当前位置:首页 > 工作原理
  • NFC天线工作原理、设计

    继公众号之前推送过的《NFC芯片选型及基本电路框架》之后,本篇文字聊聊NFC天线工作原理及其设计,由于篇幅有限,该内容分两篇文字进行阐述—— 传统天线通过向空中辐射电磁波来传输电磁信号,为了能把电磁信号辐射到空中,天线的长度需要和工作波长相比拟。简单的半波偶极子天线长度是1/2波长,单极子天线是1/4波长。对应到13.56MHz的工作频率,半波偶极子天线尺寸为11.06m,单极子天线尺寸为5.03m。但13.56MHz NFC通过近场耦合来传输电磁信号,天线工作距离远小于传统天线,ISO14443-A/B工作距离只有10cm左右,SO15693最远工作距离也只有1m。 13.56Mhz NFC天线可以看作一个耦合线圈,根据安培定律,电流流过一段导线时会在导体周围产生磁场,且该磁场感应强度正比于线圈匝数和线圈面积,并随着距离的3次方衰减。而个根据法拉第电磁感应定律,时变的磁场穿过闭合空间会产生感应电压。因此将该两个定律分别应用于NFC读写器、NFC卡片,读写器天线产生磁场耦合到NFC卡片天线产生电压能量启动NFC卡片中的芯片,由此进行能量、信号传输。 高频读卡器的天线是磁环路天线,通常为印刷线圈、柔性PCB或绕线天线,也可以是金属外壳。天线的尺寸、匝数、走线宽度、间隙宽度等因素决定了天线的电参数,电参数包括:电感、串联和并联电阻、自谐振频率、Q值。等效电路为: 根据汤姆逊公式 可知,天线的谐振频率和L、C有关,调节天线的匝数、线圈面积、间隙,同时通过外部电容的匹配形成LC谐振电路,通过谐振电路即可将能量传输至射频卡。 原则上,增加天线的匝数、线圈面积,可以增大磁通量,工作距离更远。当然,增加匝数与面积的同时,天线的等效电感也会随之增大,过大的电感会导致调谐振电容时需要的电容量过小,因此天线的等效电感值通常涉及在1-2uH左右。 使用仿真软件,可得天线各参数如下的关系: 对于整体NFC设计,为考量EMC滤波电路、匹配电路的设计,我们需要确定天线的等效电感、电阻、电容、Q值。对于参数的测量可借助网络分析仪—— 1. 在天线端连接网络分析仪:此时天线需要和匹配网络断开(将已上电的读卡器连接到VNA可能会损坏网络分析仪); 2. 将史密斯圆图的测试频率范围设置为1MHz - 100MHz; 3. 在13.56MHz做标记,直接测量出该频率点的损耗电阻Rsdc、电感Lant、自谐振频率Fra、自谐振并联阻抗Rp。 4. 计算天线等效电路参数: 自谐振频率下寄生电容: 天线自谐振频率13.56Mhz时的等效电阻(必须从自谐振频率转化为工作频率): 天线等效总电阻: 最终简化的天线等效谐振电路为如下模型: 由此计算出: 根据如上4个步骤,天线的参数(Rpant、Cant、Lant)已经测试、计算完毕,该等效的电路参数将用于设计匹配电路,匹配电路与天线达到共轭匹配后才能最大程度地传输可用能量。

    时间:2021-07-18 关键词: NFC天线 工作原理

  • 40张动图看懂常用传感器工作原理

    时间:2021-07-18 关键词: 传感器 工作原理

  • 什么是整流器?整流器的工作原理是什么?

    整流器是常用设备之一,通过整流器,我们能够对电流类型加以转换。为增进大家对整流器的认识,本文将对整流器、整流器的工作原理予以介绍。如果你对整流器或者整流器的相关知识具有兴趣,不妨和小编继续往下阅读哦。 一、什么是整流器 整流器(英文:rectifier)是把交流电转换成直流电的装置,可用于供电装置及侦测无线电信号等。整流器可以由真空管,引燃管,固态矽半导体二极管,汞弧等制成。相反,一套把直流电转换成交流电的装置,则称为“逆变器” (inverter)。 在备用UPS中只需要给蓄电池充电,不需要给负载供电,故只有充电机。在双变换UPS中,此装置既为逆变器供电,又给蓄电池充电,故称为整流器/充电机。 整流器是一个整流装置,简单的说就是将交流(AC)转化为直流(DC)的装置。它有两个主要功能:第一,将交流电(AC)变成直流电(DC),经滤波后供给负载,或者供给逆变器;第二,给蓄电池提供充电电压。因此,它同时又起到一个充电器的作用。 二、整流器的工作原理 汽车发电机产生的交流电经过整流器整后变为直流电,但其波形仍然具有不规则的波动,直接影响了车辆点火的准确性;输出电压无法保持相对恒定,造成每次火花塞点火的能量差别,容易使车辆引擎抖动,出现换档顿挫、提速缓慢无力、怠速不稳以及车用空调效率低下等情形。从而大大降低了车载电器设备的性能和使用寿命;再加上高龄汽车的电路系统老化,电路阻阬变高的影响,对车辆的影响也就变得日益明显。电子整流器的作用是帮助车消除杂波干扰、稳定输出电压、提高电源系统的瞬间放电能力、增加扭力输出、加快油门反应、延长电池使用寿命、缩短汽车引擎启动时间、提高点火效率等,尤其是对小排量的车,效果比较明显。 半导体PN结在正向偏置时电流很大,反向偏置时电流很小。整流二极管就是利用PN结的这种单向导电特性将交流电流变为直流的一种PN结二极管。通常把电流容量在1安以下的器件称为整流二极管,1安以上的称为整流器。常用的半导体整流器有硅整流器和硒整流器,产品规格很多,电压从几十伏到几千伏,电流从几安到几千安。整流器广泛用于各种形式的整流电源中。大功率整流电源要求整流器的电流容量大、击穿电压高、散热性能好,但这种器件的结面积大、结电容大,因而工作频率很低,一般在几十千赫以下。硅材料的禁带宽度较大,导热性能良好,适于制作大功率整流器件。在耐高压的整流装置中常采用高压硅堆,它由多个整流器件的管芯串联组成,其反向耐压由管芯的耐压及串联管芯数决定,最高耐压可达几百千伏。如果高频整流电路用于很高频率下,当交流电压的周期与整流器通态到关态的恢复时间相当时,整流器对高频电压不再起整流作用。为适应高频工作的需要,通常在硅整流器中采用掺金的方法,以缩短注入少数载流子的寿命,从而达到减小恢复时间的目的。 为了减小器件因过压击穿造成损坏的可能性和提高整流装置的可靠性,可采用硅雪崩整流器。在这种器件中,当反向电压超过允许峰值时,在整个PN结上发生均匀的雪崩击穿,器件可工作在高压大电流下,故能承受相当大的反向浪涌功率。制作这种器件时要求材料缺陷少,电阻率均匀,结面平整,外露结区还应进行适当保护,避免发生表面击穿。硒整流器的抗过载容量大,承受反向浪涌功率的能力也较强。 在以大功率二极管或晶闸管为基础的两种基本类型的整流器中,电网的高压交流功率通过整流器变换为直流功率。提到未来(不久的或遥远的)的其它类型整流器:以不可控二极管前沿产品为基础的斩波器、斩波直流/直流变换器或电流源逆变型有源整流器。显然,这种最新型的整流器在技术上包含较多要开发的内容,但是它能显示出优点,例如它以非常小的谐波干扰和1的功率因数加载于电网。 以上便是此次小编带来的“整流器”相关内容,通过本文,希望大家对整流器、整流器的工作原理具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!

    时间:2021-06-23 关键词: 整流器 指数 工作原理

  • 什么是断路器?断路器的工作原理是什么?

    断路器是机械器件之一,对于断路器,可能大家并未常有所耳闻。所以,本着为大家介绍断路器的目的,本文将对断路器的基本知识以及断路器的工作原理予以阐述。如果你对断路器的相关知识具有兴趣,不妨和小编继续往下阅读哦。 一、什么是断路器 首先,我们来看看断路器的基本概念。 断路器是指能够关合、承载和开断正常回路条件下的电流并能在规定的时间内关合、承载和开断异常回路条件下的电流的开关装置。断路器按其使用范围分为高压断路器与低压断路器,高低压界线划分比较模糊,一般将3kV以上的称为高压电器。 断路器可用来分配电能,不频繁地启动异步电动机,对电源线路及电动机等实行保护,当它们发生严重的过载或者短路及欠压等故障时能自动切断电路,其功能相当于熔断器式开关与过欠热继电器等的组合。而且在分断故障电流后一般不需要变更零部件。目前,已获得了广泛的应用。 电的产生、输送、使用中,配电是一个极其重要的环节。配电系统包括变压器和各种高低压电器设备,低压断路器则是一种使用量大面广的电器。 二、断路器的工作原理 通过上面的介绍,想必大家对断路器已经具备了基本认识。但是,你了解断路器的工作原理吗?如果你对断路器的工作原理不是十分熟悉,那么可以在这部分找到答案哦。 断路器一般由触头系统、灭弧系统、操作机构、脱扣器、外壳等构成。 当短路时,大电流(一般10至12倍)产生的磁场克服反力弹簧,脱扣器拉动操作机构动作,开关瞬时跳闸。当过载时,电流变大,发热量加剧,双金属片变形到一定程度推动机构动作(电流越大,动作时间越短)。 有电子型的,使用互感器采集各相电流大小,与设定值比较,当电流异常时微处理器发出信号,使电子脱扣器带动操作机构动作。 断路器的作用是切断和接通负荷电路,以及切断故障电路,防止事故扩大,保证安全运行。而高压断路器要开断1500V,电流为1500-2000A的电弧,这些电弧可拉长至2m仍然继续燃烧不熄灭。故灭弧是高压断路器必须解决的问题。   吹弧熄弧的原理主要是冷却电弧减弱热游离,另一方面通过吹弧拉长电弧加强带电粒子的复合和扩散,同时把弧隙中的带电粒子吹散,迅速恢复介质的绝缘强度。 低压断路器也称为自动空气开关,可用来接通和分断负载电路,也可用来控制不频繁起动的电动机。它功能相当于闸刀开关、过电流继电器、失压继电器、热继电器及漏电保护器等电器部分或全部的功能总和,是低压配电网中一种重要的保护电器。 低压断路器具有多种保护功能(过载、短路、欠电压保护等)、动作值可调、分断能力高、操作方便、安全等优点,所以被广泛应用。结构和工作原理低压断路器由操作机构、触点、保护装置(各种脱扣器)、灭弧系统等组成。 低压断路器的主触点是靠手动操作或电动合闸的。主触点闭合后,自由脱扣机构将主触点锁在合闸位置上。过电流脱扣器的线圈和热脱扣器的热元件与主电路串联,欠电压脱扣器的线圈和电源并联。当电路发生短路或严重过载时,过电流脱扣器的衔铁吸合,使自由脱扣机构动作,主触点断开主电路。当电路过载时,热脱扣器的热元件发热使双金属片上弯曲,推动自由脱扣机构动作。当电路欠电压时,欠电压脱扣器的衔铁释放。也使自由脱扣机构动作。分励脱扣器则作为远距离控制用,在正常工作时,其线圈是断电的,在需要距离控制时,按下起动按钮,使线圈通电。 以上便是此次小编带来的“断路器”相关内容,通过本文,希望大家对断路器以及断路器的工作原理具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!

    时间:2021-06-16 关键词: 断路器 指数 工作原理

  • ups电源有何作用?大佬带你看ups电源工作原理

    ups电源,是电源类型中常用类型之一。上篇ups电源文章中,小编对ups电源的分类以及ups电源的过载保护有所阐述。为增进ups电源的认识,本文将基于两点介绍ups电源:1、ups电源功能介绍,2.ups电源的工作原理。如果你对ups电源具有兴趣,不妨继续往下阅读哦。 一、ups电源功能作用 首先,我们来看看ups电源的基本内容和ups电源的功能作用。 不间断电源(UPS)是将蓄电池(多为铅酸免维护蓄电池)与主机相连接,通过主机逆变器等模块电路将直流电转换成市电的系统设备。它主要用于给单台计算机、计算机网络系统或其他电力电子设备如电磁阀、压力变送器等提供稳定、不间断的电力供应。 不间断电源广泛应用于:矿山、航天、工业、通讯、国防、医院、计算机业务终端、网络服务器、网络设备、数据存储设备、应急照明系统、铁路、航运、交通、电厂、变电站、核电站、消防安全报警系统、无线通讯系统、程控交换机、移动通讯、太阳能储存能量转换设备、控制设备及其紧急保护系统、个人计算机等领域。 随着计算机应用系统对电源的要求越来越高UPS日益受到重视,并逐渐发展成为一种具有稳压、稳频、滤波、抗电磁和射频干扰、防电压冲浪等功能的电力保护系统。尤其是在电网的线路及供电质量不太高、抗干扰的技术落后,同时计算机系统对电源的要求又比较高的情况下,UPS的作用就显得更加明显。 UPS的保护作用首先表现在对市电电源进行稳压,UPS的输入电压范围比较宽,一般情况是从170V到250V,而输出电源的质量是相当高的,后备式的UPS输出电压在5%~8%,输出频率稳定在1Hz;如图1,在线式UPS输出电压稳定在3%以内,输出频率稳定在0.5Hz。在市电正常时,UPS电源相当于交流市电稳压器;同时市电对蓄电池进行充电,此时也相当于充电器。在市电突然掉电的情况下,UPS自动切换到蓄电池供电,使计算机维持正常工作,保护软硬件不受损害。 二、ups电源工作原理 在了解了ups电源的功能之后,我们再来看看ups电源的工作原理。该部分主要从两方面阐述,一是ups系统组成,二是ups电源连接方式。下面,跟着小编来了解以下吧。 (一)系统组成 典型的UPS系统的基本结构是一套将交流电变为直流电的整流器和充电器,以及把直流电再变为交流电的逆变器,电池在交流电正常供电时贮存能量且维持在一个正常的充电电压上,一旦市电供电中断时,蓄电池立即对逆变器供电以保证UPS电源交流输出电压。 (1)市电在UPS所允许的范围内正常供电时,粗线描绘了电源能量的流向。 (2)主电源故障即市电被切断后,电源将瞬间改由逆变器提供能量。 (3)当所带负载过大或电源内逆变器出现故障时,UPS将打开旁路由主电源直接供电。 (二)连接方式 (1)单台UPS电源能够供给全部负载,连接图如系统的原理图,连接方法较简单。 (2)总负载功率需要二台或更多台UPS电源供给,这种连接方式称作并联无备份方式。 (3)二台或二台以上UPS电源其总容比负载总容里要多,但该系统比负载总容量必须多一台UPS电源的容量,任何一台UPS电源故障时,其余仍能供给全部负载。这种连接方式称作并联有备份方式。 (4)整个UPS电源系统出现故障后,市电将UPS电源脱开,直接接通负载,且不影响UPS电源系统的维修。 当UPS电源系统无故障时,维修开关打开,输入开关、输出开关闭合;当UPS电源系统故障时,维修开关闭合,输入开关、输出开关打开。这样,保证了用电负载的正常工作,而又不影响对UPS电源系统故障的在线维修。 以上便是此次小编带来的“ups电源”相关内容,通过本文,希望大家对ups电源的功能以及ups电源的工作原理具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!

    时间:2021-06-10 关键词: ups电源 指数 工作原理

  • 你了解热电偶吗?热电偶工作原理介绍

    热电偶,对很多人而言,可能听着像一个新词汇。但是,热电偶很久前就已经出现了,热电偶的作用在于测温。为增进大家对热电偶的认识,本文将对热电偶以及热电偶的工作原理予以介绍。如果你对热电偶具有兴趣,不妨继续往下阅读哦。 一、热电偶引言 热电偶(thermocouple)是温度测量仪表中常用的测温元件,它直接测量温度,并把温度信号转换成热电动势信号,通过电气仪表(二次仪表)转换成被测介质的温度。各种热电偶的外形常因需要而极不相同,但是它们的基本结构却大致相同,通常由热电极、绝缘套保护管和接线盒等主要部分组成,通常和显示仪表、记录仪表及电子调节器配套使用。 在工业生产过程中,温度是需要测量和控制的重要参数之一。在温度测量中,热电偶的应用极为广泛,它具有结构简单、制造方便、测量范围广、精度高、惯性小和输出信号便于远传等许多优点。另外,由于热电偶是一种无源传感器,测量时不需外加电源,使用十分方便,所以常被用作测量炉子、管道内的气体或液体的温度及固体的表面温度。 二、工作原理 当有两种不同的导体或半导体A和B组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为T,称为工作端或热端,另一端温度为T0 ,称为自由端(也称参考端)或冷端,回路中将产生一个电动势,该电动势的方向和大小与导体的材料及两接点的温度有关。这种现象称为“热电效应”,两种导体组成的回路称为“热电偶”,这两种导体称为“热电极”,产生的电动势则称为“热电动势”。 热电动势由两部分电动势组成,一部分是两种导体的接触电动势,另一部分是单一导体的温差电动势。 热电偶回路中热电动势的大小,只与组成热电偶的导体材料和两接点的温度有关,而与热电偶的形状尺寸无关。当热电偶两电极材料固定后,热电动势便是两接点温度t和t0。的函数差。即 这一关系式在实际测温中得到了广泛应用。因为冷端t0恒定,热电偶产生的热电动势只随热端(测量端)温度的变化而变化,即一定的热电动势对应着一定的温度。我们只要用测量热电动势的方法就可达到测温的目的。 热电偶测温的基本原理是两种不同成份的材质导体组成闭合回路,当两端存在温度梯度时,回路中就会有电流通过,此时两端之间就存在电动势——热电动势,这就是所谓的塞贝克效应(Seebeck effect)。两种不同成份的均质导体为热电极,温度较高的一端为工作端,温度较低的一端为自由端,自由端通常处于某个恒定的温度下。根据热电动势与温度的函数关系,制成热电偶分度表;分度表是自由端温度在0℃时的条件下得到的,不同的热电偶具有不同的分度表。 在热电偶回路中接入第三种金属材料时,只要该材料两个接点的温度相同,热电偶所产生的热电势将保持不变,即不受第三种金属接入回路中的影响。因此,在热电偶测温时,可接入测量仪表,测得热电动势后,即可知道被测介质的温度。热电偶测量温度时要求其冷端(测量端为热端,通过引线与测量电路连接的端称为冷端)的温度保持不变,其热电势大小才与测量温度呈一定的比例关系。若测量时,冷端的(环境)温度变化,将严重影响测量的准确性。在冷端采取一定措施补偿由于冷端温度变化造成的影响称为热电偶的冷端补偿正常。与测量仪表连接用专用补偿导线。 热电偶冷端补偿计算方法: 从毫伏到温度:测量冷端温度,换算为对应毫伏值,与热电偶的毫伏值相加,换算出温度; 从温度到毫伏:测量出实际温度与冷端温度,分别换算为毫伏值,相减後得出毫伏值,即得温度。 以上便是此次小编带来的“热电偶”相关内容,通过本文,希望大家对热电偶以及热电偶的工作原理具备一定的认知。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!

    时间:2021-06-08 关键词: 热电偶 指数 工作原理

  • 你了解MCU的工作原理吗?8位MCU运算速度够用吗?

    MCU也就是微控制单元,对于MCU,工业的朋友相对更为熟悉。但是,在生活中,对于MCU,我们或多或少也有所耳闻。为增进大家对MCU的认识,本文将对MCU的工作原理、8位MCU的运算速度和存储予以介绍。如果你对MCU具有兴趣,不妨继续往下阅读哦。 一、MCU工作原理 MCU同温度传感器之间通过I2C总线连接。I2C总线占用2条MCU输入输出口线,二者之间的通信完全依靠软件完成。温度传感器的地址可以通过2根地址引脚设定,这使得一根I2C总线上可以同时连接8个这样的传感器。本方案中,传感器的7位地址已经设定为1001000。MCU需要访问传感器时,先要发出一个8位的寄存器指针,然后再发出传感器的地址(7位地址,低位是WR信号)。传感器中有3个寄存器可供MCU使用,8位寄存器指针就是用来确定MCU究竟要使用哪个寄存器的。本方案中,主程序会不断更新传感器的配置寄存器,这会使传感器工作于单步模式,每更新一次就会测量一次温度。 要读取传感器测量值寄存器的内容,MCU必须首先发送传感器地址和寄存器指针。MCU发出一个启动信号,接着发出传感器地址,然后将RD/WR管脚设为高电平,就可以读取测量值寄存器。 为了读出传感器测量值寄存器中的16位数据,MCU必须与传感器进行两次8位数据通信。当传感器上电工作时,默认的测量精度为9位,分辨力为0.5 C/LSB(量程为-128.5 C至128.5 C)。本方案采用默认测量精度,根据需要,可以重新设置传感器,将测量精度提高到12位。如果只要求作一般的温度指示,比如自动调温器,那么分辨力达到1 C就可以满足要求了。这种情况下,传感器的低8位数据可以忽略,只用高8位数据就可以达到分辨力1 C的设计要求。由于读取寄存器时是按先高8位后低8位的顺序,所以低8位数据既可以读,也可以不读。只读取高8位数据的好处有二,第一是可以缩短MCU和传感器的工作时间,降低功耗;第二是不影响分辨力指标。 MCU读取传感器的测量值后,接下来就要进行换算并将结果显示在LCD上。整个处理过程包括:判断显示结果的正负号,进行二进制码到BCD码的转换,将数据传到LCD的相关寄存器中。 数据处理完毕并显示结果之后,MCU会向传感器发出一个单步指令。单步指令会让传感器启动一次温度测试,然后自动进入等待模式,直到模数转换完毕。MCU发出单步指令后,就进入LPM3模式,这时MCU系统时钟继续工作,产生定时中断唤醒CPU。定时的长短可以通过编程调整,以便适应具体应用的需要。 二、8位MCU运算速度和存储 在了解了MCU的工作原理后,我们再来看看8位MCU的运算速度以及存储情况,看看8位MCU和32位MCU有何区别。 与8位MCU相比,32位MCU的主要优势之一是其更出色的处理速度。典型的8位MCU通常以8 MHz运行,而32位MCU的时脉频率则可达数百MHz。如果只是使用MCU来开启机械继电器,就很可能会忽略到这些数据处理时的速度差异。但是,当运行的是需要大量数据处理的应用程序时,这些速度上的差异就会变得明显。例如,每天要处理上千次工作的门禁控制器,就需要采用32位的MCU。 8位MCU的优势在于价格便宜且易于使用。事实上,在许多应用中,它们已经被使用了40年之久,却仍然非常受欢迎。但是,如果所欲处理的是需要大量内部随机存取存储(RAM)的工作,那么可能就必须采用32位MCU来替换8位。32位MCU的RAM通常比8位产品多8倍。因此,例如工程师需要一个巨大的缓冲区来储存音讯数据的话,那么32位MCU便是最好的应用选择。 以上便是此次小编带来的“MCU”相关内容,通过本文,希望大家对MCU的工作原理以及8位MCU的运算速度和存储具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!

    时间:2021-06-07 关键词: MCU 指数 工作原理

  • 一看就懂!动画讲解LC振荡器的工作原理

    电感器是由电线线圈组成的设备,包裹在磁性材料上。电容器是包含两个金属板的设备。如果我们在电路中将电感器和电容器连接在一起,电流和电压会振荡,我们称这些振荡的频率为该电路的“谐振频率”。该频率由电感的感值和电容的容值决定。由于电线线的电阻,振动幅度将逐渐减小。如果该电路中的导线没有电阻,这些振动将永远持续下去。 另一方面,假设我们的电路是仅由一个电容器和一个电阻器组成。一旦电容器放电,电阻两端的电压将为0。一旦电阻两端的电压为0,就不会有电流流过。如果没有电流流过,那么电容器将永远无法充电。但是,与电阻不同,电感是一种试图防止流过它的电流量发生任何变化的器件。如果电流试图停止流动,电感将施加力以保持电流通过。 在包含电阻的电路中,当电容器完全放电时,电流降为0;如果我们用电感代替电阻,那么当电流试图减小时,电感将施加力以保持电流流动。然后,该电流将以相反的方向给电容器充电。然后,电容器将要放电,并且此循环将重复进行。 假设交在该电路旁边,有一个交流电压源,具有与这些振荡完全相同的频率。如果我们添加一个电阻,电阻两端的电压始终相等,这意味着电阻两端的电压降始终为0。如果电阻两端的电压降始终为0,那么就没有电流通过。从交流电压源的角度来看,电感器和电容器的并联为开路。且可以用开路代替。而交流电压源不会知道两者之间的差异,因为无论哪种情况,电流都不会流过交流电源。 现在,假设我们采用与以前相同的电感器和电容器,我们将它们串联。由于此电路中所有组件都是串联连接的,因此每个点流过的电流量完全相同。电感与电容组合的谐振频率,仍和以前一样。在组件串联的情况下,电感器电容器组合就像短路一样。该串联的电感器和电容器可以替换为短路,而交流电压源不会知道两者之间的差异,因为会流过完全相同的电流,像以前一样流过交流电压源。然而,仅当电压源的频率恰好等于谐振频率。电压源的频率越接近谐振频率,电感器与电容器的串联组合越像短路,并且,电流的幅度将更大。如果电感器与电容器并联,则情况相反,电压源的频率越接近谐振频率,电感器与电容器的串联组合越像开路,并且流过电压源的电流越低。

    时间:2021-05-06 关键词: 振荡器 LC振荡器 工作原理

  • 三极管的工作原理书上都讲不清楚,为什么能被制造出来?

    我还是那个观点,一定要站在发明者的角度来看问题,只有这样,一切问题才都能迎刃而解。因为模电的内容就是发明---使用---发现问题---改进---再发明—再使用的过程,是我们学习前人发明和使用的东西。 我们就以二极管和三极管为例,二极管是控制导线中电子的流动方向,而三极管是控制导线中流动电子的多少。这也是“电子技术”的根本。理论搞明白了实验就简单了。 下面主要是以三极管为例来说明导线中电流的控制。 我们都非常熟悉家用手电筒电路,手电筒电路中有“三要素”,即电源VCC、灯泡L(或者说负载Rc)、 开关K,如下图所示。 现在,我们不想用手动方式去实现开关K的合上以及断开,我们想用一个信号去控制一个器件来实现电路的“通和断”。 要想控制一根导线中的电流,首先要把这根导线断开,断开的两端我们分别叫做C端和E端(C和E实际上是输出回路的两端)。 如果我们在C和E之间加个器件,这个器件如果能使电流从C端流进并能从E端流出来(因为C和E本来就是我断开的一个回路的两端),同时这个电流又能被我们加的信号所控制住,那么这个器件就成功了。(一定要注意,我们要实现什么目标,我们要控制一个电回路的通和断) 为了实现上述要求,接下来我们就在C-E之间放一个NPN(或PNP)结构的半导体,可是,现在的问题是,在这种情况下无论怎样在C和E之间加电源 (不击穿情况下)  ,C-E这根导线始终都不会有电流(其实这种情况下,C-E之间是有穿透电流的(它是由少子引起的),因其非常小,这里忽略不计,这也是半导体材料存在的缺点。实际上,我们不希望它存在)。 我们又知道,电子流动的方向与人们定义电流的方向相反(这是因为当时人们以为电线里流过的是电流),所以,我们将中间半导体引出一个电极(B极)。 在B-E之间(实际上是加在发射结上,见PN结特性)加一个正向电压,这时发射区就会向基区发射电子从而形成E极流出的电流Ie,但是,要想实现这个电流是从C端入、从E端出,则必须要把发射区发射的这些电子都收集到C极去,这样我们需要在C和E之间加正向电压,使集电结处于反向击穿状态,使电子能顺利收集到C极,这个收集电子的能力要比发射电子的能力强,它就像一个大口袋,你发射区发射多少我就收多少(这样就能理解三极管输出特性曲线了,当B极电流一定时,随着CE电压的增加,C极电流就不再增加了,因为B极电流一定时,发射区发射的电子数量就一定了,你收集的能力再强也要不到多余的电子了),这样,这个器件就成了,可以实现电流从C端到E端(因为当初我假设它们之间是被我断开的导线两端),最理想的是流进C端的电流就等于E端流出的电流,同时这个电流又被一个BE电压(或信号)控制,但是,三极管不是一个理想的器件,因为C端电流不等于E端电流,有一部分电流流过B极,我们尽量使C端电流等于E端电流,所以,这就是为什么在工艺上要使基区浓度要低而且还要薄,同时集电结的面积还要大的根本原因。 谈一谈Ic受Ib控制的问题: 通过前面的叙述,我们已经知道发射极电流Ie受发射结电压控制,由于我们采取了工艺上的措施,使得集电极电流Ic近似等于发射极电流Ie,这样就可以说集电极电流Ic受发射结电压控制。我们又从三极管输入特性曲线可知,当Vbe和Ib的关系处于特性曲线的近似直线的位置时,基极电流Ib与发射结电压就成线性关系,这样,可以说集电极电流Ic与基极电流Ib就成比例关系。往往我们会站在不同角度来看问题,我们从电流放大的角度来看时,刚才说过集电极电流Ic比基极电流Ib大很多,同时它们又成比例关系,因此,在进行计算的时候就说成是集电极电流Ic受基极电流Ib控制。这其实是人们站的角度不同而已(从电流放大的角度来看的),其实,集电极电流Ic还是由发射结电压控制的,等到了高频小信号模型的时候,就会说集电极电流受发射结电压控制了。 Uce电压的作用是收集电子的,它的大小不能决定Ic的大小,从三极管输出特性曲线可以看到,当Ib一定时(也就是Ube一定时),即使Uce增加,Ic就不变了,但是,由于半导体中有少子存在,使得输出特性曲线随着Uce增加而有些上翘,其实这是半导体材料存在的问题。实际上,Ie是受从输入端看进去的发射结电压控制的(可以参见三极管高频小信号模型),加Uce电压的时候发射结已经处于导通了,它的影响不在发射结而在集电结,加Uce电压是为了让Ic基本等于Ie,所以说Ic受发射结电压控制,人们为了计算方便把这种控制折算成受Ib控制,就是因为说成这样,使得人们不太容易理解三极管工作的原理。从输出回路受输入回路信号控制的角度来看,Ic不是由Ie控制的,但是,Ic其实是由Ie带来的,所以,也可以说Ic受Ie影响的,这也得受三极管制造工艺影响,如果拿两个背靠背二极管的话,怎么也不行。 尽管三极管不是一个理想器件,但是,它的发明已经是具有划时代意义了。由于它的B极还有少量电流,因为这个电流的存在意味着输入回路有耗能,如果我不耗能就能控制住你输出回路的电流,那这个便宜就大了,所以,后来人们发明了场效应管。其实,发明场效应管的思想也是与三极管一样的,就是为了用一个电压来控制导线中的电流,只是这回输入回路几乎不耗能了,同时,器件两端的电流相等了。 从使用者的角度(非设计者)来看看三极管的应用: 三极管的两个基本应用分别是“可控开关”和“信号的线性放大”。 可控开关:C和E之间相当于一个可控开关(当然。这个开关有一定的参数要求),当B-E之间没有加电压时,C-E之间截止(C-E之间断开);而当B-E之间电压加的很大,发射区发射的电子数量就多,C极和E极的电流就很大,如果输出回路中有负载时(注意,输出回路没有负载CE之间就不会饱和),由于输出回路的电源电压绝大部分都加到负载上了,CE之间的电压就会很小,CE之间就处于饱和状态,CE之间相当于短路。在饱和情况下,尽管C极电流比基极电流大,但是,C极电流与输入回路的电流(基极电流)不成β的比例关系。 以最简单的电路为例,我们家里都有手电筒,手电筒有三个要素(具有普遍意义):电源、灯泡(负载)和开关,这里的开关需要直接手动进行合上与断开,用三极管代替这个开关我们就能实现用信号来控制,计算机在远端就能控制这个回路。控制高压、大电流的还请大家看看IGBT等功率芯片及模块,那是真震撼。 从另一方面看饱和:从输出特性曲线可以看到,IB一定时VCE电压不用很大,那个输出特性曲线就弯曲变平了,这说明收集电子的电压VCE不用很大就行,其实不到1V就行,但是,实际上我们在输出回路都是加一个电压很大的电源,你再加大VCE也没有用,我们看到,IB一定时VCE增加后对IC的大小没有影响(理想情况),所以要想把发射的电子收集过去,VCE根本不用很大电压。 但是,通常情况下,我们会在输出回路加入一个负载,当负载两端电压小于电源电压时,电源电压的其它部分就加在CE两端,此时三极管处于线性放大状态。但是,负载两端电压的理论值大于电源电压时,则三极管就处于饱和状态,这种情况IC不用很大也行。 所以不要以为VCE一定很大三极管集电极才能收集到电子,可以看到收集电子的电压很小就行。从电压角度来看,集电极电流不一定很大,在选择合适负载电阻的情况下,三极管也可以处于饱和状态,所以,饱和与负载有关,如果电源电压很大,那饱和时VCE就这么一点点电压而言那当然是微不足道的,所以,很多地方就将它约等于零了,但是并不能说它没有电子收集能力。 信号的线性放大:这种情况下,C极电流与B极电流成线性比例关系IC=βIB(BE之间电压要大于死区电压,同时,VCE不趋于零),而且,C极电流比B极电流大很多,前面已经知道,C极电流的大小受BE电压控制(人们为了分析问题方便,将这种控制关系说成是C极电流受B极电流控制)。实际上,马路上到处跑的汽车就是一个放大器,它是把驾驶员操作信号给放大了,它也是线性放大,是能量的放大,而多余的能量来自于燃烧的汽油。 模电这门课从三极管小信号模型开始的绝大多数内容都是讲小信号放大问题,共射极、共集电极、共基极的4个电路是基本,其它的是由他们组合而成的,它们的电路组成、电路交直流分析、电路性能分析是关键。 其它的就是功率放大的问题、模拟集成运算放大器内部结构设计问题、运放的应用、如何减少非线性失真和放大稳定问题(负反馈)、正弦波产生(正反馈)等等。 模电从细节和总体上把握。 模电的学习: 从使用者的角度来看,其实,模电这门课并不难,学生往往被书中提到的所谓少子、多子、飘移、扩散等次要问题所迷惑,没有抓住主要问题,有些问题是半导体材料本身存在缺陷导致的,人们为了克服这些缺陷而想出了各种解决办法,所以,模电中有许多是人们想出的技巧和主意。从三极管三个电极连接的都是金属的角度来看,金属中只有自由电子的定向流动才有电流,金属中哪有什么空穴之类的东西,如果把人们的视线停留在三极管的内部,那一定使人们不容易理解,如果你跳出来看问题,你就会理解科学家当时为什么要发明它,也会使你豁然开朗。但是,从设计者角度来看,需要考虑的问题就很多了,否则,你设计出来的器件性能就没有人家设计的好,当然也就没有市场了。如果谁能找到一种材料,而这种材料的性能比半导体特性还好,那么他一定会被全世界所敬仰。所以,学习模电的时候,一定要用工程思维来考虑问题,比如,为什么要发明它?它有什么用途?它可以解决什么问题?它有哪些不足?人们是如何改进的?等等。 再谈可控开关: 三极管要工作在饱和或截止状态,此时C和E之间相当于可控开关,B极加输入信号,为了防止三极管损坏,B极要接限流电阻,余下的问题就是,所控制的负载应接在C极还是E极?它的功率有多大?驱动电压多大?电流多大?你选的三极管能否胜任?不胜任怎么办?改用什么器件?低压和高压如何隔离?等等。 再谈信号的线性放大: 这种情况下,C极电流是B极电流的β倍,以三极管放大电路为例: (1)直流工作点问题,为什么要有直流工作点?什么原因引起工作点不稳定?采取什么措施稳定直流工作点? 为什么要有直流工作点?是因为PN结只有外加0.5V以上电压时才有电流通过(硅材料),而我们要放大的微弱的交变信号幅度很小,将这个微弱的变化信号直接加到三极管的基极和射极之间,基极是没有电流的,当然,集电极也不可能有电流。所以,我们在基极首先要加上直流工作电流后,三极管三个电极就都有直流电流了, 以NPN管子为例,共射、共基、共集电极三个电路的直流都是一个方向,无论三极管电路的哪种接法,它们的直流电流方向都是一样的,在这基础上,再在输入端(发射结)加入微弱交流小信号后,这个微弱信号就会使基极电流产生扰动,由于集电极电流与基极电流成比例关系,则集电极电流(输出回路电流)也会发生扰动,这样,这个输出回路电流中就有被输入交流信号影响的扰动信号,我们要的就是输出回路这个被基极扰动电流控制的集电极扰动的信号(输出交流信号),这个输出回路(集电极-发射极)扰动的信号比输入(基极)扰动信号大,这就是放大,也可以说,放大其实是输出回路电流受输入信号的控制。但是,不管怎样扰动,总体上是不能改变三个电极电流的方向的。 如果直流工作点设置合理时,那个扰动信号就与输入交流小信号成比例关系,而且又比输入信号大,我们要的就是这个效果。 (2)交流信号放大问题,共射极、共集电极、共基极电路的作用、优点和缺点是什么?如何克服电路的非线性?为什么共射--共基电路能扩展频带?为什么共集电极放大电路要放在多级放大电路的最后一级?多级放大电路的输入级有什么要求?人们在集成电路中设计电流源的目的是什么?它的作用是什么?如何克服直接耦合带来的零点漂移?为什么要设计成深负反馈?其优点和问题是什么?深负反馈自激的原因是什么?什么是电路的结构性相移?什么是电路的附加相移?什么情况下电路输出信号与输入信号之间出现附加相移?等等。 (3)集成运算放大器,为了克服半导体器件的非线性问题(不同幅度信号的放大倍数不一样),人们有意制成了高增益的集成运算放大器,外接两个电阻就构成了同相或反向比例放大电路,这时整个电路的电压放大倍数就近似与半导体特性无关了(深负反馈条件下),放大倍数只与外接的两个电阻有关,而电阻材料的温度特性比半导体材料好,同时线性特性也改善了。在计算的时候注意运用“虚短”和“虚断”就行了,模电学到这里那就太简单了,所以,如果不考虑成本时谁还会用三极管分立元件组成的放大电路,还得调直流工作点。集成运算放大器的其它应用还很多,如有源滤波器、信号产生电路等。 负反馈自激振荡与正弦波产生电路的区别 负反馈自激振荡是由于某个未知频率信号在反馈环路中产生了额外的180度的附加相移,负反馈电路对这个频率信号来讲就变成了正反馈,同时,对这个频率信号的环路增益又大于1,这种情况下,负反馈电路就自激了(对其它频率信号,此电路还是负反馈)。而正弦波振荡电路是人们有意引入的正反馈,可以说对无数个频率信号都是正反馈,既然这样,环路中就不用有附加相移了,但是,这样的信号太多了,所以,人们需要在反馈环路中设计一个选频电路来选择某一个频率信号,当然,对被选取的信号来讲,这个选频电路就不需要有额外相移了。 以上大致总结了一些问题,仅供参考。 为了从全局了解这门课,以及更容易学好这门课,建议参见我主页上我写的文章“模拟电子技术基础课程新的目录”,希望对大家有帮助。 来源|作者:知乎|李泽光 免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

    时间:2021-04-05 关键词: 三极管 工作原理

  • 电感器是如何工作的?可调电感器有哪些应用范畴?

    以下内容中,小编将对电感器的相关内容进行着重介绍和阐述,希望本文能帮您增进对电感器工作原理以及可调电感器应用范畴的了解,和小编一起来看看吧。 一、电感器工作原理 首先,我们来看看电感器是如何工作的。 电感是导线的磁通量与当交流电通过导线时产生该磁通量的电流之比,电流在导线的内部产生交流磁通量。当直流电流流过电感器时,在电感器周围仅存在固定的磁力线,该磁力线不会随时间而变化。 但是,当交流电流通过线圈时,随时间变化的磁场线将出现在线圈周围。根据法拉第电磁感应定律-磁力产生电流,不断变化的磁力线将在线圈的两端产生感应电势。该感应电势等效于“新电源”。当形成闭环时,该感应电势将产生感应电流。从楞次定律可知,感应电流产生的磁场线的总量将试图防止磁场线的变化。磁场线的变化来自外部交流电源的变化,因此从客观效果来看,电感线圈具有防止交流电路中的电流变化的特性。电感线圈具有类似于机械惯性的特性。它们被称为电的“自感应”。通常,当打开切刀开关或打开切刀开关时,会产生火花。这种自感现象产生的原因很多是由高感应电位引起的。 简而言之,当电感线圈连接到交流电源时,线圈内部的磁力线将始终随交流电而变化,从而导致线圈产生电磁感应。通过线圈自身的电流变化而产生的这种电动势称为“自感电动势”。 可以看出,电感仅仅是与匝数,线圈和介质的尺寸和形状有关的参数。它是电感线圈惯性的量度,与施加的电流无关。 代换原则:1、电感线圈必须原值代换(匝数相等,大小相同)。2、贴片电感只须大小相同即可,还可用0欧电阻或导线代换。 二、可调电感器的应用范畴 可调电感器主要可应用于三个方面,下面我们来一一了解下。 1.半导体收音机用振荡线圈 该振荡线圈在具有可变电容器等的半导体无线电中形成本地振荡电路,并且用于生成本地振荡器信号,该本地振荡器信号的输入调谐电路所接收的无线电信号高于465kHz。 外部是金属屏蔽层,内部是由尼龙衬里框架,I形磁芯,磁帽和销钉座组成。 I形磁芯的绕组由高强度漆包线制成。 磁帽安装在屏蔽层的尼龙框架上,可以上下旋转,并且可以通过改变其与线圈之间的距离来改变线圈的电感。 TV IF陷波线圈的内部结构与振荡线圈相似,只是磁帽是可调节的。 2.电视机用行振荡线圈 行振荡线圈用于早期的黑白电视机中。 它与外围电阻电容组件和线路振荡晶体管一起构成一个自激振荡电路(三点振荡器或间歇振荡器,多谐振荡器),以产生频率为15625HZ的矩形脉冲电压信号。 线圈磁芯的中心有一个方孔,水平同步调节旋钮直接插入方孔中。 通过旋转水平同步调节旋钮,可以改变磁芯与线圈之间的相对距离,从而改变线圈的电感并保持水平振荡频率为15625HZ,并通过自动频率控制发送线路同步脉冲 电路(AFC)产生同步振荡。 3.行线性线圈 行线性线圈是非线性磁饱和电感线圈(其电感随电流的增加而减小),通常串联在线路偏转线圈环路中,并且其磁饱和特性用于补偿线圈的线性失真。图片。 行线性线圈由漆包线制成,该漆包线缠绕在“ I”形铁氧体高频磁芯或铁氧体磁棒上,并在线圈旁边安装了可调式永磁体。通过改变永磁体和线圈的相对位置来改变线圈电感的大小,从而达到线性补偿的目的。 以上便是小编此次带来的有关电感器工作原理以及可调电感器应用范畴的全部内容,十分感谢大家的耐心阅读,想要了解更多相关内容,或者更多精彩内容,请一定关注我们网站哦。

    时间:2021-04-05 关键词: 电感器 可调电感器 工作原理

  • 高压电动机启动装置线路工作原理

    什么是高压电动机?工作原理是什么? 高压电动机是指额定电压在1000V以上的电动机。常使用的是6000V和10000V电压,由于国外的电网不同,也有3300V和6600V的电压等级。高压电动机产生是由于电机功率与电压和电流的乘积成正比,因此低压电机功率增大到一定程度(如300KW/380V)电流受到导线的允许承受能力的限制就难以做大,或成本过高。需要通过提高电压实现大功率输出。 高压电机优点是功率大,承受冲击能力强;缺点是惯性大,启动和制动都困难。 高压电动机工作原理: 1.电动机输入电源 2.电流在定子与转子之间产生电磁感应 3.电磁同极排斥 4.推动转子(定子是固定的) 5.转动做功 6.传动带动其它设备。 高压电动机启动装置线路工作原理 高压电机的额定电压有3kV(3.3kV)、6kV(6.3kV)和10kV(11kV)等几种。当然一些特殊用途的电动机,其额定电压并不局限于以上几种电压规格。 1.启动的一次电路 高压电机也有直接启动和降压启动的区别,降压启动过程中,有的方案可使启动电压呈逐渐升高的斜坡状曲线,有的能使启动电流呈现斜坡曲线,软启动器和变频器则可通过编程满足各种工况启动需求的复杂启动曲线。 (1)直接启动 高压电动机直接启动的一次原理图见右图。图中QS是隔离开关,功能类似于低压系统中的刀开关,设备检修时将其断开以确保安全。QF是真空断路器,是电动机启动运行和停止运行的主开关,近年来它逐渐取代了过去在高压开关柜中大量使用的油断路器。电动机启动前应首先合上QS,然后通过二次控制电路合上真空断路器QF,这时电动机得电开始启动,合闸瞬间电流可达到额定电流的5~7倍。随着电动机转速的逐渐提高,启动电流降低到额定电流,启动过程结束。 直接启动时的电流变化见左图的曲线1。由于直接启动的电流较大,因此,通常应用在电动机功率相对较小(例如一两百千瓦)、供电容量相对充裕的系统中。 隔离开关QS和真空断路器QF的操作顺序非常重要,启动运待时必须先合QS,后合QF;停机时必须先断开QF,之后才能操作(或不操作)QS。因为隔离开关没有灭弧措施,不能用它接通或断开负荷电流。这在开关柜设计时就已经采取了机械闭锁和电气闭锁措施,能有效防止因操作程序错误引发的设备事故。 TA是电流互感器,共有两只,每只有两个二次绕组,分别用于电流测量和电流保护。在三相三线电力系统中,三相电流有如下关系,即IU+IV+IW=0。因此,只要在三相系统中选任意两相安装电流互感器,即可通过对电流表的适当连接,或通过智能电力仪表的内部运算,实现对三相电流的测量。 右图中的F是避雷器,它可吸收沿供电线路引入的雷电高电压或真空断路器等开关元件产生的操作过电压,保护电动机的绝缘免遭破坏。 (2)降压启动 可供高压电动机选用的降压启动方案有多种。因为降压启动能调整和限制启动电流,因此适用于数百数千千瓦甚至上万千瓦的电动机。 降压启动的基本原理是启动时在电动机的电流回路中串联接入一个降压限流元件或装置,用以限制启动电流,减少过大的启动电流对电网造成的冲击,防止电压跌落太多导致的启动失败;同时也能减小或防止启动时机械冲击力可能对设备造成的损伤。 1)电抗器降压启动。 这是一种较为传统的启动方式,其一次原理图见上图。电抗器是一种三相结构的铁芯线圈,有较大的电抗值。电动机启动时,真空断路器QF合闸,而真空接触器KM暂时不合,这样电抗器L串入启动回路,较大的电抗值限制了启动电流。待电动机转速升高至接近额定转速时,KM合闸,将电抗器L短路,电抗器退出启动电路,电动机开始全压运行。 另外还有一种改进型的可调电抗器启动电路,如下图所示。该装置采用闭环系统,通过图4中的电流传感器1TA和电压传感器TV,检测启动过程中的启动电流和电抗器L两端的电压信号,由控制器自动调节电抗器的励磁电流,改变电抗器允许通过的电流值和电抗器两端电压,实现平稳软启动,性能更加优越。 下图中的虚线框表示框内元件独立安装在一个柜体内,与安装有真空断路器的开关柜形成一个开关柜组,共同完成电动机的启动控制功能。

    时间:2021-03-28 关键词: 高压电动机 启动装置线路 工作原理

  • Git 工作原理不懂?看这篇

    链接:http://marklodato.github.io/visual-git-guide 本文图解Git中的最常用命令。如果你稍微理解Git的工作原理,这篇文章能够让你理解的更透彻。基本用法 上面的四条命令在工作目录、暂存目录(也叫做索引)和仓库之间复制文件。 git add files把当前文件放入暂存区域。 git commit给暂存区域生成快照并提交。 git reset – files用来撤销最后一次git add files,你也可以用git reset撤销所有暂存区域文件。 git checkout – files把文件从暂存区域复制到工作目录,用来丢弃本地修改。 你可以用git reset -p,git checkout -p,or git add -p进入交互模式。 也可以跳过暂存区域直接从仓库取出文件或者直接提交代码。 git commit -a相当于运行git add把所有当前目录下的文件加入暂存区域再运行。 git commit files进行一次包含最后一次提交加上工作目录中文件快照的提交。并且文件被添加到暂存区域。 git checkout HEAD – files回滚到复制最后一次提交。 约定 后文中以下面的形式使用图片。 绿色的5位字符表示提交的ID,分别指向父节点。分支用橘色显示,分别指向特定的提交。当前分支由附在其上的HEAD标识。这张图片里显示最后5次提交,ed489是最新提交。master分支指向此次提交,另一个maint分支指向祖父提交节点。 命令详解 Diff 有许多种方法查看两次提交之间的变动,下面是一些示例。 Commit 提交时,Git用暂存区域的文件创建一个新的提交,并把此时的节点设为父节点。然后把当前分支指向新的提交节点。下图中,当前分支是master。在运行命令之前,master指向ed489,提交后,master指向新的节点f0cec并以ed489作为父节点。 即便当前分支是某次提交的祖父节点,git会同样操作。下图中,在master分支的祖父节点maint分支进行一次提交,生成了1800b。这样,maint分支就不再是master分支的祖父节点。此时,合并[1](或者衍合[2])是必须的。 如果想更改一次提交,使用git commit –amend。Git会使用与当前提交相同的父节点进行一次新提交,旧的提交会被取消。 另一个例子是分离HEAD提交[3],后文讲。 Checkout Checkout命令用于从历史提交(或者暂存区域)中拷贝文件到工作目录,也可用于切换分支。 当给定某个文件名(或者打开-p选项,或者文件名和-p选项同时打开)时,Git会从指定的提交中拷贝文件到暂存区域和工作目录。比如,git checkout HEAD~ foo.c会将提交节点HEAD~(即当前提交节点的父节点)中的foo.c复制到工作目录并且加到暂存区域中。(如果命令中没有指定提交节点,则会从暂存区域中拷贝内容。)注意当前分支不会发生变化。 当不指定文件名,而是给出一个(本地)分支时,那么HEAD标识会移动到那个分支(也就是说,我们“切换”到那个分支了),然后暂存区域和工作目录中的内容会和HEAD对应的提交节点一致。新提交节点(下图中的a47c3)中的所有文件都会被复制(到暂存区域和工作目录中);只存在于老的提交节点(ed489)中的文件会被删除;不属于上述两者的文件会被忽略,不受影响。 如果既没有指定文件名,也没有指定分支名,而是一个标签、远程分支、SHA-1值或者是像master~3类似的东西,就得到一个匿名分支,称作detached HEAD(被分离的HEAD标识)。这样可以很方便地在历史版本之间互相切换。比如说你想要编译1.6.6.1版本的Git,你可以运行git checkout v1.6.6.1(这是一个标签,而非分支名),编译,安装,然后切换回另一个分支,比如说git checkout master。然而,当提交操作涉及到“分离的HEAD”时,其行为会略有不同,详情见在下面。 HEAD标识处于分离状态时的提交操作 当HEAD处于分离状态(不依附于任一分支)时,提交操作可以正常进行,但是不会更新任何已命名的分支。(你可以认为这是在更新一个匿名分支。) 一旦此后你切换到别的分支,比如说master,那么这个提交节点(可能)再也不会被引用到,然后就会被丢弃掉了。注意这个命令之后就不会有东西引用2eecb。 但是,如果你想保存这个状态,可以用命令git checkout -b name来创建一个新的分支。 Reset Reset命令把当前分支指向另一个位置,并且有选择的变动工作目录和索引。也用来在从历史仓库中复制文件到索引,而不动工作目录。 如果不给选项,那么当前分支指向到那个提交。如果用–hard选项,那么工作目录也更新,如果用–soft选项,那么都不变。 如果没有给出提交点的版本号,那么默认用HEAD。这样,分支指向不变,但是索引会回滚到最后一次提交,如果用–hard选项,工作目录也同样。 如果给了文件名(或者-p选项),那么工作效果和带文件名的checkout差不多,除了索引被更新。 Merge Merge命令把不同分支合并起来。合并前,索引必须和当前提交相同。如果另一个分支是当前提交的祖父节点,那么合并命令将什么也不做。另一种情况是如果当前提交是另一个分支的祖父节点,就导致fast-forward合并。指向只是简单的移动,并生成一个新的提交。 否则就是一次真正的合并。默认把当前提交(ed489 如下所示)和另一个提交(33104)以及他们的共同祖父节点(b325c)进行一次三方合并[4]。结果是先保存当前目录和索引,然后和父节点33104一起做一次新提交。 Cherry Pick cherry-pick命令“复制”一个提交节点并在当前分支做一次完全一样的新提交。 Rebase 衍合是合并命令的另一种选择。合并把两个父分支合并进行一次提交,提交历史不是线性的。衍合在当前分支上重演另一个分支的历史,提交历史是线性的。本质上,这是线性化的自动的 cherry-pick。 上面的命令都在topic分支中进行,而不是master分支,在master分支上重演,并且把分支指向新的节点。注意旧提交没有被引用,将被回收。 要限制回滚范围,使用–onto选项。下面的命令在master分支上重演当前分支从169a6以来的最近几个提交,即2c33a。 同样有git rebase –interactive让你更方便的完成一些复杂操作,比如丢弃、重排、修改、合并提交。没有图片体现这些,细节看这里:git-rebase(1)[5]。技术说明 文件内容并没有真正存储在索引(.git/index)或者提交对象中,而是以blob的形式分别存储在数据库中(.git/objects),并用SHA-1值来校验。索引文件用识别码列出相关的blob文件以及别的数据。对于提交来说,以树(tree)的形式存储,同样用对于的哈希值识别。树对应着工作目录中的文件夹,树中包含的 树或者blob对象对应着相应的子目录和文件。每次提交都存储下它的上一级树的识别码。 如果用detached HEAD提交,那么最后一次提交会被the reflog for HEAD引用。但是过一段时间就失效,最终被回收,与git commit –amend或者git rebase很像。 相关链接: http://marklodato.github.io/visual-git-guide/index-zh-cn.html#merge http://marklodato.github.io/visual-git-guide/index-zh-cn.html#rebase http://marklodato.github.io/visual-git-guide/index-zh-cn.html#detached http://en.wikipedia.org/wiki/Three-way_merge http://www.kernel.org/pub/software/scm/git/docs/git-rebase.html#_interactive_mode 免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

    时间:2021-03-08 关键词: Git 常用命令 工作原理

  • 计算机的工作原理:RAM系列-八位寄存器

    前面说过的是1位寄存器,我们可以很容易扩展到8位,数据输入端i是相互独立的,“写”信号s并在一起,对8位信号输入统一控制: 也就是说,当s=1时,o=i;当s=0时,o处于保持状态。 8bit=1byte,可以把上面电路抽象成: 我们知道,每一位都有0和1两个状态,对于8位锁存器,有2^8=256个状态。 前面我们已经搞定如何控制将8位数据“写入”,那如何控制数据的“读出”呢?——很简单,再增加一个“使能器”: 组成很简单,8个与门,当e=1时,o=i;e=0时,o=0;可以抽象成: s相当于“写”的使能端,e相当于“读”的使能端。放在一起就是一个8位寄存器了,抽象如下: 其中R表示register。顾名思义,存储器的作用就是存储信息,并且能通过使能端控制信息的写入和读出。 免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

    时间:2021-03-02 关键词: 计算机 寄存器 工作原理

  • 计算机的工作原理:RAM系列-触发器

    计算机是什么呢?——简而言之,可以看成是一个“自动干活的设备”。说起来并不复杂,我们一一拆解一下这句话。首先“设备”很好理解,不用多解释。“干活”也好理解,就是要能实现一定的功能。“自动”是啥意义呢?——就是在初始人为干预结束后,设备能自动运行,也就是说,机器能自己存储并执行某种预设的“指令”。按照这个理解,我们基本就可以得到计算机的组成了:负责干活的设备和负责存储的设备。我们把前者叫做CPU,后者叫做RAM。当然还需要一些辅助设备将这两个东西连接起来,简要模型如下: 前面说了,RAM的作用是存储数据,我们知道,要存储信息,至少要有两个状态,且都必须是稳定的,我们把这样的器件称为双稳态器。最简单的双稳态器组成非常简单——两个非门串联反馈在一起,如下图所示: 经过简单分析这个电路,很容易发现:上图中红色部分信号既可以是高电平,也可以是低电平!也就是说,原来电路上是高电平的话,就一直维持在高电平,原来低电平的话,就一直维持在低电平-----这个电路有两个稳定状态,也就是有最简单的记忆功能。 大家都知道,触发器是现代电子技术中一个非常核心的器件,其实触发器的本质就是通过两个非门串联反馈在一起的双稳态器。 但是呢,基于两个非门串联反馈在一起的双稳态器有一个缺点: 状态一旦确定了之后就不再变化了,也就是说,我们没有办法改变这个系统的记忆,因为没有控制接口。 这当然难不倒我们,我们可以自己加上,比如,可以用两个与非门来代替非门,这样就可以增加两个控制端: 当然,也可以用或非门来代替非门,感兴趣的可以自己试一下。 如果将上图的与非门翻转180°,就会变成下面的图: 有没有一种似曾相识的感觉?没错,这就是RS触发器,它有四种状态: a=1,b=1,为保持状态,也就是退化为两个非门的反馈串联; a=0,b=1或a=1,b=0,就会控制记忆和输出; a=0,b=0,o和ō 都是1,应避免出现该种状态,我们称之为非法态。(o表示输出(output),ō 表示反向输出) 有两个bug: 能够控制记忆,但是有非法状态; 整个系统不受控,一直在工作,当输入端变化时,输出端也跟着变化。 我们可以在输入端再增加两个或门,这样的话,中间这个输入引脚为1的话,电路处于保持状态,就自动屏蔽外部输入,也就是老子不干活了。只有中间这个引脚为0的时候,才工作。 这样就就解决了第二个bug,但是依然有存在非法态的可能,怎么干掉呢? 既然中间引脚解决了保持记忆的问题,那我们最后只要保证输入的两个引脚不同,就可以避免全0的情况,加个非门不就完事了?两个输入永远不会同时为0。 这就是电平型D触发器。 前面我们说了,只有当s=0时,输出才等于输入,系统才开始干活,我们更习惯s=1时干活,这样也好办,再加一个非门。同时,我们把表示a改为i,意为input。 这样显得略臃肿,我们知道: 即: 这样左上方的或门就可以变为与非门,所以有: 同时,我们又知道: 即 所以,此时: 可以进一步简化成4个与非门的形式。 这就是1位寄存器了。简写形式如下: 1位寄存器 其功能是: 当s=1时,o=i;当s=0时,o保持原来的状态。 免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

    时间:2021-03-02 关键词: 计算机 RAM 工作原理

  • 这8项频谱分析仪技术指标你都了解吗?频谱分析仪如何工作?

    频谱分析仪将是下述内容的主要介绍对象,主要在于介绍频谱分析仪的技术指标以及频谱分析仪的工作原理。通过这篇文章,小编希望大家可以对频谱分析仪的相关情况以及信息有所认识和了解,详细内容如下。 一、频谱分析仪技术指标 频谱分析仪的主要技术指标包含8个,这8个指标分别是频率范围、分辨力、分析谱宽、分析时间、扫频速度、灵敏度、显示方式和假响应。 1. 频率范围 频谱分析仪进行正常工作的频率区间。现代频谱仪的频率范围能从低于1Hz至300GHz。 2. 分辨力 频谱分析仪区分显示屏上两条最接近的频谱线之间的频率间隔的能力是频谱分析仪最重要的技术指标。分辨率与滤波器类型,形状因数,带宽,本地振荡器稳定性,残余频率调制和边带噪声有关。扫频分析仪的分辨率也与扫描速度有关。 分辨率带宽越窄越好。 现代频谱分析仪在高频下的分辨率为10至100 Hz。 3. 分析谱宽 分析频谱宽度也称为频率跨度。频谱分析仪在测量和分析中可以显示的频率范围可以等于或小于仪器的频率范围,并且通常是可调的。 4. 分析时间 完成频谱分析所需的时间与分析频谱的宽度和分辨率密切相关。 对于实时频谱分析仪,分析时间不得少于其最窄分辨率带宽的倒数。 5.扫频速度 分析谱宽与分析时间之比,也就是扫频的本振频率变化速率。 6. 灵敏度 频谱分析仪显示微弱信号的能力受到频谱分析仪内部噪声的限制,灵敏度越高,效果越好。 动态范围是指可以同时在显示器上观察到的最强信号与最弱信号的比率。现代频谱分析仪的动态范围可以达到80分贝。 7. 显示方式 频谱分析仪显示的幅度与输入信号的幅度之间的关系。 通常有线性显示、平方律显示和对数显示三种方式。 8. 假响应 显示器上出现不应有的谱线。这对超外差系统是不可避免的,应设法抑止到最小,现代频谱分析仪可做到小于-90分贝毫瓦。 二、频谱分析仪的工作原理 在了解了频谱分析仪的8个主要技术指标后,我们再来看看频谱分析仪的工作原理。 频谱分析仪从根本上测量输入到分析仪中的信号的频谱含量。例如,如果我们要测量滤波器(例如低通滤波器)的输出,频谱分析仪将在频域中测量输出滤波器的频谱含量。 在此过程中,它还将测量噪声含量并将其显示在CRO中。如下图所示,频谱分析仪的工作可以从根本上分类为在阴极射线示波器上生成垂直和水平扫描。 我们知道被测信号的水平扫描将与频率有关,垂直扫描将与振幅有关。 为了产生被测信号的水平扫描,将射频电平的信号馈入输入衰减器,后者会衰减射频电平的信号。衰减器的输出被馈送到低通滤波器,以消除信号中的任何纹波成分。然后将其馈送到放大器,该放大器将信号的幅度放大到一定水平。 在此过程中,它还与以特定频率调谐的振荡器的输出混合。振荡器有助于产生反馈波形的交替性质。 与振荡器混合并放大后,信号被馈送到电平检测器,后者将信号转换为频域。 在频谱分析仪中,信号的频谱量在频域中表示。 对于垂直扫描,需要幅度。为了获得振幅,信号被馈送到电压调谐振荡器。 电压调谐振荡器在射频水平上调谐。通常,电阻器和电容器的组合用于获得振荡器电路。 这称为RC振荡器。 在振荡器级别,信号相移360度。 对于该相移,使用不同电平的RC电路。 通常,我们有3个级别。 上述所有信息便是小编这次为大家推荐的有关频谱分析仪的技术指标和频谱分析仪工作原理的内容,希望大家能够喜欢,想了解更多有关频谱分析仪的信息或者其它内容,请关注我们网站哦。

    时间:2021-02-14 关键词: 频谱分析仪 技术指标 工作原理

  • 晶闸管的工作原理是什么?MOS控制/门级关断晶闸管了解吗?

    晶闸管将是下述内容的主要介绍对象,通过这篇文章,小编希望大家可以对晶闸管的工作原理、MOS控制晶闸管以及门极关断晶闸管的相关情况有所认识和了解,详细内容如下。 一、晶闸管工作原理 首先,我们来了解下晶闸管的工作原理。闸管在工作过程中,它的阳极(A)和阴极(K)与电源和负载连接,组成晶闸管的主电路,晶闸管的门极G和阴极K与控制晶闸管的装置连接,组成晶闸管的控制电路。 晶闸管为半控型电力电子器件,它的工作条件如下: 1. 晶闸管承受反向阳极电压时,不管门极承受何种电压,晶闸管都处于反向阻断状态。 2. 晶闸管承受正向阳极电压时,仅在门极承受正向电压的情况下晶闸管才导通。这时晶闸管处于正向导通状态,这就是晶闸管的闸流特性,即可控特性。 3. 晶闸管在导通情况下,只要有一定的正向阳极电压,不论门极电压如何,晶闸管保持导通,即晶闸管导通后,门极失去作用。门极只起触发作用。 4. 晶闸管在导通情况下,当主回路电压(或电流)减小到接近于零时,晶闸管关断。 二、MOS控制晶闸管 在了解了晶闸管的一般工作原理之后,我们再来看看MOS控制晶闸管。 MOS栅极控制晶闸管充分地利用晶闸管良好的通态特性、优良的开通和关断特性,可望具有优良的自关断动态特性、非常低的通态电压降和耐高压,成为将来在电力装置和电力系统中有发展前途的高压大功率器件。目前世界上有十几家公司在积极开展对MCT的研究。 MOS栅控晶闸管主要有三种结构:MOS场控晶闸管(MCT)、基极电阻控制晶闸管(BRT)及射极开关晶闸管(EST)。 MCT(MOS-Controlled Thyristor)是一种新型MOS与双极复合型器件,它采用集成电路工艺,在普通晶闸管结构中制作大量MOS器件,通过MOS器件的通断来控制晶闸管的导通与关断。MCT既具有晶闸管良好的关断和导通特性,又具备MOS场效应管输入阻抗高、驱动功率低和开关速度快的优点,克服了晶闸管速度慢、不能自关断和高压MOS场效应管导通压降大的不足。所以MCT被认为是很有发展前途的新型功率器件。MCT器件的最大可关断电流已达到300A,最高阻断电压为3KV,可关断电流密度为325A/cm2,且已试制出由12个MCT并联组成的模块。 三、门极关断(GTO)晶闸管 在了解了MOS控制晶闸管之后,我们再来看看门级关断晶闸管的相关内容。 可关断晶闸管GTO(Gate Turn-Off Thyristor)亦称栅控晶闸管。其主要特点为,当栅极加负向触发信号时晶闸管能自行关断。普通晶闸管(SCR)靠栅极正信号触发之后,撤掉信号亦能维持通态。欲使之关断,必须切断电源,使正向电流低于维持电流IH,或施以反向电压强近关断。这就需要增加换向电路,不仅使设备的体积重量增大,而且会降低效率,产生波形失真和噪声。可关断晶闸管克服了上述缺陷,它既保留了普通晶闸管耐压高、电流大等优点,以具有自关断能力,使用方便,是理想的高压、大电流开关器件。GTO的容量及使用寿命均超过巨型晶体管(GTR),只是工作频率比GTR低。目前,GTO已达到4500A、6000V的容量。大功率可关断晶闸管已广泛用于斩波调速、变频调速、逆变电源等领域,显示出强大的生命力。 可关断晶闸管也属于PNPN四层三端器件,其结构及等效电路和普通晶闸管相同,因此图1仅绘出GTO典型产品的外形及符号。大功率GTO大都制成模块形式。 经由小编的介绍,希望大家对晶闸管的工作原理、MOS控制晶闸管以及门极关断晶闸管已经具备一定的了解。如果你想对晶闸管有更多的了解,不妨尝试度娘更多信息或者在我们的网站里进行搜索哦。

    时间:2021-02-09 关键词: 晶闸管 MOS控制晶闸管 工作原理

  • 比较器的工作原理是什么?这5大比较器性能指标你都知道吗?

    在以下内容中,小编将报告比较器的相关消息,主要内容是解释什么是比较器,什么是比较器的原理以及比较器的一些性能指标。如果比较器是您要了解的重点之一,那么可以与小编共同阅读本文哦。 一、什么是比较器 比较器的功能是比较两个或更多数据项,以确定它们是否相等,或者确定它们之间的大小关系和排列顺序,这称为比较。可以实现此比较功能的电路或设备称为比较器。比较器是将模拟电压信号与参考电压进行比较的电路。比较器的两个输入是模拟信号,输出是二进制信号0或1。当输入电压的差值增大或减小并且正负符号保持不变时,输出保持恒定。 二、比较器原理 在了解了什么是比较器之后,我们再来看看比较器的工作原理。 比较器可用作1位模数转换器(ADC)。运算放大器原则上可以用作比较器而没有负反馈,但是由于运算放大器的开环增益非常高,因此它只能处理输入差分电压很小的信号。而且,运算放大器的延迟时间通常较长,无法满足实际需求。可以调整比较器以提供非常小的时间延迟,但是其频率响应特性将受到限制。为了避免输出振荡,许多比较器还具有内部迟滞电路。比较器的阈值是固定的,有些只有一个阈值,有些有两个阈值。 三、比较器性能指标 在了解了比较器的工作原理后,我们来看看比较器的5大性能指标,这些性能指标包括:迟滞电压、偏置电流、超电源摆幅、漏源电压和输出延迟时间。下面,我们来一一解读这几个指标 1.迟滞电压:比较器的两个输入端子之间的电压在过零时将改变其输出状态。由于输入端通常叠加有很小的波动电压,因此这些波动产生的差模电压将导致比较器输出连续变化。为了避免输出振荡,新的比较器通常具有几mV的磁滞电压。迟滞电压的存在使比较器的开关点变为两个:一个用于检测上升电压,另一个用于检测下降电压,电压阈值之差(VTRIP)等于迟滞电压(VHYST),磁滞比较器偏移电压是TRIP和VTRIP-的平均值。没有滞后的比较器的输入电压切换点是输入失调电压,而不是理想比较器的零电压。失调电压通常随温度和电源电压而变化。电源抑制比通常用于表示电源电压变化对补偿电压的影响。 2.偏置电流:理想比较器的输入阻抗是无限的,因此从理论上讲,它对输入信号没有影响,但是实际比较器的输入阻抗不可能是无限的。在输入端有电流流过信号源的内部电阻,并流入其中。在比较器内部,导致额外的压差。偏置电流(Ibias)定义为两个比较器的输入电流的中值,用于测量输入阻抗的影响。 MAX917系列比较器的最大偏置电流仅为2nA。 3.超电源摆幅:为了进一步优化比较器的工作电压范围,Maxim采用并联的NPN管和PNP管的结构作为比较器的输入级,以便比较器的输入电压可以扩展,使其下限可以低至最低水平,上限比电源电压高250mV,从而达到Beyond-theRail标准。该比较器的输入允许较大的共模电压。 4.漏源电压:因为比较器只有两个不同的输出状态(零电平或电源电压),并且具有全功率摆幅特性的比较器的输出级是发射极跟随器,因此使其输入和输出信号压力差很小。该电压差取决于比较器内部晶体管处于饱和状态时的发射极结电压,该电压对应于MOSFFET的漏-源电压。 5.输出延迟时间:包括信号通过组件的传输延迟以及信号的上升时间和下降时间。对于高速比较器,例如MAX961,典型的延迟时间可以达到4.5ns,上升时间为2.3ns。设计时,请注意不同因素对延迟时间的影响,包括温度、电容的影响。 以上所有内容便是小编此次为大家带来的所有介绍,如果你想了解更多有关比较器的内容,不妨在我们网站或者百度、google进行探索哦。

    时间:2021-02-08 关键词: 性能指标 比较器 工作原理

  • 语音识别芯片如何工作?语音识别芯片有哪些特点?

    以下内容中,小编将对语音识别芯片的工作原理、语音识别芯片系统的特点以及语音识别芯片的应用的相关内容进行着重介绍和阐述,希望本文能帮您增进对语音识别芯片的了解,和小编一起来看看吧。 一、语音识别芯片的工作原理 语音识别芯片是现在的重点发展芯片之一,在这里,小编先对语音识别芯片的工作原理加以介绍。 嵌入式语音识别系统都采用了模式匹配的原理。录入的语音信号首先经过预处理,包括语音信号的采样、反混叠滤波、语音增强,接下来是特征提取,用以从语音信号波形中提取一组或几组能够描述语音信号特征的参数。特征提取之后的数据一般分为两个步骤,第一步是系统“学习”或“训练”阶段,这一阶段的任务是构建参考模式库,词表中每个词对应一个参考模式,它由这个词重复发音多遍,再经特征提取和某种训练中得到。第二是“识别”或“测试”阶段,按照一定的准则求取待测语音特征参数和语音信息与模式库中相应模板之间的失真测度,最匹配的就是识别结果。 二、语音识别芯片系统的特点 在了解了语音识别芯片的工作原理之后,我们来看看语音识别芯片系统的其中3个特点。 特点1:由此芯片组成一个完整的语音识别系统。因此,除了语音识别功能以外,为了有一个好的人机界面和识别正确与否的验证,该系统还必须具备语音提示(语音合成)及语音回放(语音编解码记录)功能。 特点2:多为实时系统,即当用户说完待识别的词条后,系统立即完成识别功能并有所回应,这就对电路的运算速度有较高的要求。 特点3:除了要求有尽可能好的识别性能外,还要求体积尽可能小、可靠性高、耗电省、价钱低等特点。 三、语音识别芯片应用 最后,我们再来看看语音识别芯片的一些应用,这些应用方面包括:电话语音拨号、汽车语音控制、工业与医疗领域、安防报警、医疗器械。下面,我们一一来了解下。 1、电话语音拨号 特别是在中、高档移动电话上,现已普遍的具有语音拨号的功能。随着语音识别芯片的价格降低,普通电话上也将具备语音拨号的功能。 2、汽车语音控制 由于在汽车的行驶过程中,驾驶员的手必须放在方向盘上,因此在汽车上拨打电话,需要使用具有语音拨号功能的免提电话通信方式。此外,对汽车的卫星导航定位系统(GPS)的操作,汽车空调、照明以及音响等设备的操作,同样也可以由语音来方便的控制。 3、工业与医疗领域 当操作人员的眼或手已经被占用的情况下,在增加控制操作时,最好的办法就是增加人与机器的语音交互界面。由语音对机器发出命令,机器用语音做出应答。 4、安防报警 语音芯片在安防报警这个方面有着广泛的应用,比如我们常见的倒车雷达、叉车报警器、家庭防盗、门禁系统等,都是使用了语音芯片作为发出警报的主要设备,可以在预警的同时发出警告声响,引起周围人们的注意并提醒人们尽快对警报做出处理; 5、医疗器械 如今在很多医疗器械中我们也是可以见到语音芯片的身影的,尤其是在弱视治疗仪、血压计、臭氧治疗仪、血糖仪等仪器中,语音芯片的使用率是非常高的,目前很多便于老年人使用的医疗器械都会配有这种语音的芯片,可以将测量结果通过语音的方式告知给老年朋友们。 以上便是小编此次带来的有关语音识别芯片的工作原理、语音识别芯片系统的特点以及语音识别芯片的应用的全部内容,十分感谢大家的耐心阅读,想要了解更多相关内容,或者更多精彩内容,请一定关注我们网站哦。

    时间:2021-02-06 关键词: 语音识别芯片 汽车语音控制 工作原理

  • 什么是锂离子电池?其工作原理为何?

    人类社会的进步离不开社会上各行各业的努力,各种各样的电子产品的更新换代离不开我们的设计者的努力,其实很多人并不会去了解电子产品的组成,比如锂离子电池。 锂离子电池是一种二次电池(即可反复充放电的电池),它重要依靠锂离子在正极和负极之间移动来工作。在充放电过程中,Li+(锂离子)在两个电极之间往返嵌入和脱嵌,因为锂离子在正极和负极材料中储存时能量不同,而该能量差就是锂离子电池能存储/释放的电量:充电时,Li+从正极脱嵌,经过电解质嵌入负极,负极处于富锂状态,正极处于脱锂状态;放电时则相反。 锂离子电池以碳素材料为负极,以含锂的化合物为正极(根据正极化合物不同,常见的锂离子电池有钴酸锂、锰酸锂、磷酸铁锂、三元锂等)。中间有一层膈膜,避免正负极短路。在充放电过程中,Li+在正负极间往返:充电时,锂离子从正极脱嵌,经过电解质嵌入负极;放电时则相反。在锂离子的嵌入与脱嵌过程中,同时伴随着等当量的电子的嵌入和脱嵌,也就产生了电流。 锂离子电池以碳素材料为负极,以含锂的化合物作正极,没有金属锂存在,只有锂离子,这就是锂离子电池。锂离子电池是指以锂离子嵌入化合物为正极材料电池的总称。锂离子电池的充放电过程,就是锂离子的嵌入和脱嵌过程。在锂离子的嵌入和脱嵌过程中,同时伴随着与锂离子等当量电子的嵌入和脱嵌(习惯上正极用嵌入或脱嵌表示,而负极用插入或脱插表示)。在充放电过程中,锂离子在正、负极之间往返嵌入/脱嵌和插入/脱插,被形象地称为摇椅电池。 因为材料本体的性质局限,在正极的反应过程中,钴酸锂一般情况下只能脱出0.5个锂离子,再多则会导致结构坍塌损坏,因此一般情况下钴酸锂的理论容量上限只有140mAh/g左右,而负极石墨的理论密度为360mAh/g。 过充导致放出的锂过多,负极部位容量不足,充电时产生的锂就无法插入负极石墨的间层结构中,会在负极表面形成金属锂。时间一久,这些锂原子会由负极表面往锂离子来的方向长出树枝状结晶。这些锂金属结晶会穿过膈膜纸,使正负极短路。有时在短路发生前电池就先爆炸,这是因为在过充过程,电解液等材料会裂解产生气体,使得电池外壳或压力阀鼓涨破裂,让氧气进去与堆积在负极表面的锂原子反应,进而爆炸。 能量密度关于各种电池都是最为基础的核心参数,必须而且应该是公开透明数据。然目前常用锂离子电池中,由于取决材料、技术体系不同,能量密度可以从几十(比如钛酸锂)到200Wh/kg左右。一旦这个数值极高(或极低),就值得重点关注了:一方面,在技术人员的努力下,做出了较高的能量密度,可能技术上有突破,值得庆祝;另一方面,不排除有部分人士商家存在性能夸大现象。 本文只能带领大家对锂离子电池有了初步的了解,对大家入门会有一定的帮助,同时需要不断总结,这样才能提高专业技能,也欢迎大家来讨论文章的一些知识点。

    时间:2021-01-05 关键词: 电池 锂离子 工作原理

  • 你了解铁电池的工作原理以及它的特点有哪些吗?

    什么是铁电池?随着社会的快速发展,我们的铁电池也在快速发展,那么你知道铁电池的详细资料解析吗?接下来让小编带领大家来详细地了解有关的知识。 目前市场上的铁电池主要有高铁和锂铁两种,虽然都是一种稳定的新型化学电池,但是至今没有厂家能够实现大规模的量产,可应用最广泛的依然是锂铁电池,同时受限于锂电池中锂离子的不稳定性,锂铁电池在充电过程中非常容易发生短路,造成一定的危险,特别是在电压高的时候,更容易产生爆燃的危险,这可能也是铁电池没法大规模量产实用的最主要原因。 高能量,高容量。目前市场上民用电池的比功率只有60-135w/kg,而高速铁路电池可以达到1000w/kg以上,放电电流是普通电池的3-10倍。特别适用于大功率、大电流应用场合。高铁电池性价比高。碱性锰电池不满足数码相机、kaimela等电子产品对大电流、大容量用电的需求,而锂离子电池因为成本问题在这方面没有很强的竞争力。 目前国内外研讨的铁电池有高铁电池和锂铁池两种。高铁电池是一种以合成稳定的高铁酸盐(K2FeO4、BaFeO4等)作为高铁电池的正极材料制作的,具有能量密度大、体积小、重量轻、寿命长、无污染等特点的新型化学电池;另一种是锂铁电池,主要是磷酸铁电池,开路电压在1.78V-1.83V,工作电压在1.2V-1.5VIIAnews.com,比其他一次电池高0.2-0.4V,而且放电平稳、无污染、安全、性能优良。 虽说铁电池的缺点很让人头疼,但是优点也有不少,铁锂电池的一些特点决定了它的用途非常广泛,安全性能好,目前市面上电动车电源内部所使用的锂电芯,循环使用寿命基本在500次-800次左右,而磷酸铁锂电池则有着至少2000次以上的使用寿命,并且其容量还能维持在80%以上。所以如果电动车电源内部储电单元为磷酸铁锂的产品,有着绝对的正常使用寿命优势。 丰富的材料。地壳中最丰富的元素是铝和铁,地壳中铁的含量为4.75%,锰的含量为0.088%。随着每摩尔+6价铁可以出现3mol电子,而每摩尔+4价锰只能出现1mol电子,铁的量本身就很丰富,只有1/3的锰,极大地节省了社会资源,降低了材料成本。市场上MnO2约9000元/吨,Fe(NO3)3约7500元/吨。 综合来看的话,铁电池暂时重回市场中心的可能性不大,只有在关键技术获得突破,能够满足当下新能源汽车的发展需要,铁电池才会迎来更好的发展。 以上就是铁电池的有关知识的详细解析,需要大家不断在实际中积累经验,这样才能设计出更好的产品,为我们的社会更好地发展。

    时间:2020-12-27 关键词: 优势 铁电池 工作原理

首页  上一页  1 2 3 4 5 6 7 8 9 10 下一页 尾页
发布文章

技术子站