服务机器人与工业机器人对关节的要求又大为不同。 工业机器人要求长久稳定性,对灵活性和自适应性要求不高,“它们只需要按照规划好的路径运动就可以,不用有很多的变化。而服务机器人则不同,行走、运动等功能自然对关节的灵活性要求极高。所以工业机器人的关节大多是刚性执行器,而服务机器人则需要智能柔性执行器”。 此前最知名的人形机器人来自波士顿动力。早在2017年,该公司机器人的一段跳跃、旋转、后空翻的视频惊艳了整个机器人圈。大家纷纷感叹,这个机器人的关节也太灵活了。但这并不意味着智能柔性关节已经不是问题。恰恰相反,据我们了解,目前国际上大概只有三四家掌握智能柔性关节技术,其中波士顿动力的技术不公开,MASA同样也不公开对民用开放。 正因如此,截至目前,工业机器人大多采用体积大、刚性强的传统伺服系统,而服务机器人由于身形限制,无法使用传统伺服,只能勉强装备更多用于航模、玩具等开发的舵机。舵机故障率高、噪音大,不够智能,这也是为什么我们老感觉目前服务机器人总有些笨笨的感觉。缺少高性能柔性关节成为服务机器人发展的一大障碍。 工业伺服系统包括电机、驱动器、减速器、编码器等核心元件,如何将这些原本独立的元器件集成到一起,就像将很多芯片集成到一块电路板上一样?答案是从底层做起,研发能各自匹配发挥出最大效率的电机、驱动器等。选择了超薄外转子电机,这种电机可以做得很扁平,以前应用领域比较小,没有大规模生产,但我们通过研究发现它的扁平化特征很适合用来做集成的执行器。 在搞定合适的电机后,研发团队又根据电机特性研发出高度匹配的驱动器、编码器等器件。举个例子,通用的传统工业伺服驱动器适用于很多种电机,但多数情况下会有冗余。“我们为选定的电机研发了特定的驱动器,减少了冗余。所以我们这几年一直在做的一件事,就是不停调整摸索这几个元器件的关系,琢磨怎么让它们在尽量小的空间里互相配合,发挥更大作用。 最终,SCA实现了在同样性能下体积只有传统伺服系统的十分之一。更为重要的是,我国机器人领域电机、减速器等核心元部件受制于人的状况或将发生一些改变。众所周知,精密减速器、控制器以及伺服电机等机器人核心零部件一直被国外几家大公司垄断,国内企业尚不具备核心零部件自产能力。核心部件受制于人的后果是,不仅价格下不来,利润微薄,且供货周期长。 我们前几年曾经向一家国际知名的厂商订购了60多万元的电机,这个量在别人那属于特别小的,所以不可能有议价空间,而且起码要等几个月。这种情况对于国内机器人厂商来说是常态。由于我们是从电机、驱动器等做起,所有核心技术都自己掌握,因此再也不会像以前那么被动,而且我们给国内外客户的供货速度非常快。 以SCA为基础,研发团队正在开发适用于不同机器人的柔性关节,其中包括专为四足机器人量身定制的柔性关节,以及SCA的复合材料版等。据业内专家介绍,四足机器人需要完成站立、走动、弹跳、负载等动作,甚至在不同路面环境中完成相应任务,因而其对执行器的要求更加严苛。 一般来说,四足机器人要求执行器具有扭矩密度大、功率密度大、控制系统高度集成、柔性控制等特性。为了满足四足机器人对扭矩的需求,INNFOS研发团队将减速器内嵌其中,在增加扭矩的同时,保证了紧凑的机械机构。同时,减速器的嵌入,让该执行器在整机质量453.1克的情况下,峰值扭矩达19.8牛顿米,也使得其扭矩密度大幅提高,更符合四足机器人对扭矩和扭矩密度的需求。“我们通过电流环,可以低成本的实现力控。与此同时,我们运用准直驱技术,以很小的减速比配上大扭矩密度的电机,便可以做到在低成本、高产量的情况下实现力控。”朱梓鸣介绍道。 柔性控制是机器人类产品中必不可少的特性。研发人员在执行器内部增加了一系列感知元件,配合处理器来监视内部电流的状态,最后在高级动力学算法的支撑下可实现执行器的柔性技术,做到真正安全实用的人机交互。

    时间:2020-05-25 关键词: 机器人 伺服系统

  • 心零部件才是工业机器人运作的关键

    心零部件才是工业机器人运作的关键

    (文章来源:中科罗伯特机器人学院) 很多人都知道现在的工业生产都离不开工业机器人,就工业机器人来说,核心零部件才是工业机器人运作的关键。工业机器人主要有控制器、伺服系统、减速器这三大核心部件,它们占到了机器人成本的70%。所以说,这三大核心零部件的发展对工业机器人整体的发展起着至关重要的作用。 控制器是工业机器人的大脑,用来发布和传递动作指令。由硬件和软件这两部分组成:硬件包括一些主控单元、信号处理部分等电路,国产品牌在这方面已经有所掌握;软件部分是指控制算法、二次开发等,国产品牌在稳定性、响应速度、易用性等方面与国外品牌还存在差距。 减速器是连接动力源和执行机构之间的中间装置,工业机器人使用的减速器主要有两类:RV减速器和谐波减速器。随着我国工业机器人市场的快速发展,工业机器人的减速器市场需求规模也越来越大。但国内的减速器的生产能力远远落后于日本、美国和欧洲,减速器的发展将会是我国工业机器人产业化发展的关键。 伺服系统是工业自动化行业中实现精确定位、精准运动的必要途径,主要应用在机床工具、纺织机械、印刷机械和包装机械等领域。工业机器人的关节驱动离不开伺服系统。关节越多,机器人的柔性和精准度越高,所需要使用的伺服电机数量就越多。同时工业机器人对伺服系统的要求很高,需要做到高可靠性和稳定性。随着近几年工业机器人、电子制造设备等产业的急速发展,工业机器人在新兴产业的应用规模出现明显的增长。

    时间:2020-05-23 关键词: 机器人 伺服系统

  • 工业机器人技术的突破需要从哪些方面来进行

    工业机器人技术的突破需要从哪些方面来进行

    (文章来源:中科罗伯特机器人学院) 随着自动化生产的深入,工业机器人被制造业所青睐,他们不仅可以准确地完成各种简单的重复性工作,还有效的提高了劳动生产效率,降低了生产成本。但随着人们需求的改变,传统的工作方式变得落后了,人们希望工业机器人可以适应多变的环境,这样使用起来也会更加的便捷。 未来的工业机器人需要在精度、速度、效率、人机交互和智能化等方面需要有进一步发展。例如将控制系统器件集成度提高,控制柜越来越小巧。注重传感器的作用,在装配、焊接机器人上多采用位置、速度、加速度、力觉等传感器。另外,随着机器学习等人工智能技术的发展,工业机器人将会越来越智能化,自主学习的同时还能自主挖掘大数据的价值。 在伺服系统方面,机器人运动性质的特殊性使伺服系统要具备高精度、高动态响应、高过载能力、高可靠性等特性。国产的伺服系统在功能、性能和工艺方面与国外产品相比还有一定的差距,国内还没有完全掌握自适应机械共振抑制技术、自适应低频震动技术和惯量动态前馈技术等关键技术。在控制器方面,国内机器人控制器所采用的硬件平台和国外产品相比并没有太大差距,现有差距主要体现在控制算法和二次开发平台的易用性方面。

    时间:2020-05-21 关键词: 机器人 伺服系统

  • 工业机器人的基本术语都是些什么意思

    工业机器人的基本术语都是些什么意思

    (文章来源:百家号) 关节:即运动副,是允许机器人手臂各零件之间发生相对运动的机构,也是两构件直接接触并能产生相对运动的活动连接,如图1-1所示。A、B两部件可以做互动连接。 高副机构:简称高副,指的是运动机构的两构件通过点或线的接触而构成的运动副。例如齿轮副和凸轮副就属于高副机构。平面高副机构拥有两个自由度,即相对接触面切线方向的移动和相对接触点的转动。相对而言,通过面的接触而构成的运动副叫做低副机构。 关节是各杆件间的结合部分,是实现机器人各种运动的运动副,由于机器人的种类很多,其功能要求不同,关节的配置和传动系统的形式都不同。机器人常用的关节有移动、旋转运动副。一个关节系统包括驱动器、传动器和控制器,属于机器人的基础部件,是整个机器人伺服系统中的一个重要环节,其结构、重量、尺寸对机器人性能有直接影响。 连杆(Link):指机器人手臂上被相邻两关节分开的部分,是保持各关节间固定关系的刚体,是机械连杆机构中两端分别与主动和从动构件铰接以传递运动和力的杆件。例如在往复活塞式动力机械和压缩机中,用连杆来连接活塞与曲柄。连杆多为钢件,其主体部分的截面多为圆形或工字形,两端有孔,孔内装有青铜衬套或滚针轴承,供装入轴销而构成铰接。 连杆是机器人中的重要部件,它连接着关节,其作用是将一种运动形式转变为另一种运动形式,并把作用在主动构件上的力传给从动构件以输出功率。 刚度(Stiffness):是机器人机身或臂部在外力作用下抵抗变形的能力。它是用外力和在外力作用方向上的变形量(位移)之比来度量。在弹性范围内,刚度是零件载荷与位移成正比的比例系数,即引起单位位移所需的力。它的倒数称为柔度,即单位力引起的位移。刚度可分为静刚度和动刚度。 在任何力的作用下,体积和形状都不发生改变的物体叫做刚体(Rigid body)在物理学上,理想的刚体是一个固体的、尺寸值有限的、形变情况可以被忽略的物体。不论是否受力,在刚体内任意两点的距离都不会改变。在运动中,刚体任意一条直线在各个时刻的位置都保持平行。

    时间:2020-05-20 关键词: 机器人 伺服系统

  • 伺服进给系统的要求

    伺服进给系统的要求

    进给伺服系统的基本技术要求 1)精度高 伺服系统的精度是指输出量能复现输入量的精确程度。在速度控制中,要求高的调速精度,比较强的抗负载扰动能力。即对静、动态精度要求都比较高。 2)稳定性好 稳定性是指系统在给定输入或外界干扰作用下,能在短暂的调节过程后,达到新的或者恢复到原来的平衡状态。 对伺服系统要求有较强的抗干扰能力,保证进给速度均匀、平稳。 稳定性直接影响数控加工的精度和表面粗糙度。 3)快速响应 快速响应是伺服系统动态品质的重要指标,它反映了系统的跟踪精度。为了保证轮廓切削形状精度和低的加工表面粗糙度,要求伺服系统跟踪指令信号的响应要快。 这一方面要求过渡过程时间要短,一般在200ms以于几十毫秒; 另一方面要求超调要小。 4)调速范围宽 数控机床中,进给伺服系统的调速范围与伺服系统的分辨率有关。 一般的调速范围要求在脉冲当量为0.001mm时达到0-24m/min。要求有较宽的无级调速范围,在低速时运行平稳无爬行。 伺服进给系统的要求 1、调速范围宽 2、定位精度高 3、有足够的传动刚性和高的速度稳定性 4、快速响应,无超调 为了保证生产率和加工质量,除了要求有较高的定位精度外,还要求有良好的快速响应特性,即要求跟踪指令信号的响应要快,因为数控系统在启动、制动时,要求加、减加速度足够大,缩短进给系统的过渡过程时间,减小轮廓过渡误差。 5、低速大转矩,过载能力强 一般来说,伺服驱动器具有数分钟甚至半小时内1.5倍以上的过载能力,在短时间内可以过载4~6倍而不损坏。 6、可靠性高 要求数控机床的进给驱动系统可靠性高、工作稳定性好,具有较强的温度、湿度、振动等环境适应能力和很强的抗干扰的能力。

    时间:2020-05-19 关键词: 数控机床 数控系统 伺服系统

  • 伺服控制系统的主要指标与技术要求

    伺服控制系统的主要指标与技术要求

    伺服控制系统的主要指标 衡量伺服控制系统性能的主要指标系统精度、稳定性、响应特性、工作频率四大方面,特别在频带宽度和精度方面。 频带宽度简称带宽,由系统频率响应特性来规定,反映伺服系统的跟踪的快速性。带宽越大,快速性越好。伺服系统的带宽主要受控制对象和执行机构的惯性的限制。惯性越大,带宽越窄。一般伺服系统的带宽小于15赫,大型设备伺服系统的带宽则在1~2赫以下。自20世纪70年代以来,由于发展了力矩电机及高灵敏度测速机,使伺服系统实现了直接驱动,革除或减小了齿隙和弹性变形等非线性因素,使带宽达到50赫,并成功应用在远程导弹、人造卫星、精密指挥仪等场所。伺服系统的精度主要决定于所用的测量元件的精度。因此,在伺服系统中必须采用高精度的测量元件,如精密电位器、自整角机和旋转变压器等。此外,也可采取附加措施来提高系统的精度,例如将测量元件(如自整角机)的测量轴通过减速器与转轴相连,使转轴的转角得到放大,来提高相对测量精度。采用这种方案的伺服系统称为精测粗测系统或双通道系统。通过减速器与转轴啮合的测角线路称精读数通道,直接取自转轴的测角线路称粗读数通道。 交流伺服系统性能指标 位置伺服系统的主要控制目标是输出值迅速跟踪指令值的变化。应用场合不同,对伺服系统的具体要求也会有所差异,但是大体要求是基本一致的,具体来说,在机电一体化产品中,对伺服系统的性能指标要求主要包括 (1)定位精度 系统最终定位点与指令目标值之间的静态误差即为定位精度,定位精度是评价位置伺服系统定位准确度的一个关键指标。对自带码盘、性能优异的交流伺服系统而言,应当满足±1个脉冲的定位精度要求。 (2)调速范围 即电机最高转速与最低转速之比,用D表示。 (3)调速静态特性  对绝大多数负载来说,机械特性越硬,负载变化时速度瞬态变化越小,工作越稳定,所以希望机械特性越硬越好。 (4)调速动态特性 动态特性,即速度变化的暂态特性,主要包括两个方面:一为升速和降速过程是否快捷、灵敏且无超调。这就要求电机转子惯量小,转矩/惯量比大,单位体积有较大的电机转矩输出。二是当负载突增突减时,系统的转速能否自动调节而迅速恢复。 伺服控制系统的技术要求 1.系统精度 伺服系统精度指的是输出量复现输入信号要求的精确程度,以误差的形式表现,可概括为动态误差,稳态误差和静态误差三个方面组成。 2.稳定性 伺服系统的稳定性是指当作用在系统上的干扰消失以后,系统能够恢复到原来稳定状态的能力;或者当给系统一个新的输入指令后,系统达到新的稳定运行状态的能力。 3.响应特性 响应特性指的是输出量跟随输入指令变化的反应速度,决定了系统的工作效率。响应速度与许多因素有关,如计算机的运行速度,运动系统的阻尼和质量等。 4.工作频率 工作频率通常是指系统允许输入信号的频率范围。当工作频率信号输入时,系统能够按技术要求正常工作;而其它频率信号输入时,系统不能正常工作。

    时间:2020-05-19 关键词: 伺服系统 伺服控制系统 减速器

  • 伺服系统的发展和应用常识

    伺服系统的发展和应用常识

    随着信息、通讯与自动化技术的发展,种类繁多的自动控制装置逐渐进进了人们的日常生活。网络通讯技术不仅为人们提供了方便的通讯手段,实际上也为各式各样的电子裝置提供了简易可靠的通讯渠道,借助于新式的网络通讯技术与计算功能强大的数字信号处理器芯片(DSP),可以开展出多种具有基本智能的信息家电设备(smart information appliance),例如可以帮助清洁工作的机器人、可供娱乐的电子机械宠物等等。这些结合机械、电子、通讯、控制、信息技术融合装置的核心部分就是具有网络界面的伺服系统控制器(network servo controller)。伺服技术已广泛的应用于我们的日常生活,例如光碟机光学读取头的伺服控制、远控飞机的机翼控制、数字相机的自动对焦控制、具有影像追踪功能的网络摄像监控系统、汽车自动驾驶等等,伺服系统涉及范围涵盖广泛,多学科交叉色彩浓厚。 伺服控制系统的应用 伺服控制系统最初用于船舶的自动驾驶、火炮控制和指挥仪中,后来逐渐推广到很多领域,特别是自动车床、天线位置控制、导弹和飞船的制导等。 采用伺服系统主要是为了达到下面几个目的: ① 以小功率指令信号去控制大功率负载。火炮控制和船舵控制就是典型的例子。 ② 在没有机械连接的情况下,由输入轴控制位于远处的输出轴,实现远距同步传动。 ③ 使输出机械位移精确地跟踪电信号,如记录和指示仪表等。 伺服系统的发展和应用常识 伺服系统的发展 伺服系统在机电设备中具有重要的地位,下面简单谈谈其发展历程: (1) 直流伺服系统 伺服系统的发展经历了由液压到电气的过程。电气伺服系统根据所驱动的电机类型分为直流(DC)伺服系统和交流(AC)伺服系统。50年代,无刷电机和直流电机实现了产品化,并在计算机外围设备和机械设备上获得了广泛的应用。70年代则是直流伺服电机的应用最为广泛的时代。 (2)交流伺服系统 从70年代后期到80年代初期,随着微处理器技术、大功率高性能半导体功率器件技术和电机永磁材料制造工艺的发展及其性能价格比的日益提高,交流伺服技术—交流伺服电机和交流伺服控制系统逐渐成为主导产品。交流伺服驱动技术已经成为工业领域实现自动化的基础技术之一,并将逐渐取代直流伺服系统。 交流伺服系统按其采用的驱动电动机的类型来分,主要有两大类:永磁同步(SM型)电动机交流伺服系统和感应式异步(IM型)电动机交流伺服系统。其中,永磁同步电动机交流伺服系统在技术上已趋于完全成熟,具备了十分优良的低速性能,并可实现弱磁高速控制,拓宽了系统的调速范围,适应了高性能伺服驱动的要求。并且随着永磁材料性能的大幅度提高和价格的降低,其在工业生产自动化领域中的应用将越来越广泛,目前已成为交流伺服系统的主流。感应式异步电动机交流伺服系统由于感应式异步电动机结构坚固,制造容易,价格低廉,因而具有很好的发展前景,代表了将来伺服技术的方向。但由于该系统采用矢量变换控制,相对永磁同步电动机伺服系统来说控制比较复杂,而且电机低速运行时还存在着效率低,发热严重等有待克服的技术问题,目前并未得到普遍应用。 系统的执行元件一般为普通三相鼠笼型异步电动机,功率变换器件通常采用智能功率模块IPM。为进一步提高系统的动态和静态性能,可采用位置和速度闭环控制。三相交流电流的跟随控制能有效地提高逆变器的电流响应速度,并且能限制暂态电流,从而有利于IPM的安全工作。速度环和位置环可使用单片机控制,以使控制策略获得更高的控制性能。电流调节器若为比例形式,三个交流电流环都用足够大的比例调节器进行控制,其比例系数应该在保证系统不产生振荡的前提下尽量选大些,使被控异步电动机三相交流电流的幅值、相位和频率紧随给定值快速变化,从而实现电压型逆变器的快速电流控制。电流用比例调节,具有结构简单、电流跟随性能好以及限制电动机起制动电流快速可靠等诸多优点。 (3)交直流伺服系统的比较 直流伺服驱动技术受电机本身缺陷的影响,其发展受到了限制。直流伺服电机存在机械结构复杂、维护工作量大等缺点,在运行过程中转子容易发热,影响了与其连接的其他机械设备的精度,难以应用到高速及大容量的场合,机械换向器则成为直流伺服驱动技术发展的瓶颈。 交流伺服电机克服了直流伺服电机存在的电刷、换向器等机械部件所带来的各种缺点,特别是交流伺服电机的过负荷特性和低惯性更体现出交流伺服系统的优越性。所以交流伺服系统在工厂自动化(FA)等各个领域得到了广泛的应用。 从伺服驱动产品当前的应用来看,直流伺服产品正逐渐减少,交流伺服产品则日渐增加,市场占有率逐步扩大。在实际应用中,精度更高、速度更快、使用更方便的交流伺服产品已经成为主流产品。 (4)伺服系统的发展趋势 从前面的讨论可以看出,数字化交流伺服系统的应用越来越广,用户对伺服驱动技术的要求越来越高。总的来说,伺服系统的发展趋势可以概括为以下几个方面: 1. 交流化 伺服技术将继续迅速地由DC伺服系统转向AC伺服系统。从目前国际市场的情况看,几乎所有的新产品都是AC伺服系统。在工业发达国家,AC伺服电机的  市场占有率已经超过80%。在国内生产AC伺服电机的厂家也越来越多,正在逐步地超过生产DC伺服电机的厂家。可以预见,在不远的将来,除了在某些微型电机领域之外,AC伺服电机将完全取代DC伺服电机。 2. 全数字化 采用新型高速微处理器和专用数字信号处理机(DSP)的伺服控制单元将全面代替以模拟电子器件为主的伺服控制单元,从而实现完全数字化的伺服系统。全数字化的实现,将原有的硬件伺服控制变成了软件伺服控制,从而使在伺服系统中应用现代控制理论的先进算法(如:最优控制、人工智能、模糊控制、神经元网络等)成为可能。 3. 采用新型电力电子半导体器件 目前,伺服控制系统的输出器件越来越多地采用开关频率很高的新型功率半导体器件,主要有大功率晶体管(GTR)、功率场效应管(MOSFET)和绝缘门极晶体管(IGBT)等。这些先进器件的应用显著地降低了伺服单元输出回路的功耗,提高了系统的响应速度,降低了运行噪声。尤其值得一提的是,最新型的伺服控制系统已经开始使用一种把控制电路功能和大功率电子开关器件集成在一起的新型模块,称为智能控制功率模块(Intelligent Power Modules,简称IPM)。这种器件将输入隔离、能耗制动、过温、过压、过流保护及故障诊断等功能全部集成于一个不大的模块之中。其输入逻辑电平与TTL信号完全兼容,与微处理器的输出可以直接接口。它的应用显著地简化了伺服单元的设计,并实现了伺服系统的小型化和微型化。 4. 高度集成化 新的伺服系统产品改变了将伺服系统划分为速度伺服单元与位置伺服单元两个模块的做法,代之以单一的、高度集成化、多功能的控制单元。同一个控制单元,只要通过软件设置系统参数,就可以改变其性能,既可以使用电机本身配置的传感器构成半闭环调节系统,又可以通过接口与外部的位置或速度或力矩传感器构成高精度的全闭环调节系统。高度的集成化还显著地缩小了整个控制系统的体积,使得伺服系统的安装与调试工作都得到了简化。 5. 智能化 智能化是当前一切工业控制设备的流行趋势,伺服驱动系统作为一种高级的工业控制装置当然也不例外。最新数字化的伺服控制单元通常都设计为智能型产品,它们的智能化特点表现在以下几个方面:首先他们都具有参数记忆功能,系统的所有运行参数都可以通过人机对话的方式由软件来设置,保存在伺服单元内部,通过通信接口,这些参数甚至可以在运行途中由上位计算机加以修改,应用起来十分方便;其次它们都具有故障自诊断与分析功能,无论什么时候,只要系统出现故障,就会将故障的类型以及可能引起故障的原因通过用户界面清楚地显示出来,这就简化了维修与调试的复杂性;除以上特点之外,有的伺服系统还具有参数自整定的功能。众所周知,闭环调节系统的参数整定是保证系统性能指标的重要环节,也是需要耗费较多时间与精力的工作。带有自整定功能的伺服单元可以通过几次试运行,自动将系统的参数整定出来,并自动实现其最优化。对于使用伺服单元的用户来说,这是新型伺服系统最具吸引力的特点之一。 6. 模块化和网络化 在国外,以工业局域网技术为基础的工厂自动化(Factory AutomaTIon 简称FA)工程技术在最近十年来得到了长足的发展,并显示出良好的发展势头。为适应这一发展趋势,最新的伺服系统都配置了标准的串行通信接口(如RS-232C或RS-422接口等)和专用的局域网接口。这些接口的设置,显著地增强了伺服单元与其它控制设备间的互联能力,从而与CNC系统间的连接也由此变得十分简单,只需要一根电缆或光缆,就可以将数台,甚至数十台伺服单元与上位计算机连接成为整个数控系统。也可以通过串行接口,与可编程控制器(PLC)的数控模块相连。 综上所述,伺服系统将向两个方向发展。一个是满足一般工业应用要求,对性能指标要求不高的应用场合,追求低成本、少维护、使用简单等特点的驱动产品,如变频电机、变频器等。另一个就是代表着伺服系统发展水平的主导产品—伺服电机、伺服控制器,追求高性能、高速度、数字化、智能型、网络化的驱动控制,以满足用户较高的应用要求。

    时间:2020-05-19 关键词: 驱动技术 伺服系统 伺服电机

  • 伺服系统调试步骤

    伺服系统调试步骤

    伺服系统—机电一体化关键技术 “伺服机构系统”源自servomechanism system,系指经过闭环控制方式达到一个机械系统位置、速度、或加速度控制的系统。一个伺服系统的构成通常包含被控对象(plant)、驱动器(actuator)、控制器(controller)等几个部分,被控对象系指被控制的物体,例如一个机械手臂,或是一个机械工作平台。驱动器的功能在于主要提供被控对象的动力,可能以气压、液压、或是电力驱动的方式呈现,若是采用液压驱动方式,一般称之为液压伺服系统。目前尽大多数伺服系统采用电力驱动方式,驱动器包含了电机与功率放大器,特别设计应用于伺服系统的电机蒙古自治区称之为伺服电机(servo motor),通常内部含有位置反馈装置,如光电编码器(optical encoder)或是旋转变压器(resolver),目前主要应用于产业界的伺服电机包括直流伺服电机、永磁交流伺服电机和感应交流伺服电机,其中又以永磁交流伺服电机占尽大多数。控制器的功能在于提供整个伺服系统的闭环控制,如转矩控制、速度控制和位置控制等。目前一般产业用伺服驱动器(servo drive)通常包含了控制器和功率放大器。 一个传统伺服机构系统的组成如图1所示,伺服驱动器主要包含功率放大器与伺服控制器,伺服控制器通常包含速度控制器与转矩控制器,电机通常提供模拟式的速度反馈信号,控制界面采用±10V的模拟信号,经过外回路的模拟命令,可直接控制电机的转速或转矩。采用这种伺服驱动器,通常必须再加上一个位置控制器(posiTIon controller)才能完成位置控制。图2所示是一个现代的伺服机构系统结构图,其中的伺服驱动器包含了伺服控制器与功率放大器,伺服电机提供高分辨率的光电编码器反馈信号。 什么是伺服系统? 伺服系统(servomechanism)又称随动系统,是用来精确地跟随或复现某个过程的反馈控制系统。伺服系统使物体的位置、方位、状态等输出被控量能够跟随输入目标(或给定值)的任意变化的自动控制系统。 它的主要任务是按控制命令的要求、对功率进行放大、变换与调控等处理,使驱动装置输出的力矩、速度和位置控制非常灵活方便。在很多情况下,伺服系统专指被控制量(系统的输出量)是机械位移或位移速度、加速度的反馈控制系统,其作用是使输出的机械位移(或转角)准确地跟踪输入的位移(或转角),其结构组成和其他形式的反馈控制系统没有原则上的区别。 注意:伺服系统不单单指以伺服电机构成的电气伺服系统,还有以伺服阀构成的液压伺服系统。 伺服系统调试步骤 初始化参数 在接线之前,先初始化参数。在控制卡上:选好控制方式;将PID参数清零;让控制卡上电时默认使能信号关闭;将此状态保存,确保控制卡再次上电时即为此状态。 在伺服电机上:设置控制方式;设置使能由外部控制;编码器信号输出的齿轮比;设置控制信号与电机转速的比例关系。一般来说,建议使伺服工作中的最大设计转速对应9V的控制电压。 接线 将控制卡断电,连接控制卡与伺服之间的信号线。以下的线是必须要接的:控制卡的模拟量输出线、使能信号线、伺服输出的编码器信号线。复查接线没有错误后,伺服电机和控制卡(以及PC)上电。此时电机应该不动,而且可以用外力轻松转动,如果不是这样,检查使能信号的设置与接线。用外力转动电机,检查控制卡是否可以正确检测到电机位置的变化,否则检查编码器信号的接线和设置。 试方向 对于一个闭环控制系统,如果反馈信号的方向不正确,后果肯定是灾难性的。通过控制卡打开伺服的使能信号。这是伺服应该以一个较低的速度转动,这就是传说中的“零漂”。一般控制卡上都会有抑制零漂的指令或参数。使用这个指令或参数,看电机的转速和方向是否可以通过这个指令(参数)控制。 如果不能控制,检查模拟量接线及控制方式的参数设置。确认给出正数,电机正转,编码器计数增加;给出负数,电机反转转,编码器计数减小。如果电机带有负载,行程有限,不要采用这种方式。测试不要给过大的电压,建议在1V以下。如果方向不一致,可以修改控制卡或电机上的参数,使其一致。 抑制零漂 在闭环控制过程中,零漂的存在会对控制效果有一定的影响,最好将其抑制住。使用控制卡或伺服上抑制零飘的参数,仔细调整,使电机的转速趋近于零。由于零漂本身也有一定的随机性,所以,不必要求电机转速绝对为零。 建立闭环控制 再次通过控制卡将伺服使能信号放开,在控制卡上输入一个较小的比例增益,至于多大算较小,这只能凭感觉了,如果实在不放心,就输入控制卡能允许的最小值。将控制卡和伺服的使能信号打开。这时,电机应该已经能够按照运动指令大致做出动作了。 调整闭环参数 细调控制参数,确保电机按照控制卡的指令运动,这是必须要做的工作,而这部分工作,更多的是经验,这里只能从略了。

    时间:2020-05-19 关键词: 控制系统 伺服系统 伺服控制器

  • 伺服系统组成

    伺服系统组成

    由于伺服系统服务对象很多,如计算机光盘驱动控制、雷达跟踪系统、进给跟踪系统等,因而对伺服系统的要求也有所差别。工程上对伺服系统的技术要求很具体,可以归纳为以下几个方面:   ⒈对系统稳态性能的要求;   ⒉对伺服系统动态性能的要求;   ⒊对系统工作环境条件的要求;   ⒋对系统制造成本、运行的经济性、标准化程度、能源条件等 方面的要求。   虽然伺服系统因服务对象的运动部件、检测部件以及机械结构等的不同而对伺服系统的要求也有差异,但所有伺服系统的共同点是带动控制对象按照指定规律做机械运动。从自动控制理论的角度来分析,伺服控制系统一般包括控制器、被控对象、执行环节、检测环节、比较环节等五部分。 伺服系统组成原理框图如图1.1所示。 伺服系统组成(自上而下) 控制器:plc,变频器,运动控制卡等其他控制设备,也称为上位机; 控制器按照数控系统的给定值和通过反馈装置检测的实际运行值的差,调节控制量。 伺服驱动器:沟通上位机和伺服电机,作用类似于变频器作用于普通交流马达。 功率驱动装置作为系统的主回路,一方面按控制量的大小将电网中的电能作用到电动机之上,调节电动机转矩的大小,另一方面按电动机的要求把恒压恒频的电网供电转换为电动机所需的交流电或直流电 伺服电机:执行设备,接受来自驱动器的控制信号; 电动机则按供电大小拖动机械运转。 机械设备:将伺服电机的圆周运动(或直线电机的直线运动)转换成所需要的运动形式; 各类传感器和继电器:检测工业控制环境下的各种信号送给上位机或驱动器做为某些动作的判断标准。 伺服系统是指利用某一部件(如控制杆)的作用能使系统所处的状态到达或接近某一预定值,并能将所需状态(所需值)和实际状态加以比较,依照它们的差别(有时是这一差别的变化率)来调节控制部件的自动控制系统。 主要作用 1、以小功率指令信号去控制大功率负载; 2、在没有机械连接的情况下,由输入轴控制位于远处的输出轴,实现远距同步传动; 3、使输出机械位移精确地跟踪电信号,如记录和指示仪表等。

    时间:2020-05-19 关键词: 控制器 伺服系统 伺服电机

  • 伺服系统的结构组成与设计要求

    伺服系统的结构组成与设计要求

    伺服系统,亦称随动系统,是一种能够跟踪输 入的指令信号进行动作,从而获得精确的位置、速度或力输出的自动控制系统。大多数伺服系统具有检测反馈回路,因而伺服系统是一种反馈控制系统。按照反馈控制理论,伺服系统需不断检测在各种扰动作用下被控对象输出量的变化,与指令值进行比较,并用两者的偏差值对系统进行自动调节,以消除偏差,使被控对象输出量始终跟踪输入的指令值。 伺服系统是根据输入的指令值与输出的物理量之间的偏差进行动作控制的。因此伺服系统的工作过程是一个偏差不断产生,又不断消除的动态过渡过程。 伺服控制的实例随处可见,如工人操作机床进行加工时,必须用眼睛始终观察加工过程的进行情况,通过大脑对来自眼睛的反馈信息进行处理,决定下一步如何操作,然后通过手摇动手轮,驱动工作台上的工件或刀具来执行大脑的决策,消除加工过程中出现的偏差,最终加工出符合要求的工件。在这个例子中,检测、反馈与控制等功能是通过人来实现的,而在伺服系统中,这些功能都要通过传感器、控制及信息处理装置等来加以实现。如数控机床的伺服系统中,位置检测传感器、数控装置和伺服电动机分别取代了人的眼睛、大脑和手的功能。 许多机电一体化产品(如数控机床、工业机器人等),需要对输出量进行跟踪控制,因而伺服系统是机电一体化产品的一个重要组成部分,而且往往是实现某些产品目的功能的主体。伺服系统中离不开机械技术和电子技术的综合运用,其功能是通过机电结合才得以实现的,因此,伺服系统本身就是一个典型的机电一体化系统。 伺服系统的结构组成 机电一体化的伺服控制系统的结构、类型繁多,但从自动控制理论的角度来分析,伺服控制系统一般包括控制器、被控对象、执行环节、检测环节、比较环节等五部分。 1、比较环节 比较环节是将输入的指令信号与系统的反馈信号进行比较,以获得输出与输入间的偏差信号的环节,通常由专门的电路或计算机来实现。 2、控制器 控制器通常是计算机或PID控制电路,其主要任务是对比较元件输出的偏差信号进行变换处理,以控制执行元件按要求动作。 3、执行环节 执行环节的作用是按控制信号的要求,将输入的各种形式的能量转化成机械能,驱动被控对象工作。机电一体化系统中的执行元件一般指各种电机或液压、气动伺服机构等。 4、被控对象 5、检测环节 检测环节是指能够对输出进行测量并转换成比较环节所需要的量纲的装置,一般包括传感器和转换电路。 伺服系统设计要求 1、稳定性 伺服系统的稳定性指在系统。上的扰动信号消失后,系统能够恢复到原来的稳定状态下运行,或者在输入的指令信号作用下,能够达到的新的稳定运行状态的能力。 稳定性要求是一项最基本的要求,是保证伺服系统能够正常运行的最基本条件。伺服系统在其工作范围内应该是稳定的,其稳定性主要取决于系统的结构及组成元件的参数,可采用自动控制理论所提供的各种方法来加以控制。 2、精度 伺服系统的精度是指其输出量复现输入指令信号的精确程度。 系统中各个元件的误差都会影响到系统的精度,如传感器的灵敏度和精度、伺服放大器的零点漂移和死区误差、机械装置中的反向间隙和传动误差、各元器件的非线性因素等。反映在伺服系统上就会表现出动态误差、稳态误差和静态误差,伺服系统应在比较经济的条件下达到给定的精度 3、快速响应性 快速响应性是指系统输出量快速跟随输入指令信号变化的能力,它主要取决于系统的阻尼比和固有频率可以提高快速响应性,但对系统的稳定性和最大超调量有不利影响,因此系统设计时应该对两者进行优化,使系统的输出响应速度尽可能快。 4、灵敏度 系统各元件的参数变化等都会影响系统的性能,系统对这些变化的灵敏度要小,即系统的性能应不受参数变化的影响。具体措施为:对于开环系统,应严格挑选各元件;对于闭环系统,对输出通道中元件的挑选标准可适当放宽,对反馈通道的各元件必须严格挑选,以改善系统的灵敏度。

    时间:2020-05-19 关键词: 传感器 控制器 伺服系统

  • 步进电机的细分控制

    步进电机的细分控制

    步进电机细分驱动技术是七十年代中期发展起来的一种可以显著改善步进电机综合使用性能的驱动控制技术。它是通过控制各相绕组中的电流,使它们按一定的规律上升或下降,即在零电流到最大电流之间形成多个稳定的中间电流状态,相应的合成磁场矢量的方向也将存在多个稳定的中间状态,且按细分步距旋转。其中合成磁场矢量的幅值决定了步进电机旋转力矩的大小,合成磁场矢量的方向决定了细分后步距角的大小。细分驱动技术进一步提高了步进电机转角精度和运行平稳性。 国内步进电机细分驱动技术在九十年代中期得到了较大发展,主要应用在工业、航天、机器人、精密测量等领域,如数控机床、跟踪卫星用光电经纬仪中采用了步进电机细分驱动技术,大大提高了控制与测量精度。 步进电机细分到底是什么东西? 对于细分,大家可以这么理解,我们的步进电机有一个重要的参数叫做步距角,什么是步距角呢,简单点说就是我们的步进电机每一个脉冲所走的角度,我这个电机的步距角是1.8度,所以走一圈是需要200个脉冲的,当然大家肯定都知道,一圈是360度哈,这就是步距角的作用。 那么细分又是干什么的呢,细分的意思就是设置这个步进驱动器控制电机走一圈所需的脉冲数,我是这么理解的哈,我们看下这个上面的表格,第一个框是细分倍数,第二个框是我们的脉冲数,第三个框是需要设定的拨码开关。 拨码开关实际上就是选择开关,我们选择了多少细分倍数,就去设定这个拨码开关,总共有六个拨码开关,前面的S1,S2,S3,是细分倍数的设置,后边的S4,S5,S6是电机电流的设置。 比如我们让这个步进电机,接收到800个脉冲的时候才走一圈,我们就选择800/200=4,选择4的细分倍数,然后我们就能查到,4倍,就是800个脉冲,然后就选择我们的拨码开关,OFF,ON,OFF,就是把S1拨到OFF,S2拨到ON,S3拨到OFF,而我这个电机是42电机,电流为1.5A,查表得到拨码开关位置为,S4拨到ON,S5拨到ON,S6拨到OFF。 步进电机的细分控制 步进电机的运行性能与它的步进驱动器有密切的联系,可以通过驱动技术的改进来克服步进电机的缺点。相对于其他的驱动方式,细分驱动方式不仅可以减小步进电机的步距角,提高分辨率,而且可以减少或消除低频振动,使电机运行更加平稳均匀。 总体来说,细分驱动的控制效果最好。因为常用低端步进电机伺服系统没有编码器反馈,所以随着电机速度的升高其内部控制电流相应减小,从而造成丢步现象。所以在速度和精度要求不高的领域,其应用非常广泛细分驱动精度高,细分是驱动器将上级装置发出的每个脉冲按驱动器设定的细分系数分成系数个脉冲输出,比喻步进电机每转一圈为200个脉冲,如果步进电机驱动器细分为32,那么步进电机驱动器需要输出6400个脉冲步进电机才转一圈。通常细分有2、4、8、16、32、62、128、256、512.。.. 在国外,对于步进系统,主要采用二相混合式步进电机及相应的细分驱动器。但在国内,广大用户对“细分”还不是特别了解,有的只是认为,细分是为了提高精度,其实不然,细分主要是改善电机的运行性能。 现说明如下: 步进电机的细分控制是由驱动器精确控制步进电机的相电流来实现的,以二相电机为例,假如电机的额定相电流为3A,如果使用常规驱动器(如常用的恒流斩波方式)驱动该电机,电机每运行一步,其绕组内的电流将从0突变为3A或从3A突变到0,相电流的巨大变化,必然会引起电机运行的振动和噪音。 如果使用细分驱动器,在10细分的状态下驱动该电机,电机每运行一微步,其绕组内的电流变化只有0.3A而不是3A,且电流是以正弦曲线规律变化,这样就大大的改善了电机的振动和噪音,因此,在性能上的优点才是细分的真正优点。由于细分驱动器要精确控制电机的相电流,所以对步进电机驱动器要有相当高的技术要求和工艺要求,成本亦会较高。 注意,国内有一些驱动器采用“平滑”来取代细分,有的亦称为细分,但这不是真正的细分,望广大用户一定要分清两者的本质不同: 1.“平滑”并不精确控制电机的相电流,只是把电流的变化率变缓一些,所以“平滑”并不产生微步,而细分的微步是可以用来精确定位的。 2.电机的相电流被平滑后,会引起电机力矩的下降,而细分控制不但不会引起电机力矩的下降,相反,力矩会有所增加。

    时间:2020-05-06 关键词: 驱动器 步进电机 伺服系统

  • 伺服原理简述

    伺服原理简述

    伺服系统(servo system)亦称随动系统,属于自动控制系统中的一种,它用来控制被控对象的转角(或位移),使其能自动地、连续地、精确地复规输入指令的变化规律。它通常是具有负反馈的闭环控制系统,有的场合也可以用开环控制来实现其功能。在实际应用中一般以机械位置或角度作为控制对象的自动控制系统,例如数控机床等。使用在伺服系统中的驱动电机要求具有响应速度快、定位准确、转动惯量较大等特点,这类专用的电机称为伺服电机。其基本工作原理和普通的交直流电机没有什么不同。该类电机的专用驱动单元称为伺服驱动单元,有时简称为伺服,一般其内部包括转矩(电流)、速度和/或位置闭环。其工作原理简单的说就是在开环控制的交直流电机的基础上将速度和位置信号通过旋转编码器、旋转变压器等反馈给驱动器做闭环负反馈的PID调节控制。再加上驱动器内部的电流闭环,通过这3个闭环调节,使电机的输出对设定值追随的准确性和时间响应特性都提高很多。伺服系统是个动态的随动系统,达到的稳态平衡也是动态的平衡。 全数字伺服系统一般采用位置控制、速度控制和力矩控制的三环结构。系统硬件大致由以下几部分组成:电源单元;功率逆变和保护单元;检测器单元;数字控制器单元;接口单元。相对应伺服系统由外到内的“位置”、“速度”、“转矩”三个闭环,伺服系统一般分为三种控制方式。在使用位置控制方式时,伺服完成所有的三个闭环的控制。在使用速度控制方式时,伺服完成速度和扭矩(电流)两个闭环的控制。一般来讲,我们的需要位置控制的系统,既可以使用伺服的位置控制方式,也可以使用速度控制方式,只是上位机的处理不同。另外,有人认为位置控制方式容易受到干扰。而扭矩控制方式是伺服系统只进行扭矩的闭环控制,即电流控制,只需要发送给伺服单元一个目标扭矩值,多用在单一的扭矩控制场合,比如在小角度裁断机中,一个电机用速度或位置控制方式,用来向前传送材料,另一个电机用作扭矩控制方式,用来形成恒定的张力。 伺服原理简述 伺服的原理简单说就几句话: 1、变频器是伺服的执行机构; 2、伺服是自动控制系统中,以物体的位置、方位、姿势等为控制量,组成跟踪目标的任意控制系统; 3、变频器执行伺服的开、停、调速、制动等命令; 4、伺服通过编码器检测反馈电机、工件的实际位移量,伺服通过上位机输入目标控制量,目标控制量-实际位移量=伺服命令; 5、举例说: 1)指令脉冲-反馈脉冲=指令脉冲>>0,启动、加速; 2)指令脉冲-反馈脉冲=指令脉冲≥0,减速、停车; 3)指令脉冲-反馈脉冲=反馈脉冲,反转寻址; 6、伺服的“指令脉冲-反馈脉冲”所产生的启动、停车命令是准确的,而变频器控制的电机实际启动、停止的位置是否在给定位置,就控制不了了! 7、所以伺服实现了指令与检测反馈的精确命令,而并没有实现电机的精确控制; 8、步进电机的特点是,实现了电机的精确控制,每前进一步走多少度是确定的; 9、如果用伺服的“指令脉冲-反馈脉冲”所产生的启动、停车命令,直接控制电机的步进脉冲电流,就彻底改变了伺服不能精确控制电机的缺陷,就真正实现了运动的精确控制!

    时间:2020-05-04 关键词: 控制系统 变压器 伺服系统

  • 步进伺服系统控制模式的区别

    步进伺服系统控制模式的区别

    伺服电机与步进电机的区别 要了解两者的区别,我们需要先对每一个对象都要深入了解一 下。 首先了解一下工作原理, 步进电机的工作原理是一种将电脉冲转化为角位移的执行机构。当步进驱动器接收到一个脉冲信号,就驱动步进电机按设定的方向转动一个固定的角度,它的旋转是以固定的角度一步-一步运行的。可以通过控制发出脉冲个数来控制角位移量,从而达到控制位移的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。而伺服电机内部的转 子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的分辨率。 第一,步进电机和伺服电机的控制方式不同,步进电机是通过控制脉冲的个数控制转动角度的,一个脉冲对应一个步距角,但是没有反馈信号,电机不知道具体走到了什么位置,位置精度不够高。 伺服电机也是通过控制脉冲个数,伺服电机每旋转一 个角度,都会发出对应数量的脉冲,同时驱动器也会接收到反馈回来的信号,和伺服电机接受的脉冲形成比较,这样系统就会知道发了多少脉冲给伺服电机,同时又收了多少脉冲回来,就能够很精确的控制电机的转动,从而实现精确的定位,可以达到0.001mm。 第二, 过载能力不同步进电机一般不具有过载能力。交流伺服电机具有较强的过载能力。以皮尔磁交流伺服系统为例,它具有速度过载和转矩过载能力。其最大转矩为额转矩的3倍,可用于克服惯性负载在启动瞬间的惯性力矩。步进电机因为没有这种过载能力,在某些工作场合就不能用步进电机工作了。 第三, 速度响应性能不同步进电机从静止加速到工作转速(一般为每分钟几百转) 需要200 ~ 400ms。交流伺服系统的加速性能较好,以皮尔磁交流伺服电机为例,从静止加速到其额定转速3000 r/min。仅需几ms,可用于要求快速启停并且位置精度要求较高的控制场台。 步进伺服系统控制模式的区别 步进电机作为一种开环控制的系统,和现代数字控制技术有着本质的联系。在目前国内的数字控制系统中,步进电机的应用十分广泛。随着全数字式交流伺服系统的出现,交流伺服电机也越来越多地应用于数字控制系统中。为了适应数字控制的发展趋势,运动控制系统中大多采用步进电机或全数字式交流伺服电机作为执行电动机。虽然两者在控制方式上相似(脉冲串和方向信号),但在使用性能和应用场合上存在着较大的差异。现就二者的使用性能作一比较。 1 控制精度不同 两相混合式步进电机步距角一般为1.8°、0.9°,五相混合式步进电机步距角一般为0.72°、0.36°。也有一些高性能的步进电机通过细分后步距角更小。如山洋公司(SANYODENKI)生产的二相混合式步进电机其步距角可通过拨码开关设置为1.8°、0.9°、0.72°、0.36°、0.18°、0.09°、0.072°、0.036°,兼容了两相和五相混合式步进电机的步距角。 交流伺服电机的控制精度由电机轴后端的旋转编码器保证。以山洋全数字式交流伺服电机为例,对于带标准2000线编码器的电机而言,由于驱动器内部采用了四倍频技术,其脉冲当量为360°/8000=0.045°。对于带17位编码器的电机而言,驱动器每接收131072个脉冲电机转一圈,即其脉冲当量为360°/131072=0.0027466°,是步距角为1.8°的步进电机的脉冲当量的1/655。 2 低频特性不同 步进电机在低速时易出现低频振动现象。振动频率与负载情况和驱动器性能有关,一般认为振动频率为电机空载起跳频率的一半。这种由步进电机的工作原理所决定的低频振动现象对于机器的正常运转非常不利。当步进电机工作在低速时,一般应采用阻尼技术来克服低频振动现象,比如在电机上加阻尼器,或驱动器上采用细分技术等。 交流伺服电机运转非常平稳,即使在低速时也不会出现振动现象。交流伺服系统具有共振抑制功能,可涵盖机械的刚性不足,并且系统内部具有频率解析机能(FFT),可检测出机械的共振点,便于系统调整。 3 矩频特性不同 步进电机的输出力矩随转速升高而下降,且在较高转速时会急剧下降,所以其最高工作转速一般在300~600RPM。交流伺服电机为恒力矩输出,即在其额定转速(一般为2000RPM或3000RPM)以内,都能输出额定转矩,在额定转速以上为恒功率输出。 4 过载能力不同 步进电机一般不具有过载能力。交流伺服电机具有较强的过载能力。以山洋交流伺服系统为例,它具有速度过载和转矩过载能力。其最大转矩为额定转矩的二到三倍,可用于克服惯性负载在启动瞬间的惯性力矩。步进电机因为没有这种过载能力,在选型时为了克服这种惯性力矩,往往需要选取较大转矩的电机,而机器在正常工作期间又不需要那么大的转矩,便出现了力矩浪费的现象。 5 运行性能不同 步进电机的控制为开环控制,启动频率过高或负载过大易出现丢步或堵转的现象,停止时转速过高易出现过冲的现象,所以为保证其控制精度,应处理好升、降速问题。交流伺服驱动系统为闭环控制,驱动器可直接对电机编码器反馈信号进行采样,内部构成位置环和速度环,一般不会出现步进电机的丢步或过冲的现象,控制性能更为可靠。 6 速度响应性能不同 步进电机从静止加速到工作转速(一般为每分钟几百转)需要200~400毫秒。交流伺服系统的加速性能较好,以松下MSMA400W交流伺服电机为例,从静止加速到其额定转速3000RPM仅需几毫秒,可用于要求快速启停的控制场合。 综上所述,交流伺服系统在许多性能方面都优于步进电机。但在一些要求不高的场合也经常用步进电机来做执行电动机。所以,在控制系统的设计过程中要综合考虑控制要求、成本等多方面的因素,选用适当的控制电机。

    时间:2020-05-04 关键词: 步进电机 伺服系统 伺服电机

  • 基于S7-300的交流伺服系统在汽车仪表板生产线上的应用

    基于S7-300的交流伺服系统在汽车仪表板生产线上的应用

    摘 要:以西门子SIMATIC S7—300 PLC为核心的交流伺服系统代替原来以单片机为核心的直流伺服系统。并介绍了该系统的控制对象和控制任务, 然后着重论述系统的体系结构、软硬件设计方案及实施方法。关键词:PLC;交流伺服;直流伺服0 引言  以前的伺服驱动系统多以直流系统为主,这是因为直流电机调速比较方便,本身的机械特性较硬,但直流电机由于有电刷换向,不适用于防爆场合,且结构复杂,维修不便。近年来由于电子技术飞速发展,交流调速技术日趋成熟,其调速性能可与直流系统相媲美,并正逐步取代直流电机调速。  我公司的原系统为CANN0N公司独立研制,以STD总线、Z80CPU为核心的单片机组成的直流伺服控制系统。该系统抗干扰能力差,软硬件资料不详, 维修困难, 且备件价格贵, 采购周期长, 经常造成停机。因此我们采用西门子S7—300PLC及位控模块FM357、SIM0DRIVE611A伺服驱动模块、1FK6伺服电机构成的数控系统对原系统进行了改造。1 系统组成和工艺流程1.1系统组成  系统组成框图如图1。  由图可知, 机械手控制系统是整个汽车仪表板生产线的核心, 它主要完成高精度的定位控制、与上位机通讯、数据采集、故障报警, 以及控制发泡机高压循环及浇注时间, 接收来自转盘线的速度信号以适应转盘不同运行方式。高压发泡机系统主要完成ISO (异氰酸酯)和POL (聚醚多元醇)2种发泡料的流量、压力调节及原料循环控制。转盘控制系统主要完成转盘速度调节及模具开合控制。  机械手控制系统是此次改造的重点,该系统的主要构成如图2。  硬件配置如下:  (1)上位机采用研祥EWS.843P一体化工控机,体积小巧,操作方便,主要完成参数设定,故障显示等。(2)以西门子S7.300PLC为核心,CPU模块为CPU316-2DP,主要具有与上位机通讯、处理I/O模块、控制计数器模块、位置控制模块的功能。(3)输入模块为32点的SM32l,输出模块为l6点的SM322主要完成数字量的I/O控制。(4)FM357位置控制模块主要完成高精度的定位控制。(5)FM350计数模块主要采集来自转盘的光电码盘信号,以便完成与转盘的协调控制。(6)SIMODRIVE6l1A伺服驱动模块主要接受FM357的控制信号,为伺服电机提供动力。(7)1FK6交流伺服电机为执行电机。1.2 系统工艺流程  系统工艺流程如图3。2 系统软件构成2.1系统的动作时序  系统的动作时序图如图4。2.2 程序框图及系统软件  系统上位机监控软件采用西门子公司WINCCV5.0软件, 运用该软件设计显示浇注轨迹及示教参数输入等, 中文人机界面, 操作方便。  下位机PLC程序采用西门子公司STEP7 V5.1软件,实现编程监控。程序框图如图5。3 结束语  由于采用西门子S7—300 PLC为核心的交流伺服系统代替原来的以单片机为核心的直流伺服系统,大大提高了控制可靠性。改造后的系统能完全满足与发泡机、转盘的协调控制, 符合注模工艺要求,系统性价比高, 操作方便, 经济效益显著。参考文献[1]西门子公司.SIMATIC S7—300可编程控制器硬件和安装手册,1 999[2]西门子公司.SIMATIC WINCC V5.0编程手册,2001[3]西门子公司.FM357—2 MULTl-AXIS MODULE FOR SERVO AND STEPPER DRIVES MANUAL,1999[4]西门子公司.SIMATIC STEP7 V5.1编程手册,2001

    时间:2019-03-21 关键词: 汽车 伺服系统 线上 仪表板 技术教程

  • 基于DSP的机器人视觉伺服系统

    基于DSP的机器人视觉伺服系统

    1.引言机器人视觉伺服系统是机器人领域中的重要研究方向,起源于80年代初,随着计算机技术、图像处理技术、控制理论的发展,取得了很大进步,有一些系统已投入使用。视觉伺服跟通常所说的机器视觉有所不同,视觉伺服是利用机器视觉的原理,进行图像的自动获取分析,从直接得到的图像处理反馈信息中,快速进行图像处理,在尽量短的时间内给出反馈信号,构成机器人的位置闭环控制,实现对机器人的控制。正是由于系统以实现某种控制为目的,所以视觉伺服系统中的图像处理过程必须快速准确。本文主要针对机器人视觉伺服系统要求快速准确的特点,为满足项目研究的需要,讨论研究了基于DSP的图像反馈机器人视觉伺服技术。2 .系统工作原理及硬件构成基于图像的视觉伺服直接计算图像误差,产生控制信号,并变换到机器人运动空间,驱动机械手,完成伺服任务。该方法对标定误差和空间模型误差不敏感。对于机器人视觉伺服系统,实时性问题一直是一个难以解决的重要问题。图像采集速度较低以及图像处理需要较长时间会给系统带来明显的时滞;此外视觉信息的引入也明显增大了系统的计算量。而图像处理速度是影响视觉伺服系统实时性的主要瓶颈之一。实时图像处理设计的难点是如何在有限的时间内完成对大量图像数据的处理。从人的视觉理论分析,只有图像处理系统的处理速度达每秒25帧以上时才能达到实时的效果,即要求实时图像处理系统必须在40ms内完成对一帧l图像的运算处理,才能保证图像的实时性。为了达到该处理速度,我们采用了基于DSP的图像视觉伺服方式,其结构如图1所示。图1基于DSP的图像反馈机器人视觉伺服结构图2.1WTC6201PA板简介本文选用了闻亭公司的WTC6201PA板,其板上硬件组成如图2所示。图2 WTC6201PA板硬件组成WTC6201PA板属于EVM板中的一种,它采用了TI公司的DSP器件TMS320C6201芯片。TMS320C6201芯片的最高时钟频率为200MHZ,每个时钟周期最多可以执行8条指令,从而实现16000MIPS的定点运算能力,它具有如下主要特点:· 采用了修正的哈佛总线结构,独立的程序总线、数据总线和DMA总线使得取指、读写数据和DMA操作可以并行。· 采用流水线处理,使两个或多个不同的操作可以重叠执行,提高了程序执行速度。· 具有高性能的外部存储器扩展接口EMIF,可以直接与同步突发静态存储器SBSRAM、同步动态存储器SDRAM连接,用于大容量、高速存储;还包括直接异步存储器接口,可与静态存储器SRAM、只读存储器EPROM连接,用于小容量的数据存储和程序存储;芯片内部集成的64K程序存储器可配置成 CASHE,以提高程序执行效率。· 16位主机口能够和其它CPU的存储区以及外围电路进行通信。且多通道DMA控制器可在没有CPU参与的情况下完成映射存储空间中的数据搬移,从而减轻CPU的工作量。同时板上配置了高速同步存储器SBSRAM(128K×32Bit)和SDRAM(4M×32bit),两路A/D转换器,大容量的FPGA器件和外部I/O接口,板上还提供了一个McBSP接口,兼容5V TTL电平,方便用户与外部系统通信。WT6201PA板满足 PCI Local Bus Revision 2.1 协议,主机可访问DSP的所有资源,用户可通过主机加载程序。WTC6201PA板提供了 Win98和NT下的驱动软件及DSP的应用软件(APIs),利用这个硬件平台和底层软件库,用户可以很容易的进行软件开发。2.2系统硬件实现我们选用了WTC6201PA板上的TMS320C6201芯片、FPGA、SBSRAM、SDRAM、双口RAM、PCI总线、JTAG接口等硬件资源作为视觉图像处理单元,和PC主控机、图像采集卡、CCD摄像机和机器人控制系统组成系统,原理框图如图3所示。图3系统原理框图系统工作过程如下:CCD摄像机输出标准制式的全电视信号,其中包含着图像信号、复合同步信号、行、场消隐信号、槽脉冲和前后均衡脉冲等七种信号。本系统采用了北京大恒公司的DH-PCI-H图像采集卡来实现视频信号的预处理。CCD摄像机将视频数据输入到图像采集卡,图像采集卡按照设定的窗口位置、大小和方式采集视频数据,采集的数据存储在计算机的内存中。图像传输由图像卡控制的,无需CPU参与,图像传输速度可达40MB/S。设置图像采集卡的采集方式是25帧/s连续采集,则采集一帧的时间为40ms,每一帧图像由奇偶两场组成,场频为50HZ,即一场扫描时间为 20ms。图像采集大小为512×512像素,量化为8bit,256灰度级,则一帧图像的数据量为512×512×8bit=256KB。图像数据存储方式为隔行存放,即奇、偶场的图像数据交叉存放,组成一帧完整图像函数。C6201由BOOTMODE[4:0]设置芯片的自举方式,加载过程采用主机(HPI)引导方式。外部主机通过主机口初始化CPU的存储空间,主机完成所有的初始化后,将主机口控制寄存器中的DSPINT位设置为1,结束引导过程。CPU退出复位状态,开始执行地址0处的指令。系统上电后,主机经HPI口对系统初始化,主要完成对各寄存器的设置,包括EMIF、中断、DMA等相关的寄存器初始化操作等。主机向HPI控制寄存器的DSPINT位写1触发DSP运行,系统进入等待状态。CCD摄像机实时采集图像,经图像采集卡处理后存储到主机内存。PC机内存缓冲区一帧存满,向 DSP发中断信号,DSP应答后,通过PCI总线将图像数据从主机内存经HPI口传输到WTC6201PA板片外SDRAM。DSP控制波门范围内图像数据以DMA方式传输到内部数据存储器。由于DSP为指令结构处理芯片,具有可编程性好、可以处理大量复杂指令(由程序RAM地址空间的大小决定)等优点,但相对FPGA而言其处理速度比较慢;而FPGA为可编程逻辑器件,具有很强的细粒度并行处理和多级流水线处理能力,但其内部有限的逻辑资源使之不适合实现复杂逻辑运算。因此我们采用FPGA作为协处理器来完成底层操作,再由DSP完成高层操作,两种操作可以采用流水线的方式并行运行,共同完成高速图像处理。从FPGA到DSP之间的图像数据传输使用双端口RAM。处理完一帧图像后,DSP向主机发信息,主机应答后,将图像处理结果经PCI总线传输至PC 机内存,PC机再将位置偏差数据信号送至伺服控制系统,完成伺服任务。3 .图像雅可比矩阵对于图像反馈机器人视觉伺服系统控制机构,图像雅可比矩阵是很关键的,它描述了机器人空间中的运动与图像特征空间中的运动之间的关系:式 (2),(4)是图像雅可比矩阵的两种表示形式,是基于图像反馈的视觉跟踪研究的基础。需要指出的是,为了确保得到唯一的图像特征矢量,图像特征空间维数应该大于或等于位姿空间维数(n≧m)。计算图像雅可比矩阵的方法有在线估计法、经验方法和学习方法。在线估计法通过动态估算得到图像雅可比矩阵;经验法可以通过标定或先验模型知识得到图像雅可比矩阵;学习方法主要可以利用离线示教和神经网络方法得到雅可比矩阵。结论本文分析了机器人视觉伺服系统的基本原理,并设计了基于TMS320C6201和可编程逻辑器件FPGA协处理结构的视觉系统,实现了图像采集和图像目标的实时处理。在实验室中我们利用所设计的视觉系统构建了实验平台,通过实验验证了所设计的视觉系统满足机器人视觉伺服系统的实时要求。本文作者创新点:对于机器人视觉伺服系统,实时性问题一直是一个难以解决的重要问题。本文创新采用TMS320C6201芯片来实现机器人视觉伺服的图像处理,并采用FPGA协处理,提高了图像处理速度,实验验证了所设计系统满足机器人视觉伺服的实时要求,具有广泛的工业应用前景。参考文献:[1] 付京逊,冈萨雷斯R C, LRR C S G.机器人学[M].北京:中国电子科学技术出版社1989.[2] S Hutchinson, G D Hager, P I Corke . A tutorial on visual servo control[J]. IEEE Trans. Robotics Automation, 1996,12(5): 650-670[3] 任丽香,马淑芬,李方慧.TMS320C6000系列DSPs的原理与应用[M].北京:电子工业出版社,2000[4] TMS320C62xx peripherals reference guide[Z].Texas Instruments Incorporated, 1999[5] 林靖,陈辉贵,王月娟,等.机器人视觉伺服系统的研究[J].控制理论与应用.2000,17(4): 476-481[6] 杨延西,刘丁,闰振杰.图像反馈机器人视觉伺服系统仿真[J].系统仿真学报,2003, 15 (12) :1737-1744.[7] 应家驹,何永强.基于DSP和FPGA的超大视场红外目标检测图像处理系统设计[J],微计算机信息,2006,3(2):161-162.

    时间:2018-09-28 关键词: DSP 机器人 机器视觉 嵌入式处理器 tms320c6201 伺服系统 图像处理

  • 基于积分分离PID控制的交流伺服系统

    基于积分分离PID控制的交流伺服系统

    1 引言 交流电动机伺服驱动系统由于其结构简单、易于维护的优点逐渐成为现代产业的基础。其中交流伺服系统在机器人与操作机械手的关节驱动以及精密数控机床等方面得到越来越广泛的应用。交流伺服系统由交流电动机组成,交流电动机的数字模型不是简单的线性模型,而具有非线性、时变、耦合等特点,用传统的基于对象模型的控制方法难以进行有效的控制。对于交流伺服系统的性能,一方面要求快速跟踪性能好,即要求系统对输入信号的响应快,跟踪误差小,过渡时间短,且无超调或超调小,振荡次数少。另一方面,要求稳态精度高,即系统稳态误差小,定位精度高。在交流伺服控制中,常规控制方法普遍是以PID控制为基础,然而单纯的PID控制存在超调量大,调节时间长,控制效率低等缺点,而且其参数的选取比较困难。在普通的PID控制中,积分环节的作用是消除静态误差,提高系统的控制精度。如果在误差较大的初始阶段引入积分环节,会造成PID的积分累积,从而引起系统较大的超调。因此,本文针对PID控制的特点,设计了一种积分分离的控制方法,即当系统误差较大时,取消积分环节,避免由于积分累积引起系统较大的超调;当系统误差较小时,引入积分环节,以消除误差,提高控制精度。将这种积分分离PID控制应用于交流伺服系统的位置实时控制,从而使控制过程的静态、动态性能指标较为理想。 2 系统结构设计 积分分离PID控制交流伺服系统结构如图1所示。图中θd为给定角位移,θ为电机转轴的实际角位移,e为θd和θ进行比较而得到的偏差,则有: 图1中,u为PID控制的转速期望值;ωd为期望电机转速;ω为实际电机转速;ωd与ω的偏差经过转速调节器产生期望的电机电磁转矩Td由于内环的不足可由外环控制来弥补,所以转速调节器采用一般的PI调节器即可,而电机的电磁转矩控制则采用直接转矩控制方法。 3 积分分离PID控制器 PID控制是一种技术成熟、应用广泛的控制方法,其结构简单,而且对大多数过程均有较好的控制效果。其离散PID控制规律为: 式中,u(k)为k时刻控制器的输出量;KP,KI,KD分别为比例系数,积分系数和微分系数;e(K)为当前时刻的交流伺服系统的位置与期望值之差;e(k-1)为上次采样时刻的交流伺服系统的位置与期望值之差。由式(2)可得到控制器输出第k个周期时刻的控制量u(k)和第k-1个周期时刻的控制量u(k-1)之间的增量为: 在PID控制中,积分环节的作用是消除静态误差,提高系统的控制精度。如果在误差较大的初始阶段引入积分环节,会造成:PID的积分累积,从而引起系统较大的超调。因此,本文针对PID控制的特点,设计了一种积分分离的控制方法,积分分离PID控制算法的程序框图如图2所示。当系统误差较大时,取消积分环节,采用PD控制,避免由于积分累积引起系统较大的超调;当系统误差较小时,引入积分环节,采用PID控制,以消除误差,提高控制精度。即:式中,ε>0为人为设定的阈值。 积分分离控制算法可表示为: 式中,T为采样时间,a为积分项的开关系数,即:4 实验研究 用于实验的交流电机参数为Pn=2.2 kW,Un=220 V,In=5 A,nn=1 440 r/min,r1=2.91 Ω,r2=3.04 Ω,Is=0.456 94 H,Ir=0.456 94 H,Im=O.444 27 H,Ten=14 N 通过实验表明,积分分离PID控制充分发挥了PID控制调节精度高的优点,提高了系统的控制精度。 5 结语 本文提出了一种基于积分分离PID控制的交流伺服系统,在系统误差较大时,取消积分环节;当误差较小时,引入积分环节,从而使系统的静态和动态性能指标较为理想。这种控制方法提高了系统的精度。仿真实验结果表明,该控制器具有很好的动静态性能,是一种行之有效的控制器。 发布者:博子

    时间:2018-09-19 关键词: 控制器 电源技术解析 伺服系统 积分分离 pid控制

  • MITSUBISHIQ系列定位模块在高速高精度定位系统中的应用———伺服系统的定位模块与影

    [摘要] 本文主要讲述了伺服系统的定位模块与影像处理系统相结合在高精度、高速度运动定位系统中的应用, 还详细的介绍了系统的组成和工作原理。[Abstract] The article mainly discusses the application of servo system are combined images system in the accuracy fixed position and detailed introduces the system of component and work principle. 关键词:伺服系统/LC/人机界面/定位模块/TFT/CCD一.概述 随着现代工业的发展,对于产品制造加工所要求的精度越来越高,特别是在电子工业中,所要求生产加工的精度要求很高,在现代日常生活中,许多日用电子产品的更新换代特别快,所用的研制开发、生产周期特别短,而在此环节中,生产环节就显得尤为重要,所以就对生产设备的要求也就越来越高,生产设备要能够适应多种不同产品的生产,特别是新产品的生产适应能力,还要能够保证产品的精度。在TFT生产中,在基板完成电路印刷等一系列的工作以后有一道工序,就是基板的切割,因为在前道生产根据设备和工艺的要求是一块比较大的基板,在一块大的基板上可能有好多块小的基板组成,这根据制造面板本身的用途来定。如手机面板,目前在生产的一块大的基板上有30到104块不等的小的基板组成,这还要根据手机面板的尺寸来定,如图1所示: 经过切割以后,变成一片一片小的基板,如图2所示: 从图2可以看出,基板由两层玻璃组合而成,在两层之间有印刷电路,而且在切割的时候上下不是在一条线上,而是成一个阶梯状,在TFT面的A处有印刷电路端子,切断过程中绝对不能碰伤端子。在如图3中所示: A-F中5个尺寸精度要全部达到±0.1mm,并且切断后在基板的边缘不能有毛边,这样就要在切断过程中要很好的控制压力、切入量,根据不同玻璃材质就要设定不同的压力和切入量,另外切断的步骤也是比较重要的,一般都采用的步骤是:①CF面 切②TFT面 剖③TFT面 切④C F面 剖。在现在划线设备中都是采用的多把刀(以前都是单刀作业),一般在5-7把刀,此系统中采用了5把刀,在此系统中刀的切入量和左右运动都采用伺服系统来控制,而且都采用了高速运动,这样能够大大提高工作的效率。二.系统组成与工作原理2.1 系统的硬件组成 图3是本系统整个控制系统的原理图,本系统采用Q06H CPU为控制单元,QD75D4和QD75D2为伺服系统的定位单元,还采用了两个QJ74C24通讯模块单元,其中一个与人机界面(A970GOT)连接,另外一个和画像处理系统连接,画像系统主要用于Mark点(也就是标记点)的识别,然后产生一个偏差的补正值。另外与QJ74C24相连接的PC1机是系统机械参数、工作参数设定以及切断程序编制的专用机。PC1与PLC之间的通讯使用的是专门的通讯程序软件。本系统的工作方式是采用偏差补正的方式。对于一个新的品种,首先要进行Mark点的识别,登录,MARK点的形状可以随意,但一般采用的是’十’字为Mark点标记,如图4所示,就是画像处理系统对Mark点的认识过程,认识后产生一个偏差补正量,根据偏差量计算出基准位置。 2.2 软件设计本系统采用的是A970GOT人机界面,在本系统中人机界面起了非常重要的角色,是其他任何器件都代替不了的。人机界面总共有218个画面组成,主要分两大部分:一是正常的操作人员操作的主画面,二是设备维修、调试人员进入的特殊功能画面,此画面只有工程师级身份人员才能进入,它的参数直接影响设备的正常工作,图6为特殊功能画面的结构图,其中主要是参数设定方面,这里主要介绍轴的位置参数设定,在本系统中最主要的部分就是伺服系统,它是保证系统精度的核心,伺服系统的参数、设定是非常复杂的.图6为伺服系统参数设定的基本框架结构图: 基本参数主要是单位设定、1脉冲的相当移动量、脉冲输出模式、转动方向、速度限制值、加减速时间、马达选择。详细设定除了对上面叙述中一些进行了详细设定以外,还对其他的功能进行了设定,如M代码的取码模式、速度模式、JOG运转、手动脉冲的选择、圆弧误差补正等等。原点复位参数设定主要是复归的方式、方向、原点地址、速度。定位用数据就是我们所要求系统如何去工作、工作的步骤、数据等内容。伺服系统的工作主要是对内部寄存器的地址进行操作,主要分为参数区、监视区、制御数据区、定位数据区、PLC的CPU内存区、块传送区几个部分。在图5系统图中对各个位置的设定(QD75)主要是对基本定位数据的设定,包括定位识别子、M代码、指令速度、定位地址/移动量、突停减速时间、圆弧地址,其中每轴共设定了30点位置,这样可以有效的适应系统切割复杂程度不同的基板。在人机界面的软件设计中,把与伺服系统相关的定位数据参数直接编写在画面中,可以有效的对系统进行调整,改变,在系统中不仅仅上面的这些数据,另外与定位有关的参数设定还有很多,在这里就不一一列举,本系统是一个非常复杂的系统。 2.3 系统的工作原理系统在机械参数设定好后,首先根据基板的划线数据进行编程,确定划线的数据、MARK点的数据、使用刀的数量、每把刀划每条线的压力、划线的次数等, 以上参数有专门的软件进行编辑。编辑完成后再通过PC1输入PLC 的CPU,在完成数据的编辑后,软件回自动生成切割的模拟画面,确定基板划线的每一步由哪几把刀去做,在完成这一系列的工作后,就要放入基板试作划线,根据系统设定,在放入基板后按下启动按钮,基板平台会自动把基板送到影像处理系统的CCD的下面,在监视器上面看到的就如图4所示,在MARK识别中与系统设定会有一个的偏差,根据这个偏差系统进行补正,现介绍一下补正过程,如图7: 第一把刀为例,刀1原点与CCD原点的X向距离D1在系统中设定为一定值,刀1与刀1原点的距离D2为在编制程序是产生,也为一定值,CCD原点与现在CCD之间的距离D3,在编制程序时有一个MARK的坐标值,D3即为基板的X向MARK坐标,D4为MARK点与刀1划基板第一道线X向距离,在理想状态下为一定值。即可以得出D1+D2=D3+D4,其中D1、D2为固定值,假设D5为CCD识别MARK点的动态坐标,偏差补正为△d,可以得出D5=D3±△d,如在理想状态,CCD识别MARK点的X向坐标刚好为D3,即D5=D3,而每块基板在放置的时候位置绝对会不一样,所以都会有一个偏差△d,根据△d每次在CCD识别MARK点后向刀1移动的距离为D4±△d,这就是偏差补正的过程,其他的刀原理也是这样,在偏转划线时也是根据CCD第一次MARK识别的坐标了确定的。在划完了TFT面后,在 CF面对TFT面进行剖断,然后在CF面划线,再在TFT面对CF进行剖断,这样就完成了对基板的划线。三.技术性能和特点1.系统采用了与人机界面相结合,使得系统的布线简单、简洁。2.采用了QD75系列的伺服系统定位单元,系统的度精能够达到0.01um。3.伺服系统的输出系统具有集电极开路输出和差分输出两种工作方式,在应用时可以根据需要进行选择。4.系统的定位范围比较宽,单位可以用um、英寸、度设定。控制系统也比较多样化,能够实现PTP控制、跟踪控制、速度控制、速度-位置控制、位置-速度控制,根据系统的需要可以选择不同的控制系统,另外,还具有圆弧插补功能。5.系统响应的时间比较短,因而减少了不同步产生的机会。6.系统采用了影像处理系统,这样就提高了系统的精度,对于一些要求不高的场合,系统在工作时影像系统可以选择不使用,但这样可以减少时间,增加工作的效率。7.本系统采用了多刀工作方式 ,这样大大的提高了工作的效率,但同时增加了系统在设计时的复杂性,8.另外,QD75系列的伺服定位单元具有预读起始功能,这样可以减少定位起始的时间,可以保证快速多种应用的定位。对于QD75系列的定位单元还专门设计了设置/监控软件——QP(GX-Configurator)这样便于定位参数的设定,定位数据的生成和监控。四.结束语本系统是一个比较复杂的系统,在定位方面要求比较高,它的主要工作部件就是伺服系统,对于伺服系统与PLC的编程是比较复杂的,而系统完成后,对于操作人员来说操作是非常简单的。参考文献:1.MITSUBISHI伺服定位模块单元 三菱电机株式会社 2.划线机的设计说明书 三星ダイヤモンド工业株式会社 3.高速画像处理装置 CSC工业株式会社

    时间:2018-09-07 关键词: 模块 系列 伺服系统 系统中的应用

首页  上一页  1 2 3 下一页 尾页
发布文章

技术子站

更多

项目外包