当前位置:首页 > 反激
  • 关于电源设计的布局,你知道吗?

    关于电源设计的布局,你知道吗?

    什么是电源设计的布局?你知道吗?一个完美的电路设计,电源布局显得尤为重要。由于不同的设计方案的出发点不同,而有所差异,但是电源的主要作用不会太大的偏差,本文就论一论电源设计之布局的重要性,各位跟我一起开启发现之旅吧! 事实是,很多不同的解决方案都是殊途同归;如果设计不是真的一团糟,多数电源都是可以正常工作的。 当然,这其中也有一些通用性规则,例如: •不要在快速切换信号中运行敏感信号。换言之,不要在开关节点下运行反馈跟踪。 •确保功率载荷跟踪和接地层大小足以支持当前的电流。 •尽量保持至少一个连续的接地层。 •使用足够的通孔(通常以每个通孔1A开始),将接地层相连。 除了这些基本的布局规则,我通常首先会识别开关回路,然后确定哪些回路具有高频开关电流。图1所示为针对降压电源(原理图和布局)的简化功率级的一个示例。 图1:降压电源原理图和布局 降压电源中存在两种状态(假定连续传导模式):控制开关(Q1)接通时和控制开关断开时。当控制开关接通时,电流从输入流至电感器。当控制开关断开时,电流继续在电感器流动并流经二极管(D1)。 但是存在输入脉冲电流,这是您在布局中需要关注的部分。在图1中,此回路被标记为“高频回路”,并以蓝色显示。 您布局的首要目标是将Q1、D1和输入电容与最短、最低电感回路连接。该回路越小,开关产生的噪声便越低。如果忽略这一点,电源将不能有效工作。 识别开关回路的规程适用于所有的电源拓扑结构。规程的各个步骤分别是: •在接通状态确定电流通路。 •在断开状态确定电流通路。 •找到连续电流的位置。 •找到断续电流的位置。 •尽量减少断续电流环路。 此列表中列出了给定功率级配置的关键回路: •降压——输入电容回路。 •升压——输出电容回路。 •反相降压 - 升压——输入和输出电容回路。 •反激——输入和输出电容回路。 •Fly-Buck™——输入电容回路。 •SEPIC——输出电容回路。 •Zeta——输入电容回路。 •正激、半桥、全桥——输入电容循环。 电源布局正如一种艺术形式一般,每个人都有自己的方式,而且很多时候也会起效。需要确保的一点是,在您确定功率级的零件位置时,首先确定高频开关回路;这样您便可为自己节约时间、免除烦恼。以上就是电源设计的布局解析,希望能给大家帮助。

    时间:2020-10-18 关键词: 敏感信号 降压电源 反激

  • 反激式开关电源的设计思路

    反激式开关电源的设计思路

    什么是开关电源,小编整理了一下,以反激式开关电源为例,开关电源的思路:要实现输出的稳定的电压,先获取输出端的电压,然后反馈给输出端调控输出功率(电压低则增大输出功率,反之则减小),最终达到一个动态平衡,稳定电压是一个不断反馈的结果。 一、整体概括 下图是一个反激式开关电源的原理图。输入电压范围在AC100V~144V,输出DC12V的电压。 二、瞬变滤波电路解析 市电接入开关电源之后,首先进入瞬变滤波电路(Transient Filtering),也就是我们常说的EMI电路。下图描述的是本次举例说明的瞬变滤波电路的电路图。 各个器件说明: F1-->保险管:当电流过大时,断开保险管,保护电路。 CNR1-->压敏电阻:抑制市电瞬变中的尖峰。 R31、R32-->普通贴片电阻:给这部分滤波放电,使用多个电阻的原因是分散各个电阻承受的功率。 C1-->X电容:对差模干扰起滤波作用。 T2-->共模电感:衰减共模电流。 R2-->热敏电阻:在电路的输入端串联一个负温度系数热敏电阻增加线路的阻抗,这样就可以有效的抑制开机时产生的浪涌电压形成的浪涌电流。当电路进入稳态工作时,由于线路中持续工作电流引起的NTC发热,使得电阻器的电阻值变得很小,对线路造成的影响可以完全忽略。 三、整流部分 各个器件说明: BD1->整流桥:作用应该知道。。 L1、EC1、EC2->π型LC滤波电路,主要起的就是滤波,使输出的电流更平滑。 四、开关电源主体部分 开关电源的主题部分如下图,由于采用标注的方式更好说明,所以提供标注版PDF下载(末尾有链接)。 五、输出端滤波电路 下图是输出端滤波电路,由于采用标注的方式更好说明,所以提供标注版PDF下载(末尾有链接)。 六、总结 由于本人也是初次学习开关电源,所以只对整体部分有个了解,对比较困难的部分--变压器,目前还没有很深刻的理解,其余部分有不懂的地方,可以交流。

    时间:2020-10-14 关键词: 开关电源 瞬变滤波电路 反激

  • 你知道智能控制有源钳位反激吗?

    你知道智能控制有源钳位反激吗?

    什么是智能控制有源钳位反激?它有什么作用?当我第一次开始烹饪时,我宁愿独自一人,认为厨房里的其他人会让我分心。但当我开始尝试更复杂的食谱并进行多个烹饪步骤时,我发现拥有帮手非常有用,而且烹饪体验更有趣。俗语说得好:如果你不能打败他们,加入他们。 同样的原则适用于有源钳位反激。 每个人都想要更小的AC/DC转换器,尤其是当它们用于手机或平板电脑充电器时。由于简单,反激式转换器是首选的拓扑结构,因为它可以有效地将交流电转换为直流电,而只需很少的元件。但是,反激式电路能达到多小是受限的,因为与变压器漏感相关的损耗限制了实际大小。到目前为止,每个设计都通过减小漏感来应对这一点。但有源钳位反激打破了这个循环。 图1:有源钳位反激,漏感为红色,有源钳位为蓝色 有源钳位可存储能量并将其传输至输出,而非通过在电阻 - 电容 - 二极管(RCD)或齐纳钳位中消耗能量来应对漏感。智能控制钳位还提供零电压开关。这样消除了两大主要损耗来源,使得尺寸大大减小。如果要使用氮化镓(GaN)场效应晶体管(FET)——其输出电容和导通电阻较低,则适配器的尺寸可以减半! 但细节是关键,因为如果有源钳位得不到智能控制,它实际上会使效率变差。有源钳位反激在过去仅仅是一个幻想,因为没有足够的智能控制器来实现这种拓扑结构。但这一现象在UCC28780中已经发生了改变。 这种有源钳位反激式控制器专门设计用于硅(Si)或GaN基功率级,使得这种拓扑结构适用于任何设计。UCC24612同步整流器符合美国能源部(DoE)VI级或行为准则(CoC)Tier 2标准。以上就是智能控制有源钳位反激解析,希望能给大家帮助。

    时间:2020-06-12 关键词: 智能控制 有源钳位 反激

  • 隔离型AC-DC电源的LED驱动电源

    隔离型AC-DC电源的LED驱动电源

    LED在生活中处处可见,有显示屏的,也有照明的,但是有很多人不知道LED灯需要LED驱动器来驱动,电路中通常加入了变压器的隔离型AC-DC电源转换包含反激、正激及半桥等拓扑结构,其中反激拓扑结构是功率小于30 W的中低功率应用的标准选择,而半桥结构则最适合于提供更高能效/功率密度。下面来介绍驱动器的相关知识。 LED驱动电源 就隔离结构中的变压器而言,其尺寸的大小与开关频率有关,且多数隔离型LED驱动器基本上采用“电子”变压器。 采用DC-DC电源的LED照明应用中,可以采用的LED驱动方式有电阻型、线性稳压器及开关稳压器等。电阻型驱动方式中,调整与LED串联的电流检测电阻即可控制LED的正向电流,这种驱动方式易于设计、成本低,且没有电磁兼容(EMC)问题,劣势是依赖于电压、需要筛选(binning) LED,且能效较低。线性稳压器同样易于设计且没有EMC问题,还支持电流稳流及过流保护(fold back),且提供外部电流设定点,不足在于功率耗散问题,及输入电压要始终高于正向电压,且能效不高。开关稳压器通过PWM控制模块不断控制开关(FET)的开和关,进而控制电流的流动。 以上就是LED驱动的相关技术知识,如果要从事相关行业,需要设计人员有雄厚的知识储备,还需要积累大量的项目开发经验。

    时间:2019-07-24 关键词: 开关电源 电源技术解析 正激 反激

  • 教你读懂反激开关电源电路图!

    教你读懂反激开关电源电路图!

    总是有小伙伴在论坛问开关电源的问题,今天以常用的反激开关电源的电路图为例,让大家轻松读懂开关电源电路图!  一, 先分类  开关电源的拓扑结构按照功率大小的分类如下:  10W以内常用RCC(自激振荡)拓扑方式  10W-100W以内常用反激式拓扑(75W以上电源有PF值要求)  100W-300W 正激、双管反激、准谐振  300W-500W 准谐振、双管正激、半桥等  500W-2000W 双管正激、半桥、全桥  2000W以上 全桥  二, 说重点  在开关电源市场中,400W以下的电源大约占了市场的70-80%,而其中反激式电源又占大部分,几乎常见的消费类产品全是反激式电源。  优点:成本低,外围元件少,低耗能,适用于宽电压范围输入,可多组输出.  缺点:输出纹波比较大。(输出加低内阻滤波电容或加LC噪声滤波器可以改善)  今天以最常用的反激开关电源的设计流程及元器件的选择方法为例。给大家讲解如何读懂反激开关电源电路图!  三, 画框图  一般来说,总的来分按变压器初测部分和次侧部分来说明。开关电源的电路包括以下几个主要组成部分,如图1图1,反激开关电源框图  四,原理图  图2是反激式开关电源的原理图,就是在图1框图的基础上,对各个部分进行详细的设计,当然,这些设计都是按照一定步骤进行的。下面会根据这个原理图进行各个部分的设计说明。图2 典型反激开关电源原理图  五,保险管图3 保险管  先认识一下电源的安规元件-保险管如图3。  作用: 安全防护。在电源出现异常时,为了保护核心器件不受到损坏。  技术参数: 额定电压 ,额定电流 ,熔断时间 。  分类: 快断、慢断、常规  计算公式: 其中:Po:输出功率  η效率:(设计的评估值)  Vinmin :最小的输入电压  2:为经验值,在实际应用中,保险管的取值范围是理论值的1.5~3倍。  0.98: PF值  六,NTC和MOV  NTC 热敏电阻的位置如图4。图4 NTC热敏电阻  图4中的RT为NTC,电阻值随温度升高而降低,抑制开机时产生的浪涌电压形成的浪涌电流。  图4中RV为MOV压敏电阻,压敏电阻是一种限压型保护器件,过电压保护、防雷、抑制浪涌电流、吸收尖峰脉冲、限幅、高压灭弧、消噪、保护半导体元器件等  七,XY电容图5 X和Y电容  如图X电容,Y电容。根据IEC 60384-14,安规电容器分为X电容及Y电容:1. X电容是指跨与L-N之间的电容器, 2. Y电容是指跨与L-G/N-G之间的电容器。  X电容没有具体的计算公式,经验:若电路采用两级EMI,则前级选择0.47uF,后级采用0.1uF电容。若为单级EMI,则选择0.47uF电容。(电容的容量大小跟电源功率没有直接关系)  Y电容的总容量一般都不能超过4700PF(472)  八,共模电感图6 共模电感  共模电感上,有两个共模电感线圈。这两个线圈绕在同一铁芯上,匝数和相位都相同(绕制方向向反)。共模电感器要不易饱和,如此就需要选择低B-H(磁芯损耗与饱和磁通密度)温度特性的材料,因需要较高的电感量,磁芯的μi值也就要高,同时还必须有较低的磁芯损耗和较高的BS(饱和磁通密度)值,符合上述要求之磁芯材质,目前以铁氧体材质最为合适,磁芯大小在设计时并没有一定的规定,原则上只要符合所需要的电感量,且在允许的低频损耗范围内,所设计的产品体积最小化。  因此,磁芯材质及大小选取应以成本、允许损耗、安装空间等做参考。共模电感常用磁芯的μi约在2000~10000之间。  九,整流桥图7 整流桥  十,高压启动与RCD箝位电路图8高压启动与RCD箝位电路  红线圈起的电阻为I C的高压启动电阻,电阻阻值的选择由IC特性决定。  蓝线圈起的部分为RCD箝位电路(也称为关断缓冲电路)。  十一,PWM IC 功能  PWM集成IC的作用:500V高压启动电路;电流控制模式;VCC具有过压保护功能;具备过载保护功能;500mA驱动能力;可调开关频率;内置谐波补偿电路。  各个器件的作用如下介绍:  R11为IC工作频率调整电阻;  D2为辅助绕组供电整流二极管;  R14为限流电阻;  C5为低频滤波电容;  C11为高频滤波电容;  R3为过功电阻;  R8为驱动电阻;  R12 MOS开机保护电阻;  C12为旁路电容;  U3-B为光耦反馈端。图9 集成PWM的IC  十二,MOS管  MOS管的耐压选择:  为 S极间耐压要是两倍的直流输入最大电压  MOS管的耐电流选择:  MOS所通过的电流有效值  输出电流  输出功率  最小输入直流电压值  最大占空比图10 MOS管  十三,变压器图11 变压器  变压器的线径计算是有规定的,特别是反激式电源变压器更应该注意:  在不同的频率下选取d也是不同的,在200KHz以下时,一般为4~5A/mm2,在200KHz以上时,一般为2~3A/mm2。  为了减少漏感,目前最好的、工艺最简单的绕制方法是初次级交错绕法也就是大家常说的三明治绕法  十四,次级电路  1. 限流电路由R18、U5、C17、R9、R20、R21 组成。工作原理:R18为回路的电流检测电阻,为了降低损耗,此电阻选择时尽量的小。图12 限流回路  2. U5为运算放大器LM358,358内部由两个运放,我们将两个运放一个做放大器,一个做比较器,将检测电阻上的电压值放大32.4倍后与基准电压做比较。当运放值低于基准值时,比较器输出高电平(358VCC电压),当运放值高于基准电压值时,比较器输出低电平(相对于接地).  3. C10,C15和C9为次级滤波电容。  4. D3为次级整流二极管。  5. C8、C4、R19组成了431所需的回收回路补偿,以便稳定控制回路。TL431 是开关电源次级反馈最常用的基准和误差放大器件。  6. U3光耦隔离是采用光电耦合器进行隔离,隔离电压为发光管和光敏三极管的隔离电压的最小值。图13 次级电路图14 TL431 光耦和LM358  总结:反激电源是生活中用到最多的电源,作为电子工程师来说熟悉和了解反激电源的组成结构和设计是非常必要的。反激电源的设计难点在于变压器及反馈补偿环路。反馈补偿环路的牵扯的内容太复杂,有机会和大家做详细的探讨。

    时间:2019-01-10 关键词: 开关电源 电源技术解析 反激

  • 反激电源仿真波形

    反激电源仿真波形

    图1是输出电压波形,我们可以看到输出电压存在过冲,要解决这个过冲可以在芯片COMP端外接一个软启动电容。接下来给大家看下在这个过冲阶段电路其他地方的波形。 图2是采样电阻上的电压和次级二极管上电流的波形,从此图我们可以看到芯片内部电流检测比较器工作的两个极端:在电压比15V低很多时,采样电压达到极限1V关断,在电压过冲阶段,比较器负端输入电压为0,所以导致输出脉冲占空比近似为0,开关管一直关断,输出电流完全由输出电容提供,直到过冲结束。

    时间:2018-11-06 关键词: 仿真 电源 电源技术解析 波形 反激

  • 初学者如何学习开关电源设计

    初学者如何学习开关电源设计

     先去找本电力电子书把几个拓扑的原理搞懂,然后买本《开关电源设计》学习。 建议还是看点理论知识,然后自己做点东西,比如先做个反激什么的,把整个控制原理都弄懂,参数设计也自己算,认真做完这个,你能学到很多的东西,然后后面就根据你需要有针对的学习了。 1、先从简单的原理入手,再进行选料 2、先从简单的开关电源做起 3、用图说话吧,电感L5,蓄能--放电循环,形成开关电源,开关频率非常快,一直向后级供电,再后级几个电容滤波,输出稳定的直流电源  

    时间:2017-04-25 关键词: 开关电源 电源技术解析 拓扑 开关电源设计 反激

  • 反激式电源中的噪声来源及修复

    反激式电源中的噪声来源及修复

     尽管开关电源的工作频率远超过人类的听力范围,但它们在特定的负载条件下仍会产生音频噪声。音频噪声的可能来源多种多样。噪声可以是设计缺陷(如振荡输出电压)导致,或者由电容或变压器等噪声元件导致。在有些情况下,您所听到的尖锐刺耳的噪鸣或嘶嘶声可能就像风扇在异常频率下出现的摇荡,或者由于电源靠近外部EMI源(荧光灯或电源插排)所导致。 本文将探讨反激式电源中最常见的噪声来源,并介绍可能的解决方案。下文中描述的所有操作程序都可以使用一个可程控交流电源供应器或自耦变压器和一个电子负载来完成。请记住,在有些情况下,您的电源所产生的噪声水平可能非常低,如果该电源将在密闭壳体内使用,那么音频噪声就不会构成问题。 可能的噪声源 反激式电源中最常见的噪声源是噪声元件。这种噪声通常由陶瓷电容或铁氧体变压器磁芯产生。陶瓷电容中的噪声通常由逆向压电效应造成。对介质结构施加电压后,会引发机械应力或应变,造成材料变形。当这种材料发生变形时,会排出周围的空气,从而产生噪声。 由于在发生较大的电压摆动时会出现逆向压电效应,因此设计师可以重点查找出现较高dV/dt摆幅的陶瓷电容。在典型的电源中,这些电容包括缓冲电容、箝位电容以及陶瓷输出电容要想快速确定一个陶瓷电容是否在产生噪声,请用一个具有相同电容值和适当电压额定值的金属膜电容将其替换。如果噪声水平下降,说明您找到了电路中的噪声源。 如果噪声源是箝位电容,可以用一个金属膜电容将其彻底替换,或者尝试使用介质材料不同的陶瓷电容。另一个方法是,更换正在使用的箝位电容,例如,将其更换为稳压管箝位电路。如果噪声问题源自缓冲电容,可以用一个金属膜电容将其替换,也可以提高串联电阻的值,以降低电容上的dV/dt噪声。您也可以改用其它介质的陶瓷电容,看噪声能否降低。 如果噪声问题存在于陶瓷输出电容,可以尝试许多不同的策略来解决。其中一个方法是,尝试换用电解电容或换用其他介质材料的电容。或者,可以用多个并联陶瓷电容来替换问题电容。每个电容尺寸的减小将使其表面积相应减小,从而改变电容的机械共振。 管理变压器磁芯噪声 另一方面,变压器磁芯产生的噪声通常由磁致伸缩造成,它类似于逆向压电效应。当受到磁场影响时,许多铁磁材料都会改变形状。随着变压器磁芯中磁场的变化,此类材料会使磁芯发生物理振动。当振动频率达到变压器的机械共振频率时,振动就会被放大,并造成更大的音频噪声。在交流电气设备(如使用60Hz外加磁场的变压器)中,最大长度变化每周期出现两次,从而产生熟悉的120Hz噪声。 如果您的设计出现这种问题,在开始排查原因之前首先要确保它不是由设计不当引起。首先,确认所提供的输入电压和输出负载符合设计规格。如果电源的工作电压低于指定的最低输入电压,或高于指定的输出负载,那么部分交流周期将会失去稳压,这样会造成磁芯中的磁通量增大并产生噪声。 如果输入电压和负载处于规格范围之内,接下来检验输入大容量电容的值是否正确。如果输入电容相对于应用而言过小,直流总线电压将在交流刷新周期之间大幅降低,造成部分输入的交流周期失去稳压。 变压器中包含多种可活动元件,如线圈、隔离胶带和骨架,它们使变压器成为了常见的噪声源。线圈中电流可产生电磁场,电磁场会产生令许多变压器元件出现机械振动的力。减小变压器元件物理移动的最有效方法是使用粘合材料或涂漆。例如,用清漆浸渍磁芯是一种广泛使用的方法,用来防止磁芯随骨架进行振动。虽然供应商提供了众多涂漆技术,但我们推荐使用清漆浸渍技术,而不是真空浸渍,这是因为真空浸渍会大幅提高绕组电容,从而降低效率并使EMI增大。 如果您的设计需要使用长磁芯型变压器,则可以采用的另一个策略是使用标准磁芯长度。长磁芯产品(如EEL型变压器和EERL型变压器)都具有极低的机械谐振频率。这种低谐振频率容易增大音频噪声。采用谐振频率较高的标准磁芯长度可以缓解该问题。但务必要注意,如果改用较短的标准磁芯,则必须使用更大的磁芯尺寸,才能提供足够的绕组窗口面积。 处理脉冲束流 脉冲束流是另一个潜在的噪声源。当设计中的传导电流脉冲聚集在一起,然后出现更多数量的跳脉冲时,就会出现脉冲束流现象。脉冲聚集会在开关模式中产生频率分量,它们通常都在听觉范围内。脉冲束流在采用开/关控制模式的电源中最为常见。 为确定您的设计中是否存在这种现象,请断开MOSFET漏极走线,然后插入一个电流环,以监测漏极电流的开关模式。 电源在正常负载下工作时,使用一个电流探针和一个示波器抓取在一个宽时间量程内的一组漏极开关脉冲。下图对显示脉冲束流的波形与具有正常开关模式的波形进行了比较。如果看到类似于左图的脉冲 – 一行出现大量脉冲,接着是两个或更多跳脉冲,就说明您的设计可能存在这种问题。 通常,脉冲束流现象表示反馈电路过慢,导致控制器响应滞后。诊断此问题时,可以先确认反馈电路中的所有元件值是否都与设计中指定的值相符。一个可以尝试的解决方案是,在设计中采用D型光耦器。D型光耦器具有比标准光耦器更高的增益。另一个策略是,添加一个反馈环路加速电路,以缩短响应时间。该电路将能确保光耦晶体管始终在有源区工作,这样可以防止它发生饱和,并提高响应速度。 结论 虽然反激式电源中的音频噪声源多种多样,但最常见的“罪魁祸首”往往是陶瓷电容或铁氧体变压器磁芯。如果您测试发现电源中存在明显的噪声,则可以试用本文所介绍的应对策略。在多数情况下,您都可以快速找到故障元件并解决噪声问题。

    时间:2016-05-27 关键词: 电源 电源技术解析 噪声 反激

  • 实例分析 一款反激光耦中串并联电阻的意义

    实例分析 一款反激光耦中串并联电阻的意义

    光耦在电路当中的作用非常重要,光耦能够将电路中的光能与电能进行隔离,因此能起到很好的控制作用。在一些较为敏感的电路中光耦的作用就更加明显。在光耦当中,电阻的作用分为串联与并联。那么光耦电路中为何存在串联与并联电阻呢?本文将以一个电路为例来为大家进行分析。 如图1所示,图1为反激式电源电路图,那么在R8、R9这两个电阻的作用是什么?如果对R8和R9阻值调大或者调小分别对什么电性有影响? 首先对这两个电阻的作用进行讲解,R8的作用是限流,而R9是为了给TL431提供基础电流。光耦原边流过多大的电流,不是由R8决定的,R8只是限制流过原边的电流。如果电阻太小,很小的波动就会引起原边相对较大的电流,所以电路有可能不容易稳定。 电路正常工作后,TL431的AK之间的电压不是固定的。想要了解这个问题首先就要对电路的工作原理有进一步的了解。 在电路稳定后,TL431的AK之间电压也稳定了,那么就是说R8两端电压固定,如果有波动就相当于R8上有波动,自然对于相通的波动来说R8就越小,引起R8电流变化越大。而流过原边的电流的波动就有可能让电路工作不稳定。 光耦串联的电阻起到限流的作用,同时也影响增益(就是TL431输出电压变化对应电流的变化率)。并联的电阻,一般是为TL431提供一个基础电流,防止TL431工作到太接近关闭的区域(过小的电流值)。 通过以上的分析可以看到,电阻在文中的反激光耦电路中作用不仅是限流或提供基础电流,同时也存在影响增益方面的问题。希望大家能够按照文中的思路来经行思考,反复研究电路中各类期间的实际作用,详细会对大家的电路设计能力有很大的提升。

    时间:2016-04-20 关键词: 电源技术解析 光耦 串并联电阻 反激

  • 基于电池供电的双路隔离反激开关电源设计

    基于电池供电的双路隔离反激开关电源设计

    摘要 针对便携式医疗康复设备领域中电池供电、高隔离度和高电压输出的要求,设计了一款新型低输入电压供电、双路高压输出隔离的开关电源。该设计采用锂电池供电,采用基于占空比<50%的电流型脉宽调制控制芯片UC3845的反激拓扑结构和光耦反馈网络电路,实现双路隔离正负高压电源输出。电源输入电压为10~14 V,输出电压为双通道+35/-35 V隔离,功率为14 W,效率是75%,电源模块面积为65 mm×40 mm。仿真与实际测试结果表明,该电源可实现正负高压电源隔离输出。 关键词 反激;开关电源;电流型脉宽调制;反馈电路 随着社会发展,人口老龄化问题及各种中老年疾病问题也愈发严重,脑卒中目前已经成为人类死亡率和致残率最高的中老年疾病之一,中风患者由于脑部运动中枢受损而导致肢体运动功能丧失。目前,医院主要使用高压电刺激脉冲输出的康复医疗设备对患者进行运动康复治疗。为方便患者出院后在家进行康复训练,需要一种电池供电、隔离度高和电压输出高的便携式医疗设备,便于患者随身携带。因此,研究并设计一款低输入电压供电、双路高压输出隔离、体积小的电源对于设计便携式康复医疗设备具有重要意义。 近年来随着功率器件不断更新和脉宽调制技术(Pulse Width Modulation,PWM)的日趋完善,开关电源技术也得到了快速发展。开关电源是一种功率变换的装置,具有小体积、高效率、宽输入电压、隔离输出、低成本等优点,被誉为高效节能电源。而反激开关电源是其中成本最低的电源,其输出功率为10~100 W,可输出不同的电压,电压调整率较好。 本文介绍一种基于电流型PWM芯片UC3845的反激开关电源设计,设计输入电压为10~14 V DC,输出电压为双通道+35/-35 V DC隔离,功率为14 W,效率是75%,该电路采用可调式精密并联稳压器TL431配合光耦构成的反馈回路,相比于传统的离线式结构的开关电源,具有高隔离度,电路抗干扰能力强、纹波电压小,对于负载变化大和输出电压变化大的情况可较快响应,并具有较高的稳定性。 1 工作原理与设计指标 图1所示是本开关电源整体框图。主要包括MOS管、反激变压器及输出电路、光耦隔离反馈电路和UC3845芯片及外围电路组成。其中,输出电压通过光耦隔离反馈电路,进入UC3845芯片内置误差放大器(EA),控制PWM的占空比,从而控制MOS管导通时间,实现正负双向电源的隔离和稳压输出。其工作过程为:当MOS开关Q1导通时,所有整流二极管D1、D2都反向截止,输出电容C1、CS给负载供电。此处反激变压器T1相当于一个纯电感,并不是真正的变压器。流过Np的电流线性上升,达到峰值Ip;当MOS开关Q1关断时,所有绕组电压反向。此时反激电压使输出二极管D1、D2进入导通状态,同时Np 储存的能量传送到次级,提供给负载电流,同时给输出电容C1、CS充电。     2 电路设计 利用电源设计指标,设计本电源的电路原理如图2所示。   2.1 UC3845外围电路及MOS电路设计 该部分电路UC3845供电可直接使用12 V输入锂电池供电,开关工作频率fsw由连接芯片RT/CT引脚的电阻电容控制,并有   其中,fsw的单位为kHz,RT的单位为kΩ,CT的单位为μF。设计中RT为2.37 kΩ,CT为1.2 nF,所以根据式(1)可求得fsw为302 kHz。MOS管M1型号为IRFZ44ESPbF,电流模采样电阻Rs为0.33 Ω,其采样的电流经过RC滤波器(R2=1 kΩ,C2=470 pF)滤除高频杂波后输入给UC3845的ISENSE引脚。 2.2 反激变压器参数设计推导 2.2.1 确定变压器初/次级匝数比Np/Ns 本设计变压器磁芯选用型号为EE19-Z。确定开关管可承受的最大关断电压Vms,同时选定管子时尽量使Vms小,保证当有30%的输入直流电压最大值Vdc尖峰叠加在Vms时,开关管的最大耐压值(Vceo,Vcer,Vcev)仍可保留30%的裕量。功率MOS开关管选定型号为 IRFZ44ESPbF,其最大耐压为60 V,导通最大电流为48 A,导通电阻为23 mΩ。所以选定Vms=24 V,利用下式计算变压器初次级匝数比Np/Ns。   其中,Vo为输出电压。本设计中,Vdc=14 V,Vo=35 V,所以可计算次级匝数比Np/Ns为10:36,近似为9/40。 2.2.2 确定最大导通时间Ton(max) 保证磁芯不饱和且电路始终工作在DCM模式。最大导通时间Ton(max)计算公式为   本设计开关频率fsw=300 kHz,周期T为3.335μs,根据式(5)可得到Ton(max)=2.852μs,所以得到最大占空比Dmax=Ton(max)/T=0.427 9。 2.2.3 确定初级线圈绕组参数 利用下列公式计算初级绕组电感Lp   根据式(6)可求得Lp为5.2μH,同时利用根据式(5)可求得Ip(max)为6.4 A,初级线圈绕组流经电流有效值可根据式(7)计算。   得到Ip(max)为2.4 A,初级总圆密耳为500×2.4=1 200圆密耳。 2.2.4 确定次级线圈绕组参数 次级绕组线圈电感值的计算公式为   经过计算得到Is(rms)=0.49 A,次级圆密耳为500×0.49=247圆密耳。 2.3 反激变压器及输出电路设计 变压器参数根据上文推导计算,表2所示为依据设计指标计算好的变压器参数。   2.4 光耦隔离反馈电路设计 如图2所示,光耦PC817反馈电路负责解决输入输出隔离问题,PC817三极管侧电路使用输入电源地GROUND,而其二极管侧电路全部使用输出电源地 COM,完成输入地与输出地的隔离,同时形成闭环反馈控制环。PC817发光二极管阴极接TL431的阴极,三端可调分流基准源TL431,相当于一个内部基准为2.5 V的电压误差放大器。PC817集电极接UC3845内置EA输出补偿引脚COMP,内置EA的反相输入端VFB接地。图2中电阻R7和R9串联接入到+35 V输出电压通道中,TL431的ref引脚接到该两个电阻中间,并利用下式设定两个电阻的阻值,使电阻R9上电压等于TL431的内置基准电压2.5 V。本电路中这两个电阻选定分别是105 kΩ和8.06 kΩ。   该隔离反馈电路工作原理是:当输出电压升高时(即高于35 V时),会使光耦二极管的电流增大,进而使三极管侧电流增大,由于三极管集电极与UC3845的EA输出端相连,且EA配置成同相放大器,光耦集电极电流增大使其超出EA的电流输出能力,所以UC3845的EA输出引脚COMP电压下降,使PWM占空比D减小,根据式(10)可知,输出电压会下降;反之,当输出电压降低时,反馈电路作用后会最终使输出电压升高。 3 仿真与实验结果分析 采用电源软件Saber进行功能仿真,进行25 ms的瞬态仿真,并将结果列于表3中。图3所示为本设计电源实物图。电路模块尺寸为65 mm×40 mm。图4和图5为实际测试输出波形图。       根据实际测试与仿真测试,得到表3所示的仿真和实测结果对比。对于两通道的电压输出,实测与仿真误差分别为1.372 V和0.261 V;对于瞬态直流特性,如图4所示,本设计电源从上电到稳定所需时间实际测试约为1 s,表3中通道1上升时间(T1rise)和下降时间(T2fall)实测与仿真差别较大,主要是由于仿真使用的是理想条件,与实际电路测试有一定的差别;电源的交流特性对比中,实际测试纹波要大于仿真数据。另外,通过图5可得到,电源的开关工作周期约为3.3μs,即开关工作频率为302 kHz,与设计指标相同。 4 结束语 本文使用ST公司的电流模芯片UC3845设计一款12 V锂电池输入、双路+35 V/-35 V高电压隔离输出的开关电源,经过仿真和实物焊接测试表明,该电源可实现正负35 V输出,虽然实际电源电压纹波大于设计指标,但由于是高压输出故不影响系统的使用性能。电源模块面积为65 mm×40 mm,可用于医疗设备等需要高隔离度、需要电池供电和高电压的仪器设计中。

    时间:2016-03-30 关键词: 开关电源 电源技术解析 反馈电路 电流型脉宽调制 反激

  • 一款小功率基于原边控制技术的反激式LED恒流驱动电路

    摘要:文中设计了一款额定功率为3W的反激式LED恒流驱动电路,利用原边控制技术,去除了隔离光耦与二次侧辅助调整电路,解决了传统电路电源布局要求高,体积大的问题。文中分析了电路实现恒流与恒压的原理,并介绍了电路元件参数。当输入电压在60~260 VAC下变动时输出电流精度为6.4%。实验结果表明该电路具有结构简单、高恒流精度以及高稳定性的优点。 LED需要恒定电流驱动,电流过大会缩短其寿命,过小会明显降低其亮度。目前,LED常采用的驱动方式有电阻限流、电荷泵、线性电源、开关电源等4大类。开关电源驱动是目前效率最高的能量转换方式,具有功耗小、效率高、稳压范围宽、体积小、性能可靠等优点,缺点是电路复杂、成本高、且会产生电磁干扰。反激电路是开关电源的一种常见的拓扑结构,在100 W以下的中小功率LED灯具的驱动中,反激拓扑因电路简单、电气隔离等优点得到了最广泛的运用。传统的反激电路通常运用副边反馈控制,通过使用隔离光耦实现,对于电源的布局提出了很高要求,并限制了其体积。对于小功率LED驱动电路,这是一大难题。 1 电路结构设计与工作原理 1.1 电路基本结构设计 文中基于iW3620芯片设计了一款反激式LED恒流驱动电路,电压输入为60—260 VAC,输出电压/电流为10.2 V/350 mA,额定负载为3 W,驱动负载为3个大功率白光LED( 每颗1 W/350 mA)。图1为电路的基本结构如图1所示。     在电路中,BDR为整流桥,L1,C1与C2组成了π型滤波电路。R2,C3与D1组成了原边钳位保护电路用以保护开关管,防止其由于高频变压器的漏感形成的尖峰电压而被击穿。T为高频变压器,D3为输出端滤波二极管,C4为输出端滤波电容,R10与输出并联,起到对电路的保护作用。iW3620为该电路的控制芯片,用以控制MOSFET开关的占空比。R9为电流采样电阻,R5与R6为电压反馈检测电阻,D2为辅助边整流二极管。 考虑到电路传输过程中的延迟以及MOSFET开启时的延迟,R8与C8组成延迟网络来对上述延迟进行补偿。与此同时R8可以减小在在MOSFET开启过程中R9上的电流峰值。 1.2 副边反馈控制部分设计 传统的副边反馈控制通常是使用隔离光耦PC817以及可调基准源TL431所组成的闭环系统来实现的。如图2所示,电路通过由电阻R1与R2所组成的输出电压采样电路来获取输出电压信号,TL431将该信号与其内部的2.5 V基准电压进行比较来获取误差信号,该误差信号由光耦中的发光二极管转换为光信号,光耦在电路高压端的光敏晶体管将该光信号再一次转换为电信号,该电信号由控制电路反馈端检测以调整开关管的占空比,从而实现调节电路的输出大小的功能。     由于其具有精度高与反应速度快的特点,因而被广泛运用于各类场合。然而,若驱动器的体积被严格限制,隔离光耦对于电路的整体布局就会成为一个很大的问题。除此之外,隔离光耦的使用还会带来另外一个问题。光耦的最高工作温度相对于电路中的其他元件要低很多,因此一旦在电路中使用了光耦就必须将电路的工作频率限制在20~30kHz,如此电路就难以工作在更高的频率下。 1.3 原边反馈控制部分设计 根据实际运用需要,文中使用原边反馈控制,省去了二次侧调整电路与配套的隔离光耦,使电路设计得到了简化。为精确控制输出电压和电流,需要检测反馈信号从而调节输出信号,反馈信号由变压器的辅助绕组获得。 在图1中,u(t)为经过整流后的直流电压,Lm为高频变压器的原边电感。当开关管开启时,通过开关管的电流ip(t)线性增加:     △u为电流通过输出端整流二极管D3产生的压降。当高频变压器的去磁过程结束的时刻△u的值降到0,在此时刻之后变压器副边与辅助边中都没有电流。在此时刻输出电压 与辅助边的电压成线性比例关系。因此,输出电压的反馈控制可以通过调节辅助边的电压来实现。 1.4 恒压与恒流控制的实现 iW3620通过检测辅助边的电压和通过MOSFET的电流信号来实现恒压与恒流的反馈控制。Vsense引脚检测辅助边的电压,辅助边电压为:     Vsense引脚负责检测输出电路电压uo。如果检测到了误差OUTPUT引脚就会调整MOSFET开关的占空比从而改变从变压器原边传递至副边的能量,如此实现恒定输出电压的目的,即实现了输出电压的反馈控制。 Isense是原边电流的检测引脚,负责检测高频变压器的原边的峰值电流。它检测电流通过电阻R9所形成的压降并将其与芯片内部的基准电压进行比较,如果两个信号存在误差,就通过调整MOSFET开关的占空比来实现恒定输出电流的目的,实现了输出电流的反馈控制。 为了使得检测更加精确,R9选择使用精度为1%的电阻。 1.5 降低损耗 一般反激式拓扑中MOSFET工作在硬开关模式,高频工作时开关损耗大。iW3620采用了准谐振运行模式,将MOEFET导通时间设定为其漏源极电压uDS最低时,由此实现零电压开通的软开关,大幅降低开通损耗。这些措施能够大幅降低MOSFET开关损耗。 iW3620有多种工作模式。负载额定时以PWM方式工作,当负载减小负载电流降低至额定时10%时,芯片自动切换至PFM工作模式。一旦电流回升,芯片切回至PWM工作模式。由于其良好的负载动态响应,使得功耗减小从而使效率提升。 2 电路参数的分析与设计 2.1 输入电容的选择 输入电容负责当输入电压下降的时段为负载供电。如果电容太大,电流相位于电压相位的差可能太大从而导致功率因数下降。所以在此选择电容值为22 uF的电解电容。 2.2 变压器设计 因为额定输出功率为3 W,所以相应选择RM6磁芯作为高频变压器的磁芯。uin为输入电压,ton为开关管导通的时间,Bmax为饱和磁感应强度,Ae为磁芯面积,根据反激电路高频变压器的设计理论,高频变压器的原边绕组圈数Np为:     芯片的工作电压Ucc为12 V,D2两端的电压降UFD大约为0.5 V。因此,Ns=16,Naux=16。 2.3 电流采样电阻与电压采样电阻 电压采样电阻R9可以由下式得到:         因为芯片内部的参考电压usense=1.538 V,而且uo=10.2 V,因此R5=15 kΩ,R6=2 kΩ。 2.4 输出电容的选择 当MOSFET处于关断的时段负载是由输出滤波电容来提供能量的。因为电路的输出电压为10.2 V,选择电容值为330μF的电解电容作为输出滤波电容,如此可以在实现滤波的同时为负载提供能量。 3 实验结果与分析 实验条件:输入电压为60~260 V AC,输出负载为3个大功率LED,每个功率为1 W。 当输入电压为220 V AC,输出负载为3个大功率白光LED(1 Wx3),电路的输出电压为10.2 V(图3),输出电流为351 mA(图4)。如图3所示输出电压的纹波很小(电压精度为1.9%)。     如图4所示,当输入电压在60~260 VAC下变动时输出电流精度为6.4%,电路效率为73.1%。实验结果表明,简化设计的同时电路依然保持良好输出特性。     4 结论 文中介绍了一款小功率基于原边控制技术的反激式LED恒流驱动电路,电路未使用隔离光耦与二次侧调整电路,使得其在布局上更为自由,减少了体积上的限制。实验表明,当输入电压在60~260VAC下变动时输出电流精度为6.4%,电路效率为73.1%,简化设计的同时电路依然保持良好输出特性。通过改变电流检测电阻以及电压检测电阻可以以降低恒流精度为代价进一步提高电路的效率。

    时间:2015-11-25 关键词: LED 恒流 驱动电路 原边反馈 反激

  • 逐步讲解 CCM反激变压器的计算分析

    逐步讲解 CCM反激变压器的计算分析

    简介:CCM是电感电流连续模式的简称,目前采用这种模式的反激变压器正在逐渐流行起来。无论哪种类型的变压器,计算方面的问题永远是最复杂的,网络上关于电路设计和硬件方面的资料很多,但是对计算部分进行详解的文章却比较少,小编特意将达人的经验总计为文章,帮助大家掌握CCM模式反激变压器的计算。 在这篇文章当中我们将主讲CCM模式反激变换器的各类计算公式,以及波形。 基本参数 最小直流电压Vdcmin:100V开关频率F:65KHZ 最大直流电压Vdcmax:375V反射电压VOR:120V 输出电压Vo:12V原边开关管压降Vdson:0.5V 输出功率Po:100W(8.33A)输出整流管压降Vd1:0.5V 变换效率η:0.9VCC整流管压降Vd2:0.5V 次级匝数Ns:7T磁芯:EER35/40 注:1、非实际产品,仅做举例。 因为HVDC电压的大小与Cin、温度密切相关,故不定义Vacmin; 3、原边电流的计算,其实是参考了《开关电源手册》,见p156--p180,110W反激变压器设计,原文中定义的原边电流,IP2=3*IP1,即KRP=0.66。本文中用X、Y、Z来描述原边电流,即固定X=10,Y为任意值,KRP也就为任意值。 4、损耗的计算参考了《开关电源仿真》p542,90W反激变压器设计。 5、各种公式再陆续补充、修正; 6、计算结果利用了PI的电子数据计算表格核算,代入相关关键参数即可。   图1     注:因为VDS的峰值电压与漏感有密切关系,故计算式中没有包括尖峰电压; 原边有效电流的计算公式取自于《开关电源仿真》。 需要注意的是,这里TON、TOFF标反了,由于影响不大所以暂时就不改了,下一步是原边的各种损耗计算。 注意第7步之后,有两种计算方法: 第一种方法是先计算出峰值电流、纹波电流,再通过纹波电流来计算出原边电感量,公式:LP=V*TON/Ip。 第二种计算方法是,先计算出原边电感量,然后通过纹波电流计算出峰值电流,公式:Ip=Ia/Dmax+△i/2 (第二种方法见《变压器电感器设计手册》p293----连续模式隔离BUCK-BOOST变换器设计)   第14--17步说明: 1、这一部分内容,选自《开关电源仿真》,深入研究请参考原文。 2、不同的资料计算方法稍有不同,需要再查资料分析分析。 (关于开关损耗和导通损耗,上面的计算方法应该是正确的,参考《精通开关电源》第5章。最有可能会出现的问题是,测量的准确性如何,因为这会导致计算值与实际值相差2--5倍。) 磁性元器件计算或者是次级参数计算。 RCD缓冲电路有两个作用,第一个是限制半导体两端电压的上升速率或者是减小EMC干扰,第二个是钳位,要明白安装RCD缓冲的目的是什么。 如果仅仅是钳位,问题就简单了,只需要把“多余”的能量储存在足够大的电容中,然后通过合适电阻的去消耗它,这里面没有太多的学问。普通的中小功率ACDC变换器,钳位电容选择2200PF--0.1UF都是可以的。 漏感中储存的能量越大,开关频率越低,钳位电容的容量肯定会越大。 另外,钳位电容对材质、体积有一些要求,因为会发热。电阻的计算也很简单,绕组或者半导体两端会有一个平台电压,直接计算就可以了。电阻的阻值决定了功耗,电阻上到底要消耗多少功率,取决于漏感中存储的能量以及钳位电压的幅值。 例:100W的反激变换器,1%漏感,理论上你至少要消耗掉1W的功率,采用3W的电阻; 100W的反激变换器,2%漏感,理论上至少要消耗掉2W的功率,采用6W的电阻; 尽管有一部分能量会通过MOS、二极管的开关损耗消耗掉,但R上的损耗大概就是这个比例,不会相差太大。需要注意,钳位电压和二极管的开关速度、MOS管的驱动能力等等都有很大的关系。 如果RCD消耗的功率特别大,应该是别地地方出了问题。控制环路的问题很难说明白,建议参考《开关电源手册》第三部分,第八章,特别是P435页提到的方法三(最后两行文章)。这里多说一句,在分析了众多大师的作品之后,发现他们似乎非常喜欢这么干。 另外一点,就是关于电容的计算方法,一般来说有三种:[!--empirenews.page--] 第一种方法,根据期望获得的输出纹波电压来计算。详见《开关电源设计》第二版,王志强译,P76;采用这种方法,可以获得最小的电容量,通常情况下,如果采用普通的电解电容,其纹波电流一般满足不了(这种方法似乎比较适合于超高纹波电流电容、固态电容、瓷片电容)。 第二种方法,根据实际计算的输出纹波电流(有效电流),来选择输出电容,不考虑频率、温度系数。这种方法最可靠、也会最简单,但其结果会导致最高物料成本,此方法也是电容供应商比较推崇的方法。 第三种方法,根据产品所需的寿命,综合考虑开关频率、环境温度、电容温升等各种综合因素来计算输出电容。该计算方法很多教材和各种电容应用手册中均有提及。计算过程一般较为复杂,但可以获得最低的物料成本。另外采用这种方法,对测量技术也是一个很大的考验。

    时间:2015-05-15 关键词: 二极管 电源技术解析 变压器 ccm 反激

  • 基于UC1845的多路输出双管反激开关电源方案

    基于UC1845的多路输出双管反激开关电源方案

    引言 随着器件、工艺水平的飞速发展,开关型功率变换器已发展成高效、轻型的直流电源,空间飞行器(星、箭、船等)DC/DC变换器(又称二次电源)也采用该项技术。 主要原因是卫星电子设备对电源的效率、重量、体积和可靠性的要求越来越高,而传统的线性电源方案几乎无法满足飞行器系统的需要。在各种类型的DC/DC变换器中,PWM型DC/DC变换器因结构种类多,技术领先,便于实现,已经得到广泛应用。 在航天应用领域开关电源的多种拓扑中,可用于100V高压母线输入多路输出的开关电源,大多数采用的是两级式变换器,如Buck+推挽两级式变换器,先通过Buck电路将母线电压降压,这样母线电压要经过二次调整,使电压调整率降低;再从器件数量上来说,两级拓扑,功率开关管至少需要3个,电源体积大且功率密度低,从整体分析不是很理想;而对于可以承受高压输入的双管正激开关电源来说,电路结构相对简单,但其不适合用于多路输出的场合,输出交叉调整率较低,稳定度差;适合用于中小功率多路输出DC-DC变换器的电路拓扑还有是单管反激电路,其电路结构简单,成本低,但在高输入电压场合中单管反激电路主开关管的电压应力非常高,选用 200V耐压的MOSFET管根本无法满足Ⅰ级降额的要求,如果选用更高耐压的MOSFET管,由于其导通电阻更高,势必影响电源的转换效率,同时还可能带来真空环境下的低气压放电问题。 因此为了克服以上所提到的问题,本文设计了一种星上用基于UC1845的多路输出双管反激开关电源,很适合应用于高压100V母线输入、多路输出场合。对于双管反激开关电源,首先,其电路拓扑简单,输入输出电气隔离升/降压范围广,具有输出多路负载自动均衡等优点;其次,由于航天电源对可靠性的要求,所有器件必须满足一级降额标准,在双管反激变换电路中,当功率管关断时,变压器漏感电流可通过续流二极管反馈给电源同时将开关管两端的电压箝位在电源电压,因此功率管所承受的电压应力和输入电压相等,使选管的范围扩大,可靠性提高;再次,双管反激开关电源电路漏感能量可以回馈到输入侧,无须增加任何吸收电路,因而转换效率也比单管反激电路高。因此将其运用于航天器高压输入多路输出场合,优势很大,具有实际的工程应用价值。 1、系统设计图 系统设计框图如图1所示。   2、双管反激拓扑结构 双管反激拓扑结构如图2所示。   如图2所示,VT1和VT2分别串接于变压器的顶端和底端。两个开关管同时导通和关断,当它们导通时,所有初级和次级的同名端为正,此时次级VD3反偏,次级无电流流通,初级绕组储存能量;当它们关断时,存储于励磁电感上的电流使所有绕组电压极性反向,VD3正偏,励磁电感中储存的能量被传输到负载,而此时LP同名端电位被二极管VD2钳位至地,LP 异名端电位被二极管VD1钳位至电源电压U1.所以,VT1的源极电压不会超过U1,VT2的漏极电压也不会超过U1.漏感尖峰被钳位,使任一开关管的最大电压应力都不会超过最大直流输入电压。 双管反激变换器还有一个显着的优点是没有漏感能量消耗。开关管导通时,存储于漏感中的所有能量不是消耗于电阻元件或功率开关管内,而是在开关管关断时通过VT1和VT2回馈给U1.漏感电流从LP的异名端流出,经VD1流入U1的正极,然后从其负极流出,经VD2返回LP的同名端,使漏感能量能回馈到输入侧,提高了整机的转换效率。[!--empirenews.page--] 在航天电源中,对于高压100V母线输入电源,双管反激开关电源便显示出极大的优势。 3、UC1845控制电路 UC1845是由TexasInstruments公司生产的电流控制型PWM控制器,该芯片电路开关频率可调节,具有电流反馈和电压反馈双环控制的特点,电压调整率和负载调整率高。其内部功能模块框图如图3所示。图3中,UC1845主要包括: 5.0V基准电压源,高增益的误差放大器,电流比较器,RS触发器和欠压锁定电源电路。具有8脚封装的UC1845芯片各引脚功能如下:脚l为误差放大器输出,用于环路补偿;脚2是误差放大器的反相输入,通常通过一个电阻分压器连至开关电源输出,起电压反馈作用,调整输出的占空比,从而稳定输出电压;脚 3为电流取样引脚,脉宽调制器使用此信息终止输出开关的导通,保护开关管,避免过流损坏;脚4用于定时,通过时间电阻RT,连接至参考输出引脚8以及时间电容CT连接至地,使振荡器频率和最大输出占空比可调,振荡频率为f=1.72(RTCT);脚5是控制电路和电源的公共地;脚6是输出驱动开关管的方波引脚。为图腾柱式输出,可直接驱动功率管MOSFET的栅极;脚7是控制集成电路的正电源(VCC)启动电压为8.4V,最大输出电流可以达到1A,适合驱动MOSFET以及适用于中小功率的DC/DC开关电源;脚8是内部基准电压源产生5.0V基准电压,作为UC1845内部电源,经衰减得2.5V电压作为比较放大器基准,并可作为向外电路输出5V/50mA的电源。UC1845还包括过压、欠压保护电路,当供电电源电压低于7.6V时,芯片停止工作。 UC1845具有很高的工作温度范围,可以在-65~150℃的范围内稳定的工作,可满足航天应用。 4、主体电路设计 主体电路以双管反激电路为总的系统框架,用UC1845芯片和相应的外围电路构成PWM控制器,反馈电路采用了磁隔离反馈,通过一个反馈控制量实现多路输出,在输出端配合应用低压差三端稳压器,可以提高各路输出负载稳定度。 4.1反馈控制电路设计 在常用的隔离反馈技术中,航天方面选用磁反馈较光耦反馈要更为可靠和稳定。相对于磁反馈而言,光耦反馈虽然更能达到所需的带宽,且电路简单、元件少,但在高温下光耦的传输比(CTR)会变小,会导致运放饱和,使输出电压的反馈控制失效。磁反馈比光耦反馈寿命长,受温度影响小。抗辐照能力强,故在航天方面选用磁反馈较光耦反馈要更为可靠和稳定。   本电路中控制电路围绕脉宽调制器UC1845进行设计,采用满足航天应用的磁隔离反馈技术。电路电压采样不是直接从输出端采样而是采用了磁隔离反馈技术。这种设计可以不借助启动隔离电路而实现离线式输出,线路简单,但带来的缺点是如果输出端不使用低压差三端稳压器负载调整率做不到很高,可以通过对变压器的设计和对变压器原边电感的计算使其工作于临界连续模式,可对输出电压负载调整率有一定改善;电流环采样信号与自持电压采样反馈信号和基准电压信号进行比较,得到误差控制信号进行比较得到PWM控制信号构成了电流型控制双环控制系统对开关功率管进行开关控制,实现闭环反馈控制。 UC1845启动电压在电路每次启动时是通过启动辅助供电电路降压启动,将PWM电路的启动工作电压稳定在10~12V范围内,使PWM电路安全可靠地启动并工作;在电源模块正常工作后,由于双管串联反激电路主变压器用于给PWM供电的自持绕组输出电压比降压启动输出电压略高,使得整流二极管被反向截止,该电路无输出功率,而PWM电路通过主变压器自持绕组输出电压长期供电,这样降低了电路功耗。[!--empirenews.page--] 4.2双管反激式开关电源变压器设计 此双管反激式变压器的绕制采用“三明治”式绕法,如图4所示,即初级绕组先绕一半,再绕次级绕组,绕后再将初级绕组剩余的匝数绕完,将次级绕组包裹在里面,这样漏感最小。且使输出绕组和自持绕组并绕以实现最佳耦合效果。   反激式开关电源变压器不同于其他双极型变压器,能量不仅要传递,还要在变压器电感中储存,并实现隔离作用,它实际作为一个变压器-扼流圈发挥作用。因此变压器设计也不同于其他电路,初级绕组电感值直接影响电路中的电压、电流波形。 关键参数设计: 由已知条件计算出总输出功率,确定磁芯截面积S. 和磁芯工作磁感应强度ΔB,选择合适的磁芯。 初级线圈的峰值电流:   式中,N1是最小的初级匝数;Vmin是最大的初级电流电压(单位:V);TON是开关管Q1的最大导通时间(单位: μs);B是AC磁通密度变化的峰-峰值(单位:T),铁氧体典型值为200mT;Ae为磁芯中心柱的有效面积(单位:   5、实验结果 本文设计的适用于航天器用宽输入电压范围的双管串联反激、磁隔离反馈、高稳定三路输出DC-DC变换器,电源输入母线电压范围为60~120V(标称:100V),输出电压为5V/0.8A、±12V/0.3A,额定输出功率为11.2W,典型效率为75%以上,输出端使用低压差三端稳压器的情况下,输出电压负载稳定度优于±1%. 5.1开关电源输出实验结果 为了检验该开关电源的性能,对上述应用电路进行了性能测试。开关电源的电压调整率、负载调整率、纹波和效率如表l所示(表中UPP为电压峰峰值)。   从实验结果可知,在宽电压输入变化范围内输出电压稳定。 5.2电流采样环波形 电流环波形如图5所示。 5.3主开关管漏-源波形 主开关管漏-源波形如图6所示。   6、结语 实验证明本文所设计的基于UC1845多路输出双管反激开关电源开关电源具有良好的工作性能,输出纹波小,反馈环节易于调整,保护动作迅速可靠。符合航天电源可靠性要求,特别适用于中小功率高压母线输入多路输出场合。

    时间:2014-05-05 关键词: 开关电源 电源技术解析 反激

  • 基于TOP243Y的单片反激开关电源设计

    摘要:介绍了一种具有多路输出的单端反激式开关电源的设计方法,给出了利用单片开关电源集成芯片TOP243Y的电源设计实例,对外围输入EMI滤波电路、钳位电路、高频变压器、输出整流滤波电路等部分的设计过程进行了详细的分析和说明,并对设计样机进行组装和调试。 关键词:开关电源;TOP243Y;高频变压器;钳位电路;样机调试     基于某课题项目中的嵌入式设备的电源需求,根据实际需要收集设计电源的参数指标,分析并设计一款基于TOP243Y的单片反激开关电源设计,最终通过样机的组装和调试对设计结果进行验证。 1 电源技术指标的收集     本设计是基于一款嵌入式ARM开发板而设计的电源,根据具体设备电源的需求,收集以下指标:输入电压范围:220±20%;输出电压和对应的电流值:5 V/1A,12V/1A,-12V/1A,输出纹波:<1%,工作温度:-40~85℃,电压调整率:±0.1%,负载调整率:≤±5%,损耗因数:0.5。 2 EMI滤波器及输入整流电路设计     在大多数场合EMI电源滤波器主要抑制共模干扰信号。本设计EMI滤波器中的CX、CIN1和LCM就是用来滤除共模干扰的。共模电感通常取5~33 mH,本设计取为6 mH。整流桥选用1N4001(1A/1 000 V),此管可对电流电压留有一定的余量。     CIN1的值可通过式(1)进行计算:         可得:CIN1≈3.16×10-5F,留有一定余量,本设计取CIN1为33 μF。CX为X电容,在使用开关电源的PI电路中,其最佳电容量是0.1~0.33 μF,本设计取为0.1 μF。 3 高频变压器的设计 3.1 变压器磁芯的选择     在单片开关电源设计中,通常选择锰锌铁氧体材料的磁芯,磁芯截有效面积可用下面经验公式(2)计算:         其中Ae是磁芯有效面积,ηr是变压器的转换效率,通常取0.75~0.95之间数,本设计取0.9。经计算得到Ae≈0.85 cm2,然后查变压器的磁芯对照表,最后选择EE28磁芯。 3.2 计算脉冲信号量大占空比OMAX     当电网电压在220±20%范围内变化时,经全波整流后的直流输入电压最小为Vin(min)为208.86V。根据公式(3)可得最大占空比为:         其中VOR为反射电压,是指当功率开关管关断且次级电路处于导通状态时,次级电压感应到初级端的电压值。根据本设计要求计算时取VOR=110 V,VDS为主开关导通对D、S间压降,典型值为10 V。经计算得到:DMAX≈0.36。 3.3 计算初级峰值电流     平均值电流如式(4)所示:     3. 4 计算变压器原边的电感量         其中Z是损耗分配因子。一般取作0.5。经计算可得:LP≈1 860.29μH 3.5 次级绕组匝数NS的计算     本文选用TOP243YN作为开关电源的主芯片,对TOPSwitch器件来说:     NS=0.6(VO+VD)       (7)     式(7)中VO为输出电压,VD为输出二极管正向压降。本设计5 V输出二极管采用超快恢复肖特基二极管,因此:NS≈3.4取整数,次级绕组NS为4匝。 3.6 初级绕组匝数NP的计算         取整数,初级绕组NP为78匝。 3.7 偏置绕组匝数的计算         其中VB是偏置电压,这里取为12 V,VDB是偏置二极管正向电压降,这里取为0.95 V。偏置绕组取整数则大约需要9匝。 3.8 其他2个次级绕组的匝数的计算         ±12 V次级绕组的电压:VS1=VO+VD+VL=12.9 V。故可得:n≈0.117 2,则两个次级匝数计算为:NS1(2)≈9.05,取整数后,+12V次级绕组均取为9匝。 3.9 确定初级导线的内径     根据初级层数d、骨架宽度b和安全边距M,利用式(11)计算有效骨架宽度bE:     bE=d(b-2M)       (11)     本设计中取d=3,b=9.6mm,M=0代入式(11):bE=28.8mm。     利用式(12)计算导线的外径:         得到:DPM≈0.36mm,由AWG的导线规格表查得,与直径0.36mm最接近线号是28AWG。 3.10 确定次级导线的内径     次级裸导线直径可用式(13)表示:         其中,根据文献可得电流密度为式(14):         代入电流密度和次级有效值电流的值,可得到次级导线线径为:DSM≈0.98 mm。     当DSM>0.4mm时,建议应采用多股导线并绕NS匝,由AWG的导线规格表可得选用25AWG。与单股粗导线绕制方法相比,多股并绕能增大次级绕组的等效截面积,改善磁场耦合程度,减小漏感。 3.11 变压器气隙的计算     对于单端度激式变压器的磁芯,为了避免磁芯饱和,减小变压器的高频磁芯损耗及发热问题,应该在磁回路中加入一个适当的气隙σ。     4 无源RCD钳位电路的参数设计     在MOSFET管漏极增加钳位保护电路,对尖峰电压进行钳位或者吸收,防止开关管损坏,如图1所示。 4.1 确定钳位电阻     漏源间电压的经验公式为:         其中漏感取为62.4μH,取为27 kΩ。 4.2 确定钳位电容CC     钳位电容CC的值应取得足够大以保证其在吸收漏感能量时自身的脉动电压足够小,可通过下式来确定最小值为:     4.3 确定钳位二极管     钳位电路中的二极管一般选择快速恢复二极管,它的耐压值应大于最大直流输入电压。本设计选取快速恢复二极管FR106。 5 输出整流滤波电路及后级滤波电路的设计     输出整流滤波电路由整流二极管和滤波电容构成。根据计算分析整流二极管可以选用的型号为SB150。另外两路输出及偏执绕组的二极管分别为:12 V均选用肖特基整流SB180,偏置绕组选用超快恢复二极管MUR110。     对输出滤波电容的选择来说,纹波电流和ESR(等效串联阻抗)是它的2个重要参数。在保证控制环路的带宽足够的前提下,应选择耐压值高和容值低的滤波电容。本电源的输出滤波电容选择为:5 V输出选择为680μF/35 V低ESR电容,12V选择为330μF/35V低ESR电容。若滤波效果不理想,可以在下级再串联一个L、C滤波环节,这里叫做后级滤波环节。根据经验,L取2.2~10 μH,电容推荐选择120 μF/35V低ESR电容。 6 反馈环路的设计     开关电源依靠反馈控制环路来保证在不同的负载情况下得到所需的电流电压。本设计采用稳压器TL431与光耦PC817A组合的环路动态电流控制补偿电路。 7 样机组装与调试     本设计最终电气原理图如图1所示。根据电气原理图进行前期的软件仿真分析验证,之后就要进行设计样机的组装和调试。组装电路时注意电路板的规捌和元器件的选取,安装设计要求来布局布线,并尽量选取和计算结果贴近的元器件。最终对完成组装的样机进行先期的调试验证及各个元器件的失效性分析,最终方可用于实际的使用。本开关电源装置是为课题组某嵌入式系统提供的稳定的三路直输出流电源。最终通过示波器验证输出稳定,可用于实际课题实验中。示波器验证输出波形如图2所示:其中波形图上下分别代表5 V和12 V输出,经分析基本符合设计输出和纹波等要求。 8 结束语     文中主要分析与设计了一款单端反激式开关电源,重点其前级整流滤波、钳位电路及高频变压器的设计进行详细理论分析,最后对样机进行组装和调试,希望通过本文对设计者有一定启发和示范作用。

    时间:2012-12-23 关键词: top 243y 243 反激

  • 反激型开关电源电路02

    反激型开关电源电路02

    时间:2012-10-07 关键词: 开关电源电路 综合电源 反激

  • 反激型开关电源电路01

    反激型开关电源电路01

    时间:2012-10-07 关键词: 开关电源电路 综合电源 反激

  • 100W反激型开关稳压电源电路

    100W反激型开关稳压电源电路

    时间:2012-01-18 关键词: 开关稳压 电源电路 100w 综合电源 反激

  • PWM反激型电源转换方案

    Fairchild 公司的FAN6754 是高度集成的绿色模式(Green-Mode) PWM控制器,以增强反激电源转换器的性能.为了最小化待机功耗, 绿色模式功能提供关时调制,连续降低轻负载的开关频率.工作电流1.7mA,固定PWM频率为65KHz,可线性地降低到22KHz,主要用于通用开关电源(SMPS)和包括电源适配器在内的反激式电源转换器.本文介绍FAN6754主要特性,方框图以及应用电路. FAN6754: Highly Integrated Green-Mode PWM Controller The highly integrated FAN6754 PWM controller provides several features to enhance the performance of flyback converters. To minimize standby power consumption, a proprietary green-mode function provides off-time modulation to continuously decrease the switching frequency under light-load conditions. Under zero-load and very light-load conditions, FAN6754 saves PWM pulses by entering deep burst mode. This burst mode function enables the power supply to meet international power conservation requirements. FAN6754 integrates a frequency-hopping function internally to reduce EMI emission of a power supply with minimum line filters. Built-in synchronized slope compensation is accomplished by, proprietary internal compensation for constant output power limit over universal AC input range. Also, the gate output is clamped at 13V to protect the external MOSFET from over-voltage damage. Other protection functions include AC input brownout protection with hysteresis and VDD over-voltage protection. For over-temperature protection, an external NTC thermistor can be applied to sense the external switcher’s temperature. When VDD OVP or OTP are activated, an internal latch circuit is used to latch-off the controller. The latch mode is reset when the VDD supply is removed. FAN6754 is available in an 8-pin SOP package. FAN6754主要特性: High-Voltage Startup AC Input Brownout Protection with Hysteresis Low Operating Current: 1.7mA Linearly Decreasing PWM Frequency to 22KHz Frequency Hopping to Reduce EMI Emission Fixed PWM Frequency: 65KHz Peak-Current-Mode Control Cycle-by-Cycle Current Limiting Leading-Edge Blanking (LEB) Internal Open-Loop Protection GATE Output Maximum Voltage Clamp: 13V VDD Under-Voltage Lockout (UVLO) VDD Over-Voltage Protection (OVP) Programmable Over-Temperature Protection (OTP) Internal Latch Circuit (OVP, OTP) Open-Loop Protection (OLP); Restart for MR, Latch for ML Built-in 8ms Soft-Start Function Constant Power Limit (Full AC Input Range) Internal OTP Sensor with Hysteresis FAN6754应用: General-purpose switch-mode power supplies and flyback power converters, including: Power Adapters 图1.FAN6754功能方框图 图2.FAN6754典型应用电路  

    时间:2011-12-08 关键词: 方案 电源转换 pwm 反激

发布文章

技术子站

更多

项目外包