当前位置:首页 > 指数
  • 一步步了解检测技术,什么是声发射检测?

    一步步了解检测技术,什么是声发射检测?

    检测的重要性不言而喻,我们通过检测,可以对很多电子器件进行检测,以判断电子器件是否存在一些缺陷。为增进大家对检测的认识,本文将对声发射检测技术予以介绍。如果你对检测技术具有兴趣,不妨同小编一起来阅读这篇文章哦。 声发射检测技术是一种动态的检测技术,可提供缺陷随荷载、时间、温度等外变量而变化的实时或连续信息,适合于在线监控及早期或临近破坏预报。可解决常规无损检测方法所不能解决的问题。通过水利水电工程上的应用实例证明,声发射检测技术是水利水电工程金属结构、机电设备在线监控和安全评估的有效手段。 材料中由于能量从局部源快速释放而产生瞬态弹性波的现象称为声发射(acousTIc emission,简称AE)。声发射是一种常见的物理现象,如地震波、岩石破碎、金属开裂和折断铅芯等。各种材料声发射信号的频率范围很宽,声发射信号幅度的变化范围也很大,以致于有些声发射信号人耳可以听到,而有些声发射信号人耳听不到。许多材料的声发射信号强度很弱,需要借助专门的检测仪器才能检测出来。材料在应力作用下的变形与开裂是结构失效的重要机制。这种直接与变形和断裂机制有关的源,称为声发射源。用仪器探测、记录、分析声发射信号和利用声发射信号推断声发射源的技术称为声发射检测(acousTIc emission tesTIng 简称AET)技术。 AET技术在五十年代就开始应用于材料研究。在六十年代开始应用于无损检测领域。我国则于七十年代开始应用AET技术。AET技术已应用的领域有:材料及力学方面的研究;汽车工业(汽车所有部件);土木工程(桥梁、岩石、混凝土及水工建筑物安全性检测等);航空航天(机身各部件、引擎、卫星太阳能板等);大型变压器局部放电检测;环境试验;核反应堆;模态测试;一般工业(管路、轴承、压力容器、球罐等);焊接质量检测与监控;吊车等空架结构检测;质量管理(配合自动化生产线进行在线质量控制)等。AET技术作为无损检测的一种手段,其主要目的是:①确定声发射源的部位;②分析声发射源的性质;③确定声发射发生的时间或载荷;④按照有关的声发射标准评定声发射源的严重性。另一方面,声发射检测技术也有一定的缺点和不足:声发射检测需要在特定荷载条件下进行,声发射检测目前只能给出声发射源的部位、活度和强度,不能给出声发射源处缺陷的性质和大小,对超标声发射源,需要使用其它常规无损检测方法(如:超声检测、射线检测、磁粉检测、渗透检测等)进行局部复检,以精确确定缺陷的性质、位置和大小。 现行标准、规范中规定的产品质量(尤其是内部质量)要求,在很多情况下是根据常规无损检测方法确定的。按常规无损检测方法,只能检测、显示静态的宏观缺陷[也称不连续性或不完整性,如裂纹、夹渣(杂)、气(缩)孔、未融合、未焊透等]。现行的一般做法是,按照标准、规范和标书文件的要求,对检出的缺陷进行定位、定量、定性(定性的方法目前尚不成熟,超声检测定性尤差)和等级评定,以确定是否合格和验收。这种静态的检测评定方法更多评价的是产品制造工艺和质量控制的水平,而对于产品的安全性和可靠性往往没有多少直接关系;事实上,只有扩展的、尺寸增大的和最终导致破坏的不完整性(如裂纹的萌生和扩展)才认为是危险的。 AET技术具有以下特点(优点),在很多情况下与其它无损检测方法相比这些特点表明了它的优越性。 1.声发射法适用于实时动态监控检测,且只显示和记录扩展的缺陷,这意味着与缺陷尺寸无关。而是显示正在扩展的最危险缺陷。这样,应用声发射检验方法时可以对缺陷不按尺寸分类,而按其危险程度分类。按这样分类,构件在承载时可能出现工件中应力较小的部位尺寸大的缺陷不划为危险缺陷,而应力集中的部位按规范和标准要求允许存在的缺陷因扩展而被判为危险缺陷。声发射法的这一特点原则上可以按新的方式确定缺陷的危险性。因此,在压力管道、压力容器、起重机械等产品的荷载试验工程中,若使用声发射检测仪器进行实时监控检测,既可弥补常规无损检测方法的不足,也可提高试验的安全性和可靠性。同时利用分析软件可对以后的运行安全做出评估。 2.AET技术对扩展的缺陷具有很高的灵敏度。其灵敏度大大高于其它方法,例如,声发射法能在工作条件下检测出零点几毫米数量级的裂纹增量,而传统的无损检测方法则无法实现。 3.声发射法的特点是整体性。用一个或若干个固定安装在物体表面上的声发射传感器可以检验整个物体。缺陷定位时不需要使传感器在被检物体表面扫描(而是利用软件分析获得),因此,检验及其结果与表面状态和加工质量无关。假如难以接触被检物体表面或不可能完全接触时,整体性特别有用。例如:绝热管道、容器、蜗壳;埋入地下的物体和形状复杂的构件;检验大型的和较长物体的焊缝时(如:桥机梁、高架门机等),这种特性更明显。 4.声发射法一个重要特性是能进行不同工艺过程和材料性能及状态变化过程的检测。声发射法还提供了讨论有关物体材料的应力—应变状态的变化。所以,AET技术是探测焊接接头焊后延迟裂纹的一种理想手段。同样,像引水压力钢管的凑合节环焊缝,由于拘束度很大,在焊后冷却过程中,焊接造成的拉应力和冷缩产生的拉应力,可能会使应力集中系数较大的缺陷(如:未融合、不规则的夹渣、咬边等)萌生裂纹,这是不允许存在的。为了找出和避免这种隐患,用AET监测也是比较理想的手段。 5.对于大多数无损检测方法来说,缺陷的形状和大小、所处位置和方向都是很重要的,因为这些缺陷特性参数直接关系到缺陷漏检率。而对声发射法来说,缺陷所处位置和方向并不重要,换句话说,缺陷所处位置和方向并不影响声发射的检测效果。 6.声发射法受材料的性能和组织的影响要小些。例如:材料的不均匀性对射线照相和超声波检测影响很大,而对声发射法则无关紧要。因此,声发射法的使用范围较宽(按材料)。例如,可以成功地用以检测复合材料,而用其它无损检测方法则很困难或者不可能。 7.使用声发射法比较简单,现场声发射检测监控与试验同步进行,不会因使用了声发射检测而延长试验工期。检测费用也较低,特别是对于大型构件整体检测,其检测费用远低于射线或超声检测费用。且可以实时地进行检测和结果评定。 声发射法可以检测缺陷、确定缺陷位置和评价结构的危险程度(安全性)。与其它常规无损检测方法相结合,使用声发射法将会取得最佳效果。 可以预计,在我国水利水电工程上,使用声发射检测技术对金属结构、机电设备进行检测和安全评定将得到进一步的推广应用,所发挥的社会经济效益将愈来愈显著。 以上便是此次小编带来的“检测”相关内容,通过本文,希望大家对声发射检测具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!

    时间:2021-04-21 关键词: 检测 指数 声发射检测

  • 想了解检测技术?大佬传你IC检测技巧

    想了解检测技术?大佬传你IC检测技巧

    检测技术是非常重要,检测技术保证我们的器件的安全性。对于检测,小编在往期中具有诸多介绍,如电阻检测、电缆机械性能检测等。为增进大家对检测技术的认识,本文将对IC检测经验予以介绍。如果你对检测具有兴趣,不妨继续往下阅读哦。 一、常用的检测方法 集成电路常用的检测方法有在线测量法、非在线测量法和代换法。 1.非在线测量 非在线测量潮在集成电路未焊入电路时,通过测量其各引脚之间的直流电阻值与已知正常同型号集成电路各引脚之间的直流电阻值进行对比,以确定其是否正常。 2.在线测量 在线测量法是利用电压测量法、电阻测量法及电流测量法等,通过在电路上测量集成电路的各引脚电压值、电阻值和电流值是否正常,来判断该集成电路是否损坏。 3.代换法 代换法是用已知完好的同型号、同规格集成电路来代换被测集成电路,可以判断出该集成电路是否损坏。 二、常用集成电路的检测 1.微处理器集成电路的检测 微处理器集成电路的关键测试引脚是VDD电源端、RESET复位端、XIN晶振信号输入端、XOUT晶振信号输出端及其他各线输入、输出端。在路测量这些关键脚对地的电阻值和电压值,看是否与正常值(可从产品电路图或有关维修资料中查出)相同。 不同型号微处理器的RESET复位电压也不相同,有的是低电平复位,即在开机瞬间为低电平,复位后维持高电平;有的是高电平复位,即在开关瞬间为高电平,复位后维持低电平。 2.开关电源集成电路的检测 开关电源集成电路的关键脚电压是电源端(VCC)、激励脉冲输出端、电压检测输入端、电流检测输入端。测量各引脚对地的电压值和电阻值,若与正常值相差较大,在其外围元器件正常的情况下,可以确定是该集成电路已损坏。内置大功率开关管的厚膜集成电路,还可通过测量开关管C、B、E极之间的正、反向电阻值,来判断开关管是否正常。 3.音频功放集成电路的检测 检查音频功放集成电路时,应先检测其电源端(正电源端和负电源端)、音频输入端、音频输出端及反馈端对地的电压值和电阻值。若测得各引脚的数据值与正常值相差较大,其外围元件与正常,则是该集成电路内部损坏。对引起无声故障的音频功放集成电路,测量其电源电压正常时,可用信号干扰法来检查。测量时,万用表应置于R&TImes;1档,将红表笔接地,用黑表笔点触音频输入端,正常时扬声器中应有较强的“喀喀”声。 4.运算放大器集成电路的检测 用万用表直流电压档,测量运算放大器输出端与负电源端之间的电压值(在静态时电压值较高)。用手持金属镊子依次点触运算放大器的两个输入端(加入干扰信号),若万用表表针有较大幅度的摆动,则说明该运算放大器完好;若万用表表针不动,则说明运算放大器已损坏。 5.时基集成电路的检测 时基集成电路内含数字电路和模拟电路,用万用表很难直接测出其好坏。可以用测试电路来检测时基集成电路的好坏。测试电路由阻容元件、发光二极管LED、6V直流电源、电源开关S和8脚IC插座组成。将时基集成电路(例如NE555)插信IC插座后,按下电源开关S,若被测时基集成电路正常,则发光二极管LED将闪烁发光;若LED不亮或一直亮,则说明被测时基集成电路性能不良。 以上便是此次小编带来的“检测”相关内容,通过本文,希望大家对IC检测技术具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!

    时间:2021-04-21 关键词: IC 检测 指数

  • 不知道怎么降低功耗?看看这些降低功耗的法子吧

    不知道怎么降低功耗?看看这些降低功耗的法子吧

    低功耗设计是设计电子产品时的追求之一,低功耗,一定程度上代表了设计的完美性。上篇低功耗设计文章中,小编对MCU低功耗设计的注意事项有所介绍。为增进大家对低功耗的认识,本文将对降低MCU功耗的几种方法予以阐述。如果你对低功耗设计具有兴趣,不妨继续往下阅读哦。 一、MCU简单介绍 MCU集成了片上外围器件;MPU不带外围器件(例如存储器阵列),是高度集成的通用结构的处理器,是去除了集成外设的MCU;DSP运算能力强,擅长很多的重复数据运算,而MCU则适合不同信息源的多种数据的处理诊断和运算,侧重于控制,速度并不如DSP。MCU区别于DSP的最大特点在于它的通用性,反应在指令集和寻址模式中。DSP与MCU的结合是DSC,它终将取代这两种芯片。MCU对密集的乘法运算的支持,GPP不是设计来做密集乘法任务的,即使是一些现代的GPP,也要求多个指令周期来做一次乘法。而DSP处理器使用专门的硬件来实现单周期乘 法。DSP处理器还增加了累加器寄存器来处理多个乘积的和。累加器寄存器通常比其他寄存器宽,增加称为结果bits的额外bits来避免溢出。同时,为了 充分体现专门的乘法-累加硬件的好处,几乎所有的DSP的指令集都包含有显式的MAC指令。 二、降低MCU功耗的方法 1.器件选型 基于成本的考虑,电路使用的元器件可能不是低功耗的最佳选择,如某些传感器,本身功耗就比较大,这时想通过软件降功耗就很麻烦了。最好选择那些可以配置的,存在低功耗模式的传感器。至于MCU,是显而易见的,肯定选一款功耗低,满足功能要求的,这些评审时自然会考虑到。一些8位MCU功耗是几十微安,睡眠模式1uA左右,成为首选。这类MCU最容易出现的就是资源有限,引脚个数少,如某款IC ROM只有1K,RAM32字节,这样最后的软件实现很可能捉襟见肘。 2.降低主频 众所周知,芯片主频越高,功耗越大。降功耗方案一般不使用外部晶振,使用内部晶振,频率选择常用的32768Hz虽然低,却只能得到秒一级别的精度,想得到ms或us级别的精度,大于1M的频率少不了。 3.睡眠模式 睡眠模式是降功耗的主要方式,MCU可以睡眠模式睡眠,模块也可以睡眠。在外部触发唤醒MCU之后,MCU再唤醒功耗更大的模块,完成功能或通信后,马上又进入睡眠,总之进入睡眠状态自然是省电的。一些模块存在多种睡眠模式,都是为了在不影响功能的前提下更加灵活地来降低功耗。 4.关闭未用资源 在使用稍复杂一点的MCU时,它本身所带的外设,未使用时一定关闭。使用简单的MCU时,可能所有的功能都是引脚模拟实现,如IIC,SPI,Uart之类,不过也要注意,进入睡眠停止工作之前,应将与之对应的传感器等器件关闭或使其进入PowerDown Mode,唤醒后再做初始化、配置的工作。 5.配置IO口 前面提到睡眠之前,关闭外部器件,你以为这样就可以了,其实未必。如果某些引脚接了外部上拉电阻,而MCU睡眠时该引脚置低,这样一来,有压差,有电阻,就形成了不必要的功耗。这点容易被忽略,所以各个引脚一定要根据外部电路合理配置。 6.间歇工作原则 所谓间歇工作,就是劳逸结合,工作休息交替进行,采用切电源的方式,开和关交替执行,这样该器件的功耗就降了一半。如果某器件上电后,需要预热一段时间,那这个方法就行不通了。还有一些电平驱动的元件,给一定占空比的脉冲就可以工作,还可以根据电压调整占空比,平衡负载,实现电源最大利用率,不过这又是一项复杂的工作了。 以上是一些从MCU的角度降功耗的基本方法。降功耗是一项艰巨又具有挑战的工作,要求越高,就越能发掘出越多的方法出来。 以上便是此次小编带来的“功耗”相关内容,通过本文,希望大家对上述介绍的降低功耗的几种方法具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!

    时间:2021-04-20 关键词: 功耗 MCU 指数

  • 不会低功耗设计?MCU低功耗设计的5点注意要点

    不会低功耗设计?MCU低功耗设计的5点注意要点

    功耗设计不合格?设计的产品功耗太高了?不符合低功耗的要求?没事没事,这篇文章中,小编将对MCU设计时的低功耗的5点注意要点予以介绍。如果你正在头疼低功耗设计如何实现或者你对本文内容具有兴趣,不妨从本文中汲取一点灵感哦。 微控制单元(Microcontroller Unit;MCU) ,又称单片微型计算机(Single Chip Microcomputer )或者单片机,是把中央处理器(Central Process Unit;CPU)的频率与规格做适当缩减,并将内存(memory)、计数器(Timer)、USB、A/D转换、UART、PLC、DMA等周边接口,甚至LCD驱动电路都整合在单一芯片上,形成芯片级的计算机,为不同的应用场合做不同组合控制。诸如手机、PC外围、遥控器,至汽车电子、工业上的步进马达、机器手臂的控制等,都可见到MCU的身影。 MCU功耗明明应该只有176nA,可是测出来的硬是达到了700mA!简直是不能忍啊,想死的心都有了。 平常我们在使用MCU低功耗时经常会出现实际功耗比理论功耗偏差较大,如在某些低到微安级的功耗模式,而我们设计的低功耗怎么测都是毫安级的,电流竟然能够高出理论几百到上千倍,遇到这种情况千万不要怕,只要认真你就赢了。 下面列出在设计低功耗时需要注意的五点。 1、掐断外设命脉——关闭外设时钟 先说最直观的,也是我们都比较注意的方面,就是关闭MCU的外设时钟。对于现在大多数的MCU,其外设模块都对应着一个时钟开关,只要打开这个外设时钟,就可以正常使用该外设了,当然,该外设也就会产生相应的功耗;反之,如果想要让这个外设不产生功耗,一般只需要关闭该外设时钟即可。 2、让工作节奏慢下来——时钟不要倍频 除了外设模块功耗消耗之外,还有一个功耗大户,那就是PLL和FLL模块。PLL和FLL主要是用来对原始的时钟信号进行倍频操作,从而提高系统得整体时钟,相应的其功耗也会被提上去。所以在进入低功耗前,需要切换时钟模式,旁路掉PLL和FLL模块,等到MCU唤醒之后再把时钟切换回去。 3、围堵涓涓细流——注意IO口的电平状态 如果认为只要关闭外设时钟就能够保证外设不在耗电,那你就真的太年轻了。如果IO口没有做好处理的话,它就会在暗地里偷走功耗,而你却浑然不知。具体原因是这样的,一般IO内部或者外部都会有上下拉电阻,举个例子如下图所示,假设某个IO口有个10KΩ的上拉电阻,根据欧姆定律,此引脚就会消耗3.3V/10K=0.33mA的电流,假如有四、五个这样的IO口,那么几个毫安的电流就这样贴进去了,太可惜了。 所以在进入低功耗之前,请逐个检查IO的状态: 如果该IO口带上拉,请设置为高电平输出或者高阻态输入; 如果该IO口带下拉,请设置为低电平输出或者高阻态输入; 4、睦邻友好合作——注意IO与外设IC的统筹 IO口的上下拉电阻消耗电流这一因素相抵比较明显,下面咱们来说一个不明显的因素:IO口与外部IC相连时的电流消耗。假如某个IO口自带上拉,而与此IO相连的IC引脚偏偏是自带下拉的,那么无论这个引脚处于什么样的电平输出,都不可避免的会产生一定的电流消耗。所以凡是遇到这一类的情况,首先需要阅读外设IC的手册,确定好此引脚的状态,做到心中有数;然后再控制MCU睡眠前,设置好MCU的IO的上下拉模式及输入输出状态,要保证一丝儿电流都不要被它消耗掉。 5、断开调试器连接——不要被假象所迷惑 还有一类比较奇特,检测出来的电流消耗很大,可实际结果是自己杞人忧天,什么原因呢?是因为在测试功耗的时候MCU还连着调试器呢!这时候大部分电流就会被调试器给掳走,平白无故的让我们产生极度郁闷的心情。所以在测试低功耗的时候,一定不要连接着调试器,更不要边调试边测电流。 以上便是此次小编带来的“功耗”相关内容,通过本文,希望大家对MCU低功耗设计时需要注意的5点注意事项具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!

    时间:2021-04-20 关键词: 功耗 MCU 指数

  • 想学习低功耗设计?先分析一波低功耗MCU动态时钟吧

    想学习低功耗设计?先分析一波低功耗MCU动态时钟吧

    设计电子器件的时候,功耗是我们不得不考虑的问题。通常情况下,我们会追求低功耗设计。为增进大家对低功耗的理解,本文将对低功耗MCU动态时钟进行一定的分析并讨论其应用。如果你对低功耗相关内容具有兴趣,不妨继续往下阅读哦。 随着IC技术的迅速发展和对消费电子产品需求的不断增长,大量的便携式设备被广泛应用于各种领域,从而使低功耗成为系统设计中越来越被关注的问题。功耗不但直接决定通常靠电池供电的移动设备的使用时间,而且极大地影响着芯片的尺寸、成本和性能。本文结合MSP430系列微处理器,详细论述了通过控制改变MCU的时钟频率来降低功耗的设计方法。 1 功耗产生的原因 在CMOS电路中,功耗损失主要包括静态功耗损失和动态功耗损失两部分。其中静态功耗主要是由反偏PN结的漏电流和晶体管的亚阈值电流引起的,其最主要的形式就是漏电损失。其实CMOS电路理论上不会有静电功耗损失,因为从供应电源到地面没有直接的路径,但实际上晶体管总会有漏电电流的出现,从而出现漏电损失。在0.18μm工艺水平之下,其在功耗中所占比重大约为5%~10%,一般可以忽略(但是随着工艺的提高,供电电压的降低,又使其所占比重逐渐上升)。这样,在CMOS电路中,动态功耗就成了这个系统功耗的主要组成部分,约占整体功耗的90%以上。定量地分析电路的动态功耗,可用以下公式表示: 其中:C为负载电容;VDD为电源电压;?琢为翻转几率,即每个时钟周期中发生的充放电周期个数;fCLK为时钟频率。从这个公式可以看到如何降低动态功耗从而降低整个CMOS电路的功耗。即可以减小翻转的负载电容,降低电源电压,减小节点的翻转几率,或者降低时钟频率。本文将主要围绕如何动态降低时钟频率实现低功耗设计。 2 动态时钟低功耗管理原理 MCU系统设计是个很复杂的过程,在一些条件下可能会用到整个系统的所有硬件资源,但是在一些应用中可能只需要其中很少的一部分硬件资源;在某些应用中可能需要很高的时钟频率,而在其他应用中却可以工作在很低的工作频率中。例如:当任务量很大时,MCU满负荷工作,则需要较高的时钟频率,功耗较大;当任务量很小时,MCU负荷较轻,所需时钟频率较低,功耗就可以相应降低。动态配置系统的时钟频率就是以不牺牲系统的性能为前提,动态地管理系统的工作频率来降低MCU的功耗。 3 低功耗动态时钟实现 图1为MSP430系列MCU基础时钟模块。 MSP430基础时钟模块包含以下3个时钟输入源。 (1)LFXT1CLK 低频时钟源:由LFXT1振荡器产生(如图2所示)。通过软件将状态寄存器中OSCOff复位后,LFXT1开始工作,即系统采用低频工作。如果LFXT1CLK没有用作SMCLK或MCLK信号,则可以用软件将OSCOff置位,禁止LFXT1工作。 (2)XT2CLK高频时钟源:由XT2振荡器产生。它产生时钟信号XT2CLK,其工作特性与LFXT1振荡器工作在高频模式时类似。可简单地通过软件设置XT2振荡器是否工作,当XT2CLK没有用作SMCLK或MCLK信号时,关闭XT2,选择其他时钟源。 (3)DCOCLK 数字控制RC振荡器。由集成在时钟模块中的DCO振荡器产生。DCO振荡器是一个RC振荡器,频率可以通过软件调节,其控制逻辑如图3所示。当振荡器LFXT1、XT2被禁止或失效时,DCO振荡器被自动选作MCLK的时钟源。因此由振荡器失效引起的系统中断请求可以得到响应,甚至在CPU关闭的情况下也能得到处理。 由基础时钟模块可以提供系统所需的3种时钟信号,即:ACLK、MCLK、SMCLK。其中辅助时钟ACLK是LFXT1CLK信号经1、2、4、8分频后得到的。ACLK可由软件选作各个外围模块的时钟信号,一般用于低速外设;系统主时钟MCLK可由软件选择来自LFXT1CLK、XT2CLK、DCOCLK三者之一,然后经1、2、4、8分频得到。MCLK主要用于CPU和系统。子系统时钟SMCLK可由软件选择来自LFXT1CLK和DCOCLK,或者XT2CLK和DCOCLK,然后经1、2、4、8分频得到,主要用于高速外设模块。系统可以根据实际需要通过软件来选择合适的系统时钟频率,这三种不同频率的时钟输出给不同的模块,从而合理利用系统的电源,实现整个系统的超低功耗,这一点对于电池供电的系统来讲至关重要。在具体应用中,CPU及各个时钟源的工作状态如表1。 4 动态时钟应用实例 通过MSP430外接32768Hz晶体构建超低功耗实时时钟,结构如图4。 部分代码如下: setc Dadc.b SEC cmp.b #060h,SEC jlo CLKend clr.b SEC dadc.b MIN cmp.b #060h,MIN jlo CLKend clr.b MIN CLKend; 令MSP430 CPU工作在突发状态,大部分时间处于LMP3状态,只有程序代码中单位时间到之后,才出发一个极短暂的运行,运行期间电流消耗250?滋A左右。经计算指令执行时间得到,在1s时间段内程序运行时间仅为100μs,系统平均电流约为0.83μA,可见其工作功耗相当低。 以上便是此次小编带来的“功耗”相关内容,通过本文,希望大家对低功耗MCU动态时钟具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!

    时间:2021-04-20 关键词: 功耗 MCU 指数

  • Pwm直流调速的原理是什么?pwm直流调速有哪些特性?

    Pwm直流调速的原理是什么?pwm直流调速有哪些特性?

    pwm,也就是常说的脉冲宽度调制技术,在很多方面都有应用。比如,伺服、电信等系统中,pwm就是一得力助手。为增进大家对pwm的认识,本文将对pwm直流调速的原理以及特性予以介绍。如果你对pwm具有兴趣,不妨继续往下阅读哦。 脉宽调制器UPW采用美国硅通用公司的第二代产品SG3525,这是一种性能优良,功能全、通用性强的单片集成PWM控制器。由于它简单、可靠及使用方便灵活,大大简化了脉宽调制器的设计及调试,故获得广泛使用。PWM系统在很多方面具有较大的优越性: 1)PWM调速系统主电路线路简单,需用的功率器件少。 2)开关频率高,电流容易连续,谐波少,电机损耗及发热都较小。 3)低速性能好,稳速精度高,调速范围广,可达到1:10000左右。 4)如果可以与快速响应的电动机配合,则系统频带宽,动态响应快,动态抗扰能力强。 5)功率开关器件工作在开关状态,导通损耗小,当开关频率适当时,开关损耗也不大,因而装置效率较高。 6)直流电源采用不可控整流时,电网功率因数比相控整流器高。 变频调速很快为广大电动机用户所接受,成为了一种最受欢迎的调速方法,在一些中小容量的动态高性能系统中更是已经完全取代了其他调速方式。由此可见,变频调速是非常值得自动化工作者去研究的。在变频调速方式中,PWM调速方式尤为大家所重视。 晶体管直流脉宽调速系统与晶闸管直流调速系统相比有以下特点: 1、主回路需用的功率器件少,线路简单。 2、开关频率高,电流容易连续,谐波少,电动机损耗和发热都小。 3、低速性能好,稳速精度高,因面调速范围宽。 4、系统频带宽,快速响应性能好,动态抗扰能力强。 5、直流电源采用不控三相整流时,电网功率因数高。 PWM控制方式的控制单元中速度调节器和电流调节器都采用PI调节器。而且速度调节器的比例增益和复位时间二个参数可以单独调节。该电路具有以下特点: ① 自适应反馈。速度调节器有一个自适应PI反馈,这是为了改善在很低速度时的动态性能。 ②电流极限设定。电路具有电流极限设定。 ③特性校正环节。这个环节是用来保证在晶体管工作时,有一个安全时间,以使晶体管桥式电路的一个臂不至短路。 ④监视器。它具有下述功能:a阻止延滞或作瞬时调节;b 极限电流信号的处理;c 检测和处理交流电源或直流回路的过压;d 检测设定调节器在极限情况下是否超过允许的时间;e 检查桥式功率晶体管是否过流等。 常用的PWM直流调速系统:脉宽调速系统的主回路 PWM速度控制的主回路即开关功率放大器,从总的来分有双极性工作方式和单极性工作方式两种。各种不同的开关工作方式又可组成可逆开关放大电路和不可逆开关放大电路。 常用的PWM变换器电路有T型单极洗性开关放大电路;T型双极性开关放大电路;H型单极性开关放大电路;H型双极性开关电路。从电路工作过程的分析中可发现,开关放大器输出电压的频率比每个晶体管开关频率高一倍,从而弥补了大功率晶体管开关频率不能做的很高的缺陷,改善了电枢电流的连续性,这也是该电路被广泛采用的原因之一。 脉宽调速系统的控制回路。脉冲分配器电路。不同类型PWM变换器中的大功率晶体管的开关情况不一样,脉冲分配器的作用就是把脉宽调制器输出的脉冲电压分配到功率晶体管的基极控制电路中去,使这些晶体管能按照既定的程序要求进行开关。 以上便是此次小编带来的“pwm”相关内容,通过本文,希望大家对pwm直流调速的原理和特性具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!

    时间:2021-04-20 关键词: pwm 直流调速 指数

  • 想知道pwm有哪些用处吗?看看pwm在逆变电路中如何应用!

    想知道pwm有哪些用处吗?看看pwm在逆变电路中如何应用!

    pwm控制是常用的控制技术,对于pwm,自动化等专业的朋友都比较熟悉。或许,pwm是他们接触最早的控制方式之一。为增进大家对pwm的认识,本文将对pwm控制技术的应用予以介绍,主要在于介绍pwm在逆变带你路方面的应用。如果你对pwm具有兴趣,不妨继续往下阅读哦。 1 引言 在电力电子技术发展史上,逆变电路占据非常重要的一环,而PWM控制技术在逆变电路又处于核心地位,如何将PWM控制技术应用到逆变电路当中是摆在广大科技工作者面前一大难题。针对这个问题,本文首先阐述了PWM控制技术的基本原理,然后详细地研究了单极性SPWM和双极性SPWM实现方法,最后将PWM控制技术和单相桥式逆变电路结合起来分析并应用,并通过仿真实验验证了PWM控制技术在逆变电路的成功应用。 2 PWM控制技术的基本原理及实现方法 2.1 PWM控制技术的基本原理介绍 根据信号与系统知识可知,冲量相同而形状不一样的窄脉冲加在惯性环节上时,其输出作用相同。如图1(a)、(b)和(c)所示的三个波形分别为矩形波脉冲、三角波形脉冲以及正弦波形脉冲,显然它们的形状完全不同,但是面积完全相同,如果把它们分别加在具有同一个惯性的环节上时,其输出作用完全相同。 (a)矩形波脉冲 (b)三角波脉冲 (c)正弦半波脉冲 分别将如图1所示(a)、(b)和(c)所示波形施加在同一个一阶惯性环节上,其电路图和输出电流i(t)输出分别如图2(a)和(b)所示。从2(b) 可以看出,在i(t)的上升段,i(t)的形状也稍微有点不同,但其下降段则完全相同。值得说明的是脉冲越窄,各i(t)输出波形的差异可以忽略不计。这种原理被称为面积等效原理,它是实现PWM控制技术的理论基础。 如果用一系列等幅不等宽的脉冲来代替一个正弦半波,也就是说把正弦半波分成N等份,然后被把它看成N个首尾相连的脉冲序列,而这些被平分的波形宽度完全相等,但幅值却不相等。然后用矩形脉冲代替这些被平分的N份波形,矩形脉冲同样被要求幅度相等,而宽度不相同,但是要保证它们的中点完全重合,面积与N份波形相同,这样就可以得到脉冲序列,如图3所示。根据上述分析,PWM波形和正弦半波是等效的。 2.2 单极性和双极性SPWM的实现 将输出波形作调制信号,进行调制可以得到想要的PWM波;一般都采用等腰三角波作为载波,原因在于其任一点水平宽度和高度成线性关系,而且左右对称。此外,与任一平缓变化的调制信号波相交,在交点控制器件通断,就得宽度正比于信号波幅值的脉冲,符合PWM的要求。当调制信号波为正弦波时,得到的就是SPWM波。如果在正弦调制波的半个周期内,三角载波只在正或负的一种极性范围内变化,所得到的SPWM波也只处于一个极性的范围内,叫做单极性控制方式,如图4所示。 与单极性PWM控制方式相对应的是双极性控制方式,如图5所示,采用双极性方式时,在Ur的半个周期内,三角波载波不再是单极性的,而是有正有负,所得的 PWM波也是有正有负。在Ur的一个周期内,输出的PWM波只有±Ud两种电平,而不像单极性控制时还有零电平,双极性SPWM控制方式仍然在调制信号和载波信号的交点时刻控制各开关器件的通断。 3 PWM控制技术在逆变电路中的应用 3.1 单相桥式逆变电路中的工作原理介绍 图6为采用全控器件IGBT作为开关的单相桥式逆变电路,设负载为阻感性负载。现在本文结合图4的所示单极性SPWM控制电路对器工作原理进行阐述。图6所示的电路VT1和VT2互补导通,同样VT3和VT4也互补导通。Uo在正半周工作时,VT1开通,VT2关断,VT3和VT4交替通断,由于是电感性负载,电流比电压滞后,所以在电压Uo正半周,电流有一段为正,一段为负,而负载电流为正区间。当VT1和VT4都导通时,Uo等于 Ud,VT4关断时,负载电流通过VT1和UD3续流,Uo=0,负载电流为负区间,io为负,实际上从VD1和VD4流过,此时负载两端电压仍有 Uo=Ud,VT4断,VT3通后,io从VT4和VD1续流,Uo=0,Uo总可得到Ud和零两种电平。同理可分析Uo在负半周时,让VT2保持导通,VT1保持关断,VT3和VT4交替通断 Uo可得到-Ud和零两种电平。 3.2 PWM控制技术在逆变电路中的应用 控制VT3和T4通断的方法既可以用图4单极性SPWM控制方式,也可以用图6所示的双极式控制方式。比如调制信号Ur为正弦波,载波 Uc在Ur的正半周为正极性的三角波,在Ur的负半周为负极性的三角波。在Ur和Uc的交点时刻控制IGBT的通断,Ur正半周,VT1保持通,VT2保持断,当Ur》Uc时使VT4通,VT2断,Uo=Ud,当UrUc时使VT3断,VT4 通,Uo=0,虚线Uof表示Uo的基波分量。实现VT3和VT4通断的区别只是在于加在其栅极的驱动电平不同而已,一个为单极性,另外一个为双极性。 4 仿真验证 为了验证PWM控制技术在单相桥式逆变电路中的应用正确性,本文给出了其仿真结果如图7和图8所示,其中图7为单极性SPWM控制桥式逆变电路的仿真波形,图7中上面波形为负载两端输出电压仿真波形,下面波形为负载输出电流仿真波形,跟图4理论分析完全一致。图8为双极性SPWM控制桥式逆变电路的仿真波形,图8中上面波形为负载两端输出电压仿真波形,下面波形为负载输出电流仿真波形,跟图5理论分析完全一致,仿真结果验证了理论分析的正确性。 以上便是此次小编带来的“pwm”相关内容,通过本文,希望大家对pwm在逆变电路中的应用具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!

    时间:2021-04-20 关键词: pwm 逆变电路 指数

  • 想深入了解pwm?大佬带你看如何进行pwm控制

    想深入了解pwm?大佬带你看如何进行pwm控制

    如果你是学控制的,那pwm便是不可不知晓的。其实,pwm并没有很多人想象中的那么难。只要认真学习,掌握pwm也是有章可循的。为增进大家对pwm的认识,本文将对pwm控制的原理以及方法予以解读。如果你对pwm具有兴趣,不妨继续往下阅读哦。 PWM控制的基本原理很早就已经提出,但是受电力电子器件发展水平的制约,在上世纪80年代以前一直未能实现.直到进入上世纪80年代,随着全控型电力电子器件的出现和迅速发展,PWM控制技术才真正得到应用.随着电力电子技术,微电子技术和自动控制技术的发展以及各种新的理论方法,如现代控制理论,非线性系统控制思想的应用,PWM控制技术获得了空前的发展.到目前为止,已出现了多种PWM控制技术。 采样控制理论中有一个重要结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同.PWM控制技术就是以该结论为理论基础,对半导体开关器件的导通和关断进行控制,使输出端得到一系列幅值相等而宽度不相等的脉冲,用这些脉冲来代替正弦波或其他所需要的波形.按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可改变输出频率。 根据PWM控制技术的特点,到目前为止主要有以下8类方法: 等脉宽PWM法 VVVF(Variable Voltage Variable Frequency)装置在早期是采用PAM(Pulse Amplitude ModulaTIon)控制技术来实现的,其逆变器部分只能输出频率可调的方波电压而不能调压.等脉宽PWM法正是为了克服PAM法的这个缺点发展而来的,是PWM法中最为简单的一种.它是把每一脉冲的宽度均相等的脉冲列作为PWM波,通过改变脉冲列的周期可以调频,改变脉冲的宽度或占空比可以调压,采用适当控制方法即可使电压与频率协调变化.相对于PAM法,该方法的优点是简化了电路结构,提高了输入端的功率因数,但同时也存在输出电压中除基波外,还包含较大的谐波分量. 随机PWM 在上世纪70年代开始至上世纪80年代初,由于当时大功率晶体管主要为双极性达林顿三极管,载波频率一般不超过5kHz,电机绕组的电磁噪音及谐波造成的振动引起了人们的关注.为求得改善,随机PWM方法应运而生.其原理是随机改变开关频率使电机电磁噪音近似为限带白噪声(在线性频率坐标系中,各频率能量分布是均匀的),尽管噪音的总分贝数未变,但以固定开关频率为特征的有色噪音强度大大削弱.正因为如此,即使在IGBT已被广泛应用的今天,对于载波频率必须限制在较低频率的场合,随机PWM仍然有其特殊的价值;另一方面则说明了消除机械和电磁噪音的最佳方法不是盲目地提高工作频率,随机PWM技术正是提供了一个分析,解决这种问题的全新思路. SPWM法 SPWM(Sinusoidal PWM)法是一种比较成熟的,目前使用较广泛的PWM法.前面提到的采样控制理论中的一个重要结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同.SPWM法就是以该结论为理论基础,用脉冲宽度按正弦规律变化而和正弦波等效的PWM波形即SPWM波形控制逆变电路中开关器件的通断,使其输出的脉冲电压的面积与所希望输出的正弦波在相应区间内的面积相等,通过改变调制波的频率和幅值则可调节逆变电路输出电压的频率和幅值.该方法的实现有以下几种方案. 等面积法 该方案实际上就是SPWM法原理的直接阐释,用同样数量的等幅而不等宽的矩形脉冲序列代替正弦波,然后计算各脉冲的宽度和间隔,并把这些数据存于微机中,通过查表的方式生成PWM信号控制开关器件的通断,以达到预期的目的.由于此方法是以SPWM控制的基本原理为出发点,可以准确地计算出各开关器件的通断时刻,其所得的的波形很接近正弦波,但其存在计算繁琐,数据占用内存大,不能实时控制的缺点. 硬件调制法 硬件调制法是为解决等面积法计算繁琐的缺点而提出的,其原理就是把所希望的波形作为调制信号,把接受调制的信号作为载波,通过对载波的调制得到所期望的PWM波形.通常采用等腰三角波作为载波,当调制信号波为正弦波时,所得到的就是SPWM波形.其实现方法简单,可以用模拟电路构成三角波载波和正弦调制波发生电路,用比较器来确定它们的交点,在交点时刻对开关器件的通断进行控制,就可以生成SPWM波.但是,这种模拟电路结构复杂,难以实现精确的控制. 软件生成法 由于微机技术的发展使得用软件生成SPWM波形变得比较容易,因此,软件生成法也就应运而生.软件生成法其实就是用软件来实现调制的方法,其有两种基本算法,即自然采样法和规则采样法. 自然采样法 以正弦波为调制波,等腰三角波为载波进行比较,在两个波形的自然交点时刻控制开关器件的通断,这就是自然采样法.其优点是所得SPWM波形最接近正弦波,但由于三角波与正弦波交点有任意性,脉冲中心在一个周期内不等距,从而脉宽表达式是一个超越方程,计算繁琐,难以实时控制. 规则采样法 规则采样法是一种应用较广的工程实用方法,一般采用三角波作为载波.其原理就是用三角波对正弦波进行采样得到阶梯波,再以阶梯波与三角波的交点时刻控制开关器件的通断,从而实现SPWM法.当三角波只在其顶点(或底点)位置对正弦波进行采样时,由阶梯波与三角波的交点所确定的脉宽,在一个载波周期(即采样周期)内的位置是对称的,这种方法称为对称规则采样.当三角波既在其顶点又在底点时刻对正弦波进行采样时,由阶梯波与三角波的交点所确定的脉宽,在一个载波周期(此时为采样周期的两倍)内的位置一般并不对称,这种方法称为非对称规则采样. 规则采样法是对自然采样法的改进,其主要优点就是计算简单,便于在线实时运算,其中非对称规则采样法因阶数多而更接近正弦.其缺点是直流电压利用率较低,线性控制范围较小。 以上便是此次小编带来的“pwm”相关内容,通过本文,希望大家对pwm控制原理和方法具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!

    时间:2021-04-20 关键词: pwm 随机PWM 指数

  • 大佬带你看无线通讯,无线通讯之无线局域网拓扑结构

    大佬带你看无线通讯,无线通讯之无线局域网拓扑结构

    无线通讯的使用十分广泛,我们的日常生活很大程度上受到无线通讯的影响。对于无线通讯,其实我们都有一定了解,例如无线网等。为增进大家对无线通讯的认识,本文将对无线通讯中的无线局域网的网络拓扑结构予以介绍。如果你对无线局域网具有兴趣,不妨继续往下阅读哦。 基于IEEE802.11标准的无线局域网允许在局域网络环境中使用可以不必授权的ISM频段中的2.4GHz或5GHz射频波段进行无线连接。它们被广泛应用,从家庭到企业再到Internet接入热点。 简单的家庭无线WLAN:在家庭无线局域网最通用和最便宜的例子,一台设备作为防火墙,路由器,交换机和无线接入点。这些无线路由器可以提供广泛的功能,例如:保护家庭网络远离外界的入侵。允许共享一个ISP(Internet服务提供商)的单一IP地址。可为4台计算机提供有线以太网服务,但是也可以和另一个以太网交换机或集线器进行扩展。为多个无线计算机作一个无线接入点。通常基本模块提供2.4GHz802.11b/g操作的Wi-Fi,而更高端模块将提供双波段Wi-Fi或高速MIMO性能。 双波段接入点提供2.4GHz802.11b/g/n和5.8GHz802.11a性能,而MIMO接入点在2.4GHz范围中可使用多个射频以提高性能。双波段接入点本质上是两个接入点为一体并可以同时提供两个非干扰频率,而更新的MIMO设备在2.4GHz范围或更高的范围提高了速度。2.4GHz范围经常拥挤不堪而且由于成本问题,厂商避开了双波段MIMO设备。双波段设备不具有最高性能或范围,但是允许你在相对不那么拥挤的5.8GHz范围操作,并且如果两个设备在不同的波段,允许它们同时全速操作。家庭网络中的例子并不常见。该拓扑费用更高但是提供了更强的灵活性。路由器和无线设备可能不提供高级用户希望的所有特性。在这个配置中,此类接入点的费用可能会超过一个相当的路由器和AP一体机的价格,归因于市场中这种产品较少,因为多数人喜欢组合功能。一些人需要更高的终端路由器和交换机,因为这些设备具有诸如带宽控制,千兆以太网这样的特性,以及具有允许他们拥有需要的灵活性的标准设计。 1. 无线桥接 当有线连接以太网或者需要为有线连接建立第二条冗余连接以作备份时,无线桥接允许在建筑物之间进行无线连接。802.11设备通常用来进行这项应用以及无线光纤桥。802.11基本解决方案一般更便宜并且不需要在天线之间有直视性,但是比光纤解决方案要慢很多。802.11解决方案通常在5至30mbps范围内操作,而光纤解决方案在100至1000mbps范围内操作。这两种桥操作距离可以超过10英里,基于802.11的解决方案可达到这个距离,而且它不需要线缆连接。但基于802.11的解决方案的缺点是速度慢和存在干扰,而光纤解决方案不会。光纤解决方案的缺点是价格高以及两个地点间不具有直视性。 2. 中型WLAN 中等规模的企业传统上使用一个简单的设计,他们简单地向所有需要无线覆盖的设施提供多个接入点。这个特殊的方法可能是最通用的,因为它入口成本低,尽管一旦接入点的数量超过一定限度它就变得难以管理。大多数这类无线局域网允许你在接入点之间漫游,因为它们配置在相同的以太子网和SSID中。从管理的角度看,每个接入点以及连接到它的接口都被分开管理。在更高级的支持多个虚拟SSID的操作中,VLAN通道被用来连接访问点到多个子网,但需要以太网连接具有可管理的交换端口。这种情况中的交换机需要进行配置,以在单一端口上支持多个VLAN。 尽管使用一个模板配置多个接入点是可能的,但是当固件和配置需要进行升级时,管理大量的接入点仍会变得困难。从安全的角度来看,每个接入点必须被配置为能够处理其自己的接入控制和认证。RADIUS服务器将这项任务变得更轻松,因为接入点可以将访问控制和认证委派给中心化的RADIUS服务器,这些服务器可以轮流和诸如Windows活动目录这样的中央用户数据库进行连接。但是即使如此,仍需要在每个接入点和每个RADIUS服务器之间建立一个RADIUS关联,如果接入点的数量很多会变得很复杂。 3. 大型WLAN 交换无线局域网是无线连网最新的进展,简化的接入点通过几个中心化的无线控制器进行控制。数据通过Cisco,ArubaNetworks,Symbol和TrapezeNetworks这样的制造商的中心化无线控制器进行传输和管理。这种情况下的接入点具有更简单的设计,用来简化复杂的操作系统,而且更复杂的逻辑被嵌入在无线控制器中。接入点通常没有物理连接到无线控制器,但是它们逻辑上通过无线控制器交换和路由。要支持多个VLAN,数据以某种形式被封装在隧道中,所以即使设备处在不同的子网中,但从接入点到无线控制器有一个直接的逻辑连接。从管理的角度来看,管理员只需要管理可以轮流控制数百接入点的无线局域网控制器。这些接入点可以使用某些自定义的DHCP属性以判断无线控制器在哪里,并且自动连结到它成为控制器的一个扩充。这极大地改善了交换无线局域网的可伸缩性,因为额外接入点本质上是即插即用的。要支持多个VLAN,接入点不再在它连接的交换机上需要一个特殊的VLAN隧道端口,并且可以使用任何交换机甚至易于管理的集线器上的任何老式接入端口。VLAN数据被封装并发送到中央无线控制器,它处理到核心网络交换机的单一高速多VLAN连接。安全管理也被加固了,因为所有访问控制和认证在中心化控制器进行处理,而不是在每个接入点。 交换无线局域网的另一个好处是低延迟漫游。这允许VoIP和Citrix这样的对延迟敏感的应用。切换时间会发生在通常不明显的大约50毫秒内。传统的每个接入点被独立配置的无线局域网有1000毫秒范围内的切换时间,这会破坏电话呼叫并丢弃无线设备上的应用会话。交换无线局域网的主要缺点是由于无线控制器的附加费用而导致的额外成本。但是在大型无线局域网配置中,这些附加成本很容易被易管理性所抵消。 以上便是此次小编带来的“无线通讯”相关内容,通过本文,希望大家对无线局域网的拓扑结构具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!

    时间:2021-04-16 关键词: 无线通讯 局域网 指数

  • 无线通讯何其重要!!无线通讯之无线局域网组网要求、模式解读

    无线通讯何其重要!!无线通讯之无线局域网组网要求、模式解读

    无线通讯是目前的主要通讯方式之一,由此可见无线通讯的重要性。在往期无线通讯相关文章中,小编对无线通讯讯号检测、无线通讯应用等内容有所解读。为增进大家对无线通讯的认识,本文将对无线通讯中的无线局域网予以介绍,主要内容在于介绍组建无线组网的要求。如果你对无线通讯具有兴趣,不妨继续往下阅读哦。 一、无线局域网组网要求 由于无线局域网需要支持高速、突发的数据业务,在室内使用还需要解决多径衰落以及各子网间串扰等问题。具体来说,无线局域网必须实现以下技术要求: 1.可靠性:无线局域网的系统分组丢失率应该低于10-5,误码率应该低于10-8。 2.兼容性:对于室内使用的无线局域网,应尽可能使其跟现有的有线局域网在网络操作系统和网络软件上相互兼容。 3.数据速率:为了满足局域网业务量的需要,无线局域网的数据传输速率应该在54Mbps以上。 4.通信保密:由于数据通过无线介质在空中传播,无线局域网必须在不同层次采取有效的措施以提高通信保密和数据安全性能。 5.移动性:支持全移动网络或半移动网络。 6.节能管理:当无数据收发时使站点机处于休眠状态,当有数据收发时再激活,从而达到节省电力消耗的目的。 7.小型化、低价格:这是无线局域网得以普及的关键。 8.电磁环境:无线局域网应考虑电磁对人体和周边环境的影响问题。 在组建无线局域网时,往往需要仔细考虑许多细节因素,才能成功搭建无线局域网,并保证其有很高的工作性能。 1、在通过无线局域网连接远程局域网时,远程局域网所在的建筑物应该尽量可视,如果无线局域网要穿过高大的建筑物或茂密的树木等障碍物,那么搭建的无线局域网传输性能就会受影响,毕竟那些障碍物会直接影响无线局域网数据信号的正常传输。 2、当远程网络与本地局域网之间的距离比较远时,可以适当降低网络传输带宽,达到远距离数据传输的目的,实在需要进行远距离无线传输的话,不妨尝试在中间设立无线局域网中继中转站,以便让上网信号绕过障碍物。在无线局域网中,网络信号进行近距离传输时,为了确保能够获取最大的传输带宽,就要将几个无线网桥互相集成在一起,同时无线局域网的天线高度基本不会受到影响。 3、无线局域网的天线高度进行合适设置也是非常重要的,倘若没有将无线局域网设备的天线高度设置合适,单纯依靠增大天线增益或增大功率放大等方法,获取的无线传输效果将十分有限。那么可以考虑将无线节点设备的天线布置在建筑物的最项层上,并且尽量利用小型天线以便确保无线电波的相对集中,这样有利于有效避免来自其他无线局域网信号的干扰。 4、尽管无线局域网传输采用了跳频技术,但上网信号的频率载波很难被检测到,如此一来只有当双方无线设置了相同的网络ID号,才能进行无线上网信号的安全传输。如果要进一步保证无线局域网的运行安全性,还可以对无线上网信号进行加密。 二、组网模式 将WLAN中的几种设备结合在一起使用,就可以组建出多层次、无线和有线并存的计算机网络。一般说来,无线局域网有两种组网模式,一种是无固定基站的WLAN,另一种是有固定基站的WLAN。 无固定基站的WLAN是一种自足网络,主要适用于在安装无线网卡的计算机之间组成的对等状态的网络。有固定基站的WLAN类似于移动通信的机制,安装无线网卡的计算机通过基站(无线AP或者无线路由器)接入网络,这种网络的应用比较广泛,通常用于有线局域网覆盖范围的延伸或者作为宽带无线互联网的接入方式。 1. 无固定基站的WLAN 无固定基站的WLAN也被称为无线对等网,是最简单的一种无线局域网结构。这种无固定基站的WLAN结构是一种无中心的拓扑结构,通过网络连接的各个设备之间的通信关系是平等的,但仅适用于较少数的计算机无线连接方式(通常是5台主机或设备之内)。 这种组网模式不需要固定的设施,只需要在每台计算机中安装无线网卡就可以实现,因此非常适用于一些临时网络的组建。 2. 有固定基站的WLAN 当网络中的计算机用户到达一定数量时,或者是当需要建立一个稳定的无线网络平台的时候,一般会采用以AP为中心的组网模式。 以AP为中心的组网模式也是无线局域网最为普遍的一种组网模式,在这种模式中,需要有一个AP充当中心站,所有站点对网络的访问都受该中心的控制。 以上便是此次小编带来的“无线通讯”相关内容,通过本文,希望大家对无线通讯中的无线局域网组网要求具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!

    时间:2021-04-16 关键词: 无线通讯 组网 指数

  • 想要了解无线通讯?无线通讯之无线局域网优缺点解读

    想要了解无线通讯?无线通讯之无线局域网优缺点解读

    无线通讯是现在的主要通讯方式之一,目前,无线通讯的方式有很多,无线局域网便是无线通讯中的之一。如果大家想要增进对无线通讯的认识,无线局域网是需要了解的知识点之一。本文中,小编将对该无线通讯方式的优缺点予以介绍。如若你正在学习无线通讯,不妨继续往下阅读哦。 一、无线局域网 无线局域网,其英文缩写为WLAN。无线局域网是无线通讯技术与网络技术相结合的产物。从专业角度讲,无线局域网就是通过无线信道来实现网络设备之间的通信,并实现通信的移动化、个性化和宽带化。通俗地讲,无线局域网就是在不采用网线的情况下,提供以太网互联功能。广义上是指以无线电波、激光、红外线等来代替有线局域网中的部分或全部传输介质所构成的网络。WLAN技术是基于802.11标准系列的,即利用高频信号(例如2.4GHz或5GHz)作为传输介质的无线局域网。 它是相当便利的数据传输系统,它利用射频(Radio Frequency; RF)的技术,使用电磁波,取代旧式碍手碍脚的双绞铜线(Coaxial)所构成的局域网络,在空中进行通信连接,使得无线局域网络能利用简单的存取架构让用户透过它,达到“信息随身化、便利走天下”的理想境界。 802.11是IEEE在1997年为WLAN定义的一个无线网络通信的工业标准。此后这一标准又不断得到补充和完善,形成802.11的标准系列,例如802.11、802.11a、802.11b、802.11e、802.11g、802.11i、802.11n等。 现在支持WLAN的无线网络标准为IEEE802.11a,其数据传输速率在5 GHz_ISM频段可达到54 Mbps。 另一个标准是IEEE802.11b,在2.4 GHz ISM频段可以达到11 Mbps。中国移动WLAN采用802.11b标准,可提供11Mbps的速率,比固定拨号上网(56K)高两百倍。 二、无线局域网的优点 (1)灵活性和移动性。在有线网络中,网络设备的安放位置受网络位置的限制,而无线局域网在无线信号覆盖区域内的任何一个位置都可以接入网络。无线局域网另一个最大的优点在于其移动性,连接到无线局域网的用户可以移动且能同时与网络保持连接。 (2)安装便捷。无线局域网可以免去或最大程度地减少网络布线的工作量,一般只要安装一个或多个接入点设备,就可建立覆盖整个区域的局域网络。 (3)易于进行网络规划和调整。对于有线网络来说,办公地点或网络拓扑的改变通常意味着重新建网。重新布线是一个昂贵、费时、浪费和琐碎的过程,无线局域网可以避免或减少以上情况的发生。 (4)故障定位容易。有线网络一旦出现物理故障,尤其是由于线路连接不良而造成的网络中断,往往很难查明,而且检修线路需要付出很大的代价。无线网络则很容易定位故障,只需更换故障设备即可恢复网络连接。 (5)易于扩展。无线局域网有多种配置方式,可以很快从只有几个用户的小型局域网扩展到上千用户的大型网络,并且能够提供节点间“漫游”等有线网络无法实现的特性。 由于无线局域网有以上诸多优点,因此其发展十分迅速。最近几年,无线局域网已经在企业、医院、商店、工厂和学校等场合得到了广泛的应用。 三、无线局域网不足 无线局域网的不足之处:无线局域网在能够给网络用户带来便捷和实用的同时,也存在着一些缺陷。无线局域网的不足之处体现在以下几个方面: ⑴性能。无线局域网是依靠无线电波进行传输的。这些电波通过无线发射装置进行发射,而建筑物、车辆、树木和其它障碍物都可能阻碍电磁波的传输,所以会影响网络的性能。 ⑵速率。无线信道的传输速率与有线信道相比要低得多。无线局域网的最大传输速率为1Gbit/s,只适合于个人终端和小规模网络应用。 ⑶安全性。本质上无线电波不要求建立物理的连接通道,无线信号是发散的。从理论上讲,很容易监听到无线电波广播范围内的任何信号,造成通信信息泄漏。 以上便是此次小编带来的“无线通讯”相关内容,通过本文,希望大家对无线通讯中的无线局域网的优缺点具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!

    时间:2021-04-16 关键词: 无线局域网 无线通讯 指数

  • 如何提高太阳能电池效率?太阳能电池电级材料有哪些?

    如何提高太阳能电池效率?太阳能电池电级材料有哪些?

    太阳能电池作为常用电池类型,在现代社会得到了进一步发展。同时,太阳能电池为我们的生活带来了诸多便利,如美团单车上面的太阳能电池,为定位续航提供了支持。为增进大家对太阳能电池的认识,本文将介绍提高太阳能电池效率的技术以及太阳能电池的电级材料。如果你对太阳能电池具有兴趣,不妨继续往下阅读哦。 一、如何提高太阳能电池效率 太阳能电池,是一种利用太阳光直接发电的光电半导体薄片,又称为“太阳能芯片”或“光电池”,它只要被满足一定照度条件的光照度,瞬间就可输出电压及在有回路的情况下产生电流。在物理学上称为太阳能光伏(Photovoltaic,缩写为PV),简称光伏。 太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。以光伏效应工作的晶硅太阳能电池为主流,而以光化学效应工作的薄膜电池实施太阳能电池则还处于萌芽阶段。 我们所说的太阳能电池效率是什么意思?我们使用的每个设备都具有一定的效率。考虑一台每小时可生产10个气球的机器。在这十个气球中,有两个气球有孔或其他类型的缺陷。这意味着该机器的效率为80%,因为该机器吸收了生产10个气球所需的原材料,但仅将其中的80%转换为有用的输出。因此,设备的效率代表了提供给它的每单位输入所产生的有用输出量。 晶体硅太阳能电池的理论效率为25%(AMO1.0光谱条件下)。太阳能电池的理论效率与入射光能转变成电流之前的各种可能损耗的因素有关。其中,有些因素由太阳能电池的基本物理决定的,有些则与材料和工艺相关。从提高太阳能电池效率的原理上讲,应从以下几方面着手: 1、 减少太阳能电池薄膜光反射的损失 2、 降低PN结的正向电池(俗称太阳能电池暗电流) 3、 PN结的空间电荷区宽度减少,幷减少空间电荷区的复合中心。 4、 提高硅晶体中少数载流子寿命,即减少重金属杂质含量和其他可作为复合中心的杂质,晶体结构缺陷等。 5、 当采取太阳能电池硅晶体各区厚度和其他结构参数。 目前提高太阳能电池效率的主要措施如下,而各项措施的采用往往引导出相应的新的工艺技术。 (1) 选择长载流子寿命的高性能衬底硅晶体。 (2) 太阳能电池芯片表面制造绒面或倒金字塔多坑表面结构。电池芯片背面制作背面镜,以降低表面反射和构成良好的隔光机制。 (3) 合理设计发射结结构,以收集尽可能多的光生载流子。 (4) 采用高性能表面钝化膜,以降低表面复合速率。 (5) 采用深结结构,幷在金属接触处加强钝化。 (6) 合理的电极接触设计以达到低串联电阻等。 二、太阳能电池的电极材料有哪些 太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。以光电效应工作 的菁膜式太阳能电池为主流,而以光化学效应工作的式太阳能民池则还处于萌芽阶段。太阳光照在半导体p-n结上,形成新的空穴由-电子对。在p-n结电场的作用下,空穴由n区流向p区,电子由p区流向n区,接通电路后就形成电流。这就是光电效应太阳能电池的工作原理。 太阳能电池按结晶状态可分为结晶系薄式和非结晶系膜式(以下表示为a-)两大类,而前者又分为单结晶形和多结晶形。 按材料可分类硅薄膜形、化合物半导体薄膜形和有机薄膜形,百化合物半导体薄膜形又分为 非结晶形(a-Si:H,a-Si:H:F,a-SixGel-x:H等)、ⅢV族(GaAs,InP)、ⅡⅥ族(cds系)和磷化锌(Zn3P2)等。插表列出了各类太阳能电池的分类和用途。 以上便是此次小编带来的“太阳能电池”相关内容,通过本文,希望大家对如何提高太阳能电池效率和太阳能电池电级材料具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!

    时间:2021-04-15 关键词: 太阳能电池 电极材料 指数

  • 太阳能电池有哪些?看这一篇太阳能电池介绍就够了

    太阳能电池有哪些?看这一篇太阳能电池介绍就够了

    太阳能电池是最常见的电池之一,对于太阳能电池,我们通常也较为熟悉。上篇太阳能电池相关文章中,小编对太阳能电池效率问题有所介绍。为增进大家对太阳能电池的认识,本文将对薄膜太阳能电池的种类予以解读。如果你对太阳能电池具有兴趣,不妨继续往下阅读哦。 薄膜太阳能电池是缓解能源危机的新型光伏器件。薄膜太阳能电池可以使用在价格低廉的陶瓷、石墨、金属片等不同材料当基板来制造,形成可产生电压的薄膜厚度仅需数μm,目前转换效率最高可以达13%。薄膜电池太阳电池除了平面之外,也因为具有可挠性可以制作成非平面构造其应用范围大,可与建筑物结合或是变成建筑体的一部份,应用非常广泛。 薄膜太阳能电池的种类 非晶硅(Amorphous Silicon, a-Si)、微晶硅(Nanocrystalline Silicon,nc-Si,Microcrystalline Silicon,mc-Si)、化合物半导体II-IV 族[CdS、CdTe(碲化镉)、CuInSe2]、色素敏化染料(Dye-SensiTIzed Solar Cell)、有机导电高分子(Organic/polymer solar cells) 、CIGS (铜铟硒化物)。。等 GaAs属于III-V族化合物半导体材料,其能隙为1.4eV,正好为高吸收率太阳光的值,与太阳光谱的匹配较适合,且能耐高温,在250℃的条件下,光电转换性能仍很良好,其最高光电转换效率约30%,特别适合做高温聚光太阳电池。砷化镓生产方式和传统的硅晶圆生产方式大不相同,砷化镓需要采用磊晶技术制造,这种磊晶圆的直径通常为4—6英寸,比硅晶圆的12英寸要小得多。磊晶圆需要特殊的机台,同时砷化镓原材料成本高出硅很多,最终导致砷化镓成品IC成本比较高。磊晶目前有两种,一种是化学的MOCVD,一种是物理的MBE。GaAs等III-V化合物薄膜电池的制备主要采用MOVPE和LPE技术,其中MOVPE方法制备GaAs薄膜电池受衬底位错,反应压力,III-V比率,总流量等诸多参数的影响。GaAs(砷化镓)光电池大多采用液相外延法或MOCVD技术制备。用GaAs作衬底的光电池效率高达29.5%(一般在19.5%左右),产品耐高温和辐射,但生产成本高,产量受限,现今主要作空间电源用。以硅片作衬底,MOCVD技术异质外延方法制造GaAs电池是降用低成本很有希望的方法。已研究的砷化镓系列太阳电池有单晶砷化镓,多晶砷化镓,镓铝砷--砷化镓异质结,金属-半导体砷化镓,金属--绝缘体--半导体砷化镓太阳电池等。 砷化镓材料的制备类似硅半导体材料的制备,有晶体生长法,直接拉制法,气相生长法,液相外延法等。由于镓比较稀缺,砷有毒,制造成本高,此种太阳电池的发展受到影响。除GaAs外,其它III-V化合物如Gasb,GaInP等电池材料也得到了开发。 1998年德国费莱堡太阳能系统研究所制得的GaAs太阳能电池转换效率为24.2%,为欧洲记录。首次制备的GaInP电池转换效率为14.7%。另外,该研究所还采用堆叠结构制备GaAs,Gasb电池,该电池是将两个独立的电池堆叠在一起,GaAs作为上电池,下电池用的是GaSb,所得到的电池效率达到31.1%。 砷化镓(GaAs)III-V化合物电池的转换效率可达28%,GaAs化合物材料具有十分理想的光学带隙以及较高的吸收效率,抗辐照能力强,对热不敏感,适合于制造高效单结电池。但是GaAs材料的价格不菲,因而在很大程度上限制了用GaAs电池的普及。 铜铟硒CuInSe2简称CIC.CIS材料的能降为1.1 eV,适于太阳光的光电转换,另外,CIS薄膜太阳电池不存在光致衰退问题。因此,CIS用作高转换效率薄膜太阳能电池材料也引起了人们的注目。 CIS电池薄膜的制备主要有真空蒸镀法和硒化法。真空蒸镀法是采用各自的蒸发源蒸镀铜,铟和硒,硒化法是使用H2Se叠层膜硒化,但该法难以得到组成均匀的CIS。CIS薄膜电池从80年代最初8%的转换效率发展到现今的15%左右。日本松下电气工业公司开发的掺镓的CIS电池,其光电转换效率为15.3%(面积25 px2)。1995年美国可再生能源研究室研制出转换效率17.1%的CIS太阳能电池,这是迄今为止世界上该电池的最高转换效率。预计到2000年CIS电池的转换效率将达到20%,相当于多晶硅太阳能电池。CIS作为太阳能电池的半导体材料,具有价格低廉,性能良好和工艺简单等优点。 CdTe是Ⅱ-Ⅵ族化合物半导体,带隙1.5eV,与太阳光谱非常匹配,最适合于光电能量转换,是一种良好的PV材料,具有很高的理论效率(28%),性能很稳定,一直被光伏界看重,是技术上发展较快的一种薄膜电池。碲化镉容易沉积成大面积的薄膜,沉积速率也高。CdTe薄膜太阳电池通常以CdS/CdTe异质结为基础。尽管CdS和CdTe和晶格常数相差10%,但它们组成的异质结电学性能优良,制成的太阳电池的填充因子高达FF =0.75。 制备CdTe多晶薄膜的多种工艺和技术已经开发出来,如近空间升华、电沉积、PVD、CVD、CBD、丝网印刷、溅射、真空蒸发等。丝网印刷烧结法:由含CdTe、CdS浆料进行丝网印刷CdTe、CdS膜,然后在600~700℃可控气氛下进行热处理1h得大晶粒薄膜。近空间升华法:采用玻璃作衬底,衬底温度500~600℃,沉积速率10μm/min.真空蒸发法:将CdTe从约700℃加热钳埚中升华,冷凝在300~400℃衬底上,典型沉积速率1 nm/s. 以CdTe吸收层,CdS作窗口层半导体异质结电池的典型结构:减反射膜/玻璃/(SnO2:F)/CdS/P-CdTe/背电极。电池的实验室效率不断攀升,现今突16%。20世纪90年代初,CdTe电池已实现了规模化生产,但市场发展缓慢,市场份额一直徘徊在1%左右。商业化电池效率平均为8%-10%。 人们认为,CdTe薄膜太阳电池是太阳能电池中最容易制造的,因而它向商品化进展最快。提高效率就是要对电池结构及各层材料工艺进行优化,适当减薄窗口层CdS的厚度,可减少入射光的损失,从而增加电池短波响应以提高短路电流密度,较高转换效率的CdTe电池就采用了较薄的CdS窗口层而创了最高纪录。要降低成本,就必须将CdTe的沉积温度降到550℃以下,以适于廉价的玻璃作衬底;实验室成果走向产业,必须经过组件以及生产模式的设计、研究和优化过程。至今,不仅有许多国家的研究小组已经能够在低衬底温度下制造出转换效率12%以上的CdTe太阳电池,而且在大面积组件方面取得了可喜的进展,许多公司正在进行CdTe薄膜太阳电池的中试和生产厂的建设,有的已经投产。 在广泛深入的应用研究基础上,国际上许多国家的CdTe薄膜太阳电池已由实验室研究阶段开始走向规模工业化生产。1998年美国的CdTe电池产量就为0.2MW,日本的CdTe电池产量为2.0MW。德国公司将在Rudisleben建成一家年产10MW的CdTe薄膜太阳电池组件生产厂,预计其生产成本将会低于$1.4/W。该组件不但性能优良,而且生产工艺先进,使得该光伏组件具有完美的外型,能在建筑物上使用,既拓宽了应用面,又可取代某些建筑材料而使电池成本进一步降低。 CdTe薄膜太阳电池是薄膜太阳电池中发展较快的一种光伏器件。美国南佛罗里达大学于1993年用升华法在25px2面积上做出效率为15.8 %的太阳电池,随后,日本报道了CdTe基电池以CdTe作吸收层,CdS作窗口层的n-CdS/ p-CdTe半导体异质结电池,其典型结构为MgF2/玻璃/ SnO2:F/ n-CdS/ p-CdTe/背电极,小面积电池最高转换效率16%,成为当时CdTe薄膜太阳能电池的最高纪录,如今,太阳电池的研究方向是高转换效率,低成本和高稳定性。因此,以CdTe为代表的薄膜太阳电池倍受关注,面积为90000px2电池转换效率达到11.1%的水平。美国国家可再生能源实验室提供了Solar Cells lnc的面积为171975px2CdTe薄膜太阳电池的测试结果,转换效率达到7.7%;Bp Solar的CdTe薄膜太阳电池,面积为113500px2,效率为8.4%,面积为17650px2的太阳电池,转换效率达到10.1%;Goldan Photon的CdTe太阳电池,面积为88200px2,转换效率为7.7%。 碲化镉薄膜太阳电池的制造成本低,现今,已获得的最高效率为16%,是应用前景最好的新型太阳电池,它已经成为美、德、日、意等国研究开发的主要对象。 CdTe薄膜太阳电池较其他的薄膜电池容易制造,因而它向商品化进展最快。已由实验室研究阶段走向规模化工业生产。下一步的研发重点,是进一步降低成本、提高效率并改进与完善生产工艺。CdTe太阳能电池在具备许多有利于竞争的因素下,但在2002年其全球市占率仅0.42﹪,现今CdTe电池商业化产品效率已超过10﹪,究其无法耀升为市场主流的原因,大至有下列几点:一、模块与基材材料成本太高,整体CdTe太阳能电池材料占总成本的53﹪,其中半导体材料只占约5.5﹪。二、碲天然运藏量有限,其总量势必无法应付大量而全盘的倚赖此种光电池发电之需。三、镉的毒性,使人们无法放心的接受此种光电池。 CdTe太阳能电池作为大规模生产与应用的光伏器件,最值得关注的是环境污染问题。有毒元素Cd对环境的污染和对操作人员健康的危害是不容忽视的。我们不能在获取清洁能源的同时,又对人体和人类生存环境造成新的危害。有效地处理废弃和破损的CdTe组件,技术上很简单。而Cd是重金属,有剧毒,Cd的化合物与Cd一样有毒。其主要影响,一是含有Cd的尘埃通过呼吸道对人类和其他动物造成的危害;二是生产废水废物排放所造成的污染。因此,对破损的玻璃片上的Cd和Te应去除并回收,对损坏和废弃的组件应进行妥善处理,对生产中排放的废水、废物应进行符合环保标准的处理。现今各国均在大力研究解决CdTe薄膜太阳能电池发展的因素,相信上述问题不久将会逐个解决,从而使碲化镉薄膜电池成为未来社会新的能源成分之一。 浅谈多元化合物薄膜太阳能电池 据了解,科学家为了寻找单晶硅电池的替代品,除开发了多晶硅、非晶硅薄膜太阳能电池外,又不断研制其它材料的太阳能电池。其中主要包括砷化镓III-V族化合物、硫化镉、硫化镉及铜锢硒薄膜电池等。 在上述电池中,尽管硫化镉、碲化镉多晶薄膜电池的效率较非晶硅薄膜太阳能电池效率高,成本较单晶硅电池低,并且也易于大规模生产,但由于镉有剧毒,会对环境造成严重的污染,因此,并不是晶体硅太阳能电池最理想的替代。 据了解,砷化镓III-V化合物及铜铟硒薄膜电池由于具有较高的转换效率受到人们的普遍重视。GaAs等III-V化合物薄膜电池的制备主要采用 MOVPE和LPE技术,其中MOVPE方法制备GaAs薄膜电池受衬底位错、反应压力、III-V比率、总流量等诸多参数的影响。 除GaAs外,其它III-V化合物如GaSb、GaInP等电池材料也得到了开发。 另外,研究所还采用堆叠结构制备GaAs,Gasb电池,该电池是将两个独立的电池堆叠在一起,GaAs作为上电池,下电池用的是Gasb,所得到的电池效率达到31.1%。 铜铟硒CuInSe2简称CIS。CIS材料的能降为1.1 eV,适于太阳光的光电转换,另外,CIS薄膜太阳电池不存在光致衰退问题。因此,CIS用作高转换效率薄膜太阳能电池材料也引起了人们的注目。 CIS作为太阳能电池的半导体材料,具有价格低廉、性能良好和工艺简单等优点,将成为今后发展太阳能电池的一个重要方向。唯一的问题是材料的来源,由于铟和硒都是比较稀有的元素,因此,这类电池的发展又必然受到限制。 以上便是此次小编带来的“太阳能电池”相关内容,通过本文,希望大家对太阳能电池种类具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!

    时间:2021-04-15 关键词: 太阳能电池 薄膜太阳能电池 指数

  • 想了解太阳能电池吗?大佬带你看这些太阳能电池知识

    想了解太阳能电池吗?大佬带你看这些太阳能电池知识

    太阳能电池为生活带来了诸多便利,如安有太阳能电池的路灯,可以在夜间为我们守航。随着太阳能电池的普及,我们在使用过程中,可能会发现太阳能电池的一些特点等。为增进大家对太阳能电池的认识,本文将对太阳能电池的相关内容予以介绍。如果你对太阳能电池具有兴趣,不妨继续往下阅读哦。 降低硅太阳能电池成本的方法之一是尽量减少高质量硅材料的使用量,如薄膜太阳能电池。不过这种太阳能电池的效率只达到了约11-12%。研究人员们正在寻求提升其效率的方法。最近取得突破的技术有通过干法绒面优化上表面的结构和在外延层/衬底界面处插入一个中间多孔硅反射镜。采用这两种方式可将太阳能电池的效率提升到约14%。 1. 两种提升效率的技术 与基于体硅的太阳能电池相比,外延薄膜太阳能电池比较便宜。但现在外延薄膜太阳能电池的主要缺点是它们的效率相对较低。已有两种技术表明能提高薄膜太阳能电池的效率。一是利用卤素原子等离子加工,优化上表面结构,另一种技术是在外延层/衬底界面处引入中间反射镜。优化的上表面结构兼有满足均匀光散射(朗伯折射,LamberTIan refracTIon)的要求和通过微量减除硅来降低反射(因为外延硅层已相当薄)两个优点。引入中间反射镜(多重布拉格反射镜)将低能光子的路径长度至少延长了7倍,最终大大提高了太阳能电池的效率。 2. 低成本太阳能电池 基于单晶或多晶体硅基底的硅太阳能电池是光伏市场的主体。但若全部用高纯硅制作,生产这种太阳能电池非常耗能,并且比较昂贵。为进一步 推动光伏产业的发展,应通过降低材料成本来大力减少太阳能电池的生产成本。 外延薄膜硅太阳能电池具有成为体硅太阳能电池的低成本替代方案的潜力。与当前的体硅太阳能电池(200μm)相比,这种丝网印刷太阳能电池采用的衬底较便宜和有源硅层较薄(20μm)。这种低成本衬底包括高掺杂的晶体硅晶圆(用冶金级硅或废料加工的纯净硅)。用化学气相沉积法(CVD)在这种衬底上沉积一层外延有源硅薄层。 3. 产业竞争力 外延薄膜硅太阳能电池的生产工艺与传统的体硅太阳能电池非常相似。因此,与其它薄膜技术相比,在现有的生产线中实现外延薄膜硅太阳能生产相对容易。不过,外延薄膜硅太阳能电池产业竞争力的主要不足之处在于,比起传统的体硅太阳能电池,薄膜硅太阳能电池的效率较低:这些电池的开路电压和填充因数可以达到与体硅太阳能电池相近的水平,但由于存在光学活性薄层(与体硅厚度200μm相比,薄膜硅的活性层厚度仅20μm),光从外延层传输到衬底时,衬底质量较差引起光损失,短路电流损失,最多可高达7mA/cm2。 挑战在于如何在效率和成本之间获得完美的平衡,还须考虑大规模工业生产。本文介绍两种可延长光学路径长度并因此提高外延薄膜硅太阳能电池效率的技术:等离子绒面和在低成本硅衬底与活性层的界面处插入多孔硅反射镜。结果表明,这些措施可将外延薄膜硅太阳能电池的效率提高至14%左右。 4. 上表面等离子绒面 通过处理太阳能电池活性层的上表面,表面光散射发生变化,从而影响太阳能电池的性能。目的是形成最理想的上表面,100%漫反射(朗伯折射,表现出全散射)。此时光子平均以60°的角度穿过活性层,使得传播路径长度增大两倍。也就是说,仅20μm厚的活性层的光学表现为40μm厚。 利用基于氟的等离子处理,仅会去除极少量的硅(仅1,75μm),就可获得表现出朗伯折射的理想上表面。这对于外延薄膜硅太阳能电池极为重要,因为这种类型的太阳能电池的活性层相当薄(20μm)。除优化散射、提高电池效率外,等离子处理还能降低反射,实现倾斜光耦合和降低接触电阻。这就将短路电流减少1.0到1.5mA/cm2,进一步将电池效率提高0.5到1.0%。 5. 硅反射镜 提高外延薄膜硅太阳能电池效率的另一种方式是在活性层与低成本衬底的界面处插入一层多孔硅反射镜。该反射镜可降低长波长的光往衬底中的传播量。 实际上,利用电化学交替生长多孔和少孔薄层(一种多重布拉格反射镜,Bragg reflector)形成多孔硅叠层,制作反射镜,由四分之一波长定律定义交替层的厚度。外延生长活性层时,叠层中的多孔硅具有大大小小的空洞,重组为薄层,但仍保持最初布局。这种结构已被证明是有效的反射结构。这种反射镜通过布拉格效应(常规入射反射镜)或全内反射(光以大于临界角的入射角倾斜入射到反射镜)反射到达界面处的光子。结果这些光子再次通过活性层。逃逸角(大部分反射光子,因为光已被散射)以外的反射光子到达活性层的上表面,将被再次反射。因此延长了光学路径长度,提高了太阳能电池的效率。结果表明,在上表面实现完美的朗伯表面时,一个15层的多孔硅反射镜可以将光的传播路径长度提高14倍,意味着一个拥有15μm活性层的外延薄膜硅太阳能电池将与210μm厚的体硅太阳能电池具有相同性能。 引入多孔硅反射镜可使内部反射率达到80~84%,其中25%是因为存在布拉格效应本身。采用优化的反射镜设计可以进一步改进布拉格效应,优化反射镜使少孔层及多孔层的厚度随深度而变化(灵活的多孔硅叠层),让反射镜的带宽增得足够大。利用这种灵活的特殊结构,低能光子的路径长度可以在现在的基础上提高7倍之多。在低成本硅衬底上利用此反射层和丝网印制接触制作的太阳能电池达到了13.9%的高效率,而Jsc 为 29.6mA/cm2。 以上便是此次小编带来的“太阳能电池”相关内容,通过本文,希望大家对太阳能电池相关知识具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!

    时间:2021-04-14 关键词: 电池 太阳能电池 指数

  • 为何要发展电源管理芯片?如何选择电源管理芯片?

    为何要发展电源管理芯片?如何选择电源管理芯片?

    芯片的重要性不言而喻,我国目前在芯片方面的成就还未达到世界巅峰。但是,小编相信中国的芯片水平将会领先世界。为增进大家对芯片的了解,本文将对电源管理芯片予以解读。本文中,你将对电源管理芯片的发展必要性以及如何选择电源管理芯片有所认识。 一、什么是电源管理芯片 电源管理芯片(Power Management Integrated Circuits),是在电子设备系统中担负起对电能的变换、分配、检测及其他电能管理的职责的芯片。主要负责识别CPU供电幅值,产生相应的短矩波,推动后级电路进行功率输出。 主要电源管理芯片有的是双列直插芯片,而有的是表面贴装式封装,其中HIP630x系列芯片是比较经典的电源管理芯片,由著名芯片设计公司Intersil设计。它支持两/三/四相供电,支持VRM9.0规范,电压输出范围是1.1V-1.85V,能为0.025V的间隔调整输出,开关频率高达80KHz,具有电源大、纹波小、内阻小等特点,能精密调整CPU供电电压。 二、电源管理芯片发展的必要性 所有电子设备都有电源,但是不同的系统对电源的要求不同。为了发挥电子系统的最佳性能,需要选择最适合的电源管理方式。 首先,电子设备的核心是半导体芯片。而为了提高电路的密度,芯片的特征尺寸始终朝着减小的趋势发展,电场强度随距离的减小而线性增加,如果电源电压还是原来的5V,产生的电场强度足以把芯片击穿。所以,这样,电子系统对电源电压的要求就发生了变化,也就是需要不同的降压型电源。为了在降压的同时保持高效率,一般会采用降压型开关电源。 同时,许多电子系统还需要高于供电电压的电源,比如在电池供电设备中,驱动液晶显示的背光电源,普通的白光LED驱动等,都需要对系统电源进行升压,这就需要用到升压型开关电源。 此外,现代电子系统正在向高速、高增益、高可靠性方向发展,电源上的微小干扰都对电子设备的性能有影响,这就需要在噪声、纹波等方面有优势的电源,需要对系统电源进行稳压、滤波等处理,这就需要用到线性电源。上述不同的电源管理方式,可以通过相应的电源芯片,结合极少的外围元件,就能够实现。可见,发展电源管理芯片是提高整机性能的必不可少的手段。 三、如何选择电源管理芯片 电源管理的范畴比较广,既包括单独的电能变换(主要是直流到直流,即DC/DC),单独的电能分配和检测,也包括电能变换和电能管理相结合的系统。相应的,电源管理芯片的分类也包括这些方面,比如线性电源芯片、电压基准芯片、开关电源芯片、LCD驱动芯片、LED驱动芯片、电压检测芯片、电池充电管理芯片等。下面简要介绍一下电源管理芯片的主要类型和应用情况。 如果所设计的电路要求电源有高的噪音和纹波抑制,要求占用PCB板面积小(如手机等手持电子产品),电路电源不允许使用电感器(如手机),电源需要具有瞬时校准和输出状态自检功能,要求稳压器压降及自身功耗低,线路成本低且方案简单,那么线性电源是最恰当的选择。这种电源包括如下的技术:精密的电压基准,高性能、低噪音的运放,低压降调整管,低静态电流。 在小功率供电、运放负电源、LCD/LED驱动等场合,常应用基于电容的开关电源芯片,也就是通常所说的电荷泵(Charge Pump)。基于电荷泵工作原理的芯片产品很多,比如AAT3113。这是一种由低噪声、恒定频率的电荷泵DC/DC转换器构成的白光LED驱动芯片。AAT3113采用分数倍(1.5&TImes;)转换以提高效率。该器件采用并联方式驱动4路LED。输入电压范围为2.7V~5.5V,可为每路输出提供约20mA的电流。该器件还具备热管理系统特性,以保护任何输出引脚所出现的短路。其嵌入的软启动电路可防止启动时的电流过冲。AAT3113利用简单串行控制接口对芯片进行使能、关断和32级对数刻度亮度控制。 而基于电感的DC/DC芯片的应用范围最广泛,应用包括掌上电脑、相机、备用电池、便携式仪器、微型电话、电动机速度控制、显示偏置和颜色调整器等。主要的技术包括:BOOST结构电流模式环路稳定性分析,BUCK结构电压模式环路稳定性分析,BUCK结构电流模式环路稳定性分析,过流、过温、过压和软启动保护功能,同步整流技术分析,基准电压技术分析。 除了基本的电源变换芯片,电源管理芯片还包括以合理利用电源为目的的电源控制类芯片。如NiH电池智能快速充电芯片,锂离子电池充电、放电管理芯片,锂离子电池过压、过流、过温、短路保护芯片;在线路供电和备用电池之间进行切换管理的芯片,USB电源管理芯片;电荷泵,多路LDO供电,加电时序控制,多种保护,电池充放电管理的复杂电源芯片等。 特别是在消费类电子方面。比如便携式DVD、手机、数码相机等,几乎用1块-2块电源管理芯片就能够提供复杂的多路电源,使系统的性能发挥到最佳。 以上便是此次小编带来的“芯片”相关内容,通过本文,希望大家对电源管理芯片具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!

    时间:2021-04-14 关键词: 芯片 电源管理芯片 指数

  • 深度解读基带芯片,带你观测基带芯片的“大脑”

    深度解读基带芯片,带你观测基带芯片的“大脑”

    芯片是非常重要的电子产品,可以说,在智能设备中,芯片充当了大脑的角色。芯片技术的高低,在一定程度上反映了国家制造、创新水平。上篇芯片文章中,我们对基带芯片和射频芯片的区别有所阐述。为增进大家对基带芯片的认识,本文将对基带芯片的处理器结构予以介绍。如果你对芯片相关内容具有兴趣,不妨继续往下阅读哦。 手机的控制芯片有很多,基带芯片只是其中一部分,主要含两个部分,一个部分是射频部分,就信息发送和接收部分,一个部分是基带部分,就是信息的处理。 合起来基带芯片就是将手机的信息处理后通过射频部分发射到基站,再把基站的信号通过射频部分接收后处理完再传递给手机。 必须说明的是:早期的基带芯片一般没有音频信号的编译(编码解码)功能,也没有视频信息的处理功能。而目前的芯片,大都集成了这些功能。甚至,为了进一步简化设计,这些编译电路所需要的电源管理电路也日益集成于其中。但是,为了保证电路的稳定性和抗干扰性以及个性化设计的要求,信号的功率放大电路尚未集成于此,而是由另外芯片独立完成。 那么,基带芯片的处理器结构是怎样的呢? 常用的基带芯片大多采用基于ARM的微处理器,ARM7TDMI是低端的ARM芯核,它所使用的电路技术能使它稳定地在低于5V的电源下工作,可采用16/32位指令实现8/16/32位数据格式,具有高的指令吞吐量、良好的实时中断响应、小的处理器宏单元ARM7能高效的运行移动电话软件。以ARM7TDMI为例: 控制核ARM7TDMI,采用0.35um制造工艺。包括一个ARM7 32位RISC微处理核;1个Thumb能将16bit指令解压为32bit指令;1个快速乘法器,一个输入校验断路器(ICEbreaker)模块。ICEbreaker模块给控制核提供单片内集成调试(debug)支持,当控制器停在程序断点时,有权访问控制器的全部内容及控制器可访问的全部地址空间。通过JTAG同步串联连接,信息随后送给计算机主机用于显示。 ARM可访问的地址空间由存储器管理单元(MMU)控制。MMU负责提供片选,控制等待状态及ARM产生的全部访问数据宽度(8bit/16bit/32bit)。MMU支持外部8bit或16bit长度的程序与数据存储器,外部ROM字宽由程序存储器尺寸pin指示,外部RAM则由寄存器指示。MMU管理ARMT状态变化;工作到睡眠由ARM7软件实现,睡眠到唤醒由中断或复位实现;MMU分配被要求的外部系统总线给DSP。 中断控制寄存器是存储器的映射,它允许隐藏与清除中断,配置由中断源及由ARM产生的中断信号FIQ,IRQ之间的映射。一共有10个中断源;外部设备中断、DSP产生的中断、SIM I/F中断(要求与SIM卡交换读写字)、VART1。2中断(要求与数据终端设备交换读写字节),按键扫描中断(指示按键连通或断开),TDMA帧中断1,TDMA帧中断2,OS记号,RTC警报。 Boot ROM内含ARM与USC(Universal system connector)系统串口的基本通信代码,ROM代码用于初始化MCU系统,而且能通过一个简单的通信方案实现往内部SRAM下载更有效的通信协议。 ARM7外围设备是存储器的映射并能被灵活驱动。IM I/F驱动SIM卡,并且执行部分ETSI Rec11。11接口协议;复位序列,Card on sequence,card off sequence, byte or multi-byte transfer。16个通用输入输出(GPIO)线可用,但它们的使用有所限制,因为它们常与其它信号(如地址线、串口线等)复用,故要计算实际可用的GPIO数量。脉冲产生器产生软件可调的PWM输出频率及占空比。特殊EEPROM串口总线确保当ARMT串接EEPROM时不会降低处理速度。GPSI(General purpose serial Interface)允许连接多种设备。 键盘扫描识别25个键的状态。RTC模块能提供一个带报警提示的全天完整的时间时钟,并带100年日历(注;不同的基带芯片该项功能有差异,有的芯片的RTC只是一个32位计数器,需要通过软件计算年月日时分秒)。 以上便是此次小编带来的“芯片”相关内容,通过本文,希望大家对基带芯片的处理器结构具备一定的了解哦。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!

    时间:2021-04-14 关键词: 芯片 基带芯片 指数

  • 什么是基带芯片?什么是射频芯片?二者有何关系?

    什么是基带芯片?什么是射频芯片?二者有何关系?

    芯片是重要的电子产品,芯片技术的高低决定了我们的手机、电脑等电子产品的性能。为增进大家对芯片的认识,本文将介绍什么是基带芯片、什么是射频芯片以及基带芯片和射频芯片之间的关系。如果你对芯片具有兴趣,不妨继续往下阅读哦。 一、什么是基带芯片 基带芯片是用来合成即将发射的基带信号,或对接收到的基带信号进行解码。具体地说,就是发射时,把音频信号编译成用来发射的基带码;接收时,把收到的基带码解译为音频信号。同时,也负责地址信息(手机号、网站地址)、文字信息(短讯文字、网站文字)、图片信息的编译。 基带芯片可分为五个子块:CPU处理器、信道编码器、数字信号处理器、调制解调器和接口模块。 CPU处理器:对整个移动台进行控制和管理,包括定时控制、数字系统控制、射频控制、省电控制和人机接口控制等。若采用跳频,还应包括对跳频的控制。同时,CPU处理器完成GSM终端所有的软件功能,即GSM通信协议的layer1(物理层)、layer2(数据链路层)、layer3(网络层)、MMI(人-机接口)和应用层软件。 信道编码器:主要完成业务信息和控制信息的信道编码、加密等,其中信道编码包括卷积编码、FIRE码、奇偶校验码、交织、突发脉冲格式化。 数字信号处理器:主要完成采用Viterbi算法的信道均衡和基于规则脉冲激励-长期预测技术(RPE-LPC)的语音编码/解码。 调制解调器:主要完成GSM系统所要求的高斯最小移频键控(GMSK)调制/解调方式。 接口模块:包括模拟接口、数字接口以及人机接口三个子块; 二、什么是射频芯片 射频(RF)是Radio Frequency的缩写,表示可以辐射到空间的电磁频率,频率范围从300kHz~300GHz之间。射频就是射频电流,简称RF,它是一种高频交流变化电磁波的简称。每秒变化小于1000次的交流电称为低频电流,大于10000次的称为高频电流,而射频就是这样一种高频电流。射频(300K-300G)是高频(大于10K)的较高频段,微波频段(300M-300G)又是射频的较高频段。 而射频芯片指的就是将无线电信号通信转换成一定的无线电信号波形, 并通过天线谐振发送出去的一个电子元器件。射频芯片架构包括接收通道和发射通道两大部分。对于现有的GSM和TD-SCDMA模式而言,终端增加支持一个频段,则其射频芯片相应地增加一条接收通道,但是否需要新增一条发射通道则视新增频段与原有频段间隔关系而定。对于具有接收分集的移动通信系统而言,其射频接收通道的数量是射频发射通道数量的两倍。这意味着终端支持的LTE频段数量越多,则其射频芯片接收通道数量将会显著增加。例如,若新增 M个GSM或TD-SCDMA模式的频段,则射频芯片接收通道数量会增加M条;若新增M个TD-LTE或FDD LTE模式的频段,则射频芯片接收通道数量会增加2M条。LTE频谱相对于2G/3G较为零散,为通过FDD LTE实现国际漫游,终端需支持较多的频段,这将导致射频芯片面临成本和体积增加的挑战。 为减小芯片面积、降低芯片成本,可以在射频芯片的一个接收通道支持相邻的多个频段和多种模式。当终端需要支持这一个接收通道包含的多个频段时,需要在射频前端增加开关器件来适配多个频段对应的接收SAW滤波器或双工器,这将导致射频前端的体积和成本提升,同时开关的引入还会降低接收通道的射频性能。因此,如何平衡射频芯片和射频前端在体积、成本上的矛盾,将关系到整个终端的体积和成本。 三、二者的关系 基带芯片可以认为是包括调制解调器,但不止于调制解调器,还包括信道编解码、信源编解码,以及一些信令处理。而射频芯片,则可看做是最简单的基带调制信号的上变频和下变频。 所谓调制,就是把需要传输的信号,通过一定的规则调制到载波上面让后通过无线收发器(RF Transceiver)发送出去的工程,解调就是相反的过程。 以上便是此次小编带来的“芯片”相关内容,通过本文,希望大家对基带芯片、射频芯片以及基带芯片和射频芯片的区别具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!

    时间:2021-04-14 关键词: 芯片 基带芯片 指数

  • 光耦使用经验贴,大佬传授光耦实用技巧

    光耦使用经验贴,大佬传授光耦实用技巧

    光耦,也就是光耦合器,在电路中应用广泛。上篇文章中,小编介绍了光耦的技术参数,但这只是理论部分。如果想要掌握光耦的应用,还需自己动手尝试。为增进大家对光耦的认识,本文将介绍光耦的实用技巧。如果你对光耦具有兴趣,不妨继续往下阅读哦。 光耦以光信号为媒介来实现电信号的耦合与传递,输入与输出在电气上完全隔离,具有抗干扰性能强的特点。对于既包括弱电控制部分,又包括强电控制部分的工业应用测控系统,采用光耦隔离可以很好地实现弱电和强电的隔离,达到抗干扰目的。但是,使用光耦隔离需要考虑以下几个问题: ①光耦直接用于隔离传输模拟量时,要考虑光耦的非线性问题; ②光耦隔离传输数字量时,要考虑光耦的响应速度问题; ③如果输出有功率要求的话,还得考虑光耦的功率接口设计问题。 1:光电耦合器非线性的克服 光电耦合器的输入端是发光二极管,因此,它的输入特性可用发光二极管的伏安特性来表示;输出端是光敏三极管,因此光敏三极管的伏安特性就是它的输出特性。由此可见,光电耦合器存在着非线性工作区域,直接用来传输模拟量时精度较差。 解决方法之一,利用2个具有相同非线性传输特性的光电耦合器,T1和T2,以及2个射极跟随器A1和A2组成。如果T1和T2是同型号同批次的光电耦合器,可以认为他们的非线性传输特性是完全一致的,即K1(I1)=K2(I1),则放大器的电压增益G=Uo/U1=I3R3/I2R2=(R3/R2)[K1(I1)/K2(I1)]=R3/R2。由此可见,利用T1和T2电流传输特性的对称性,利用反馈原理,可以很好的补偿他们原来的非线性。 另一种模拟量传输的解决方法,就是采用VFC(电压频率转换)方式。现场变送器输出模拟量信号(假设电压信号),电压频率转换器将变送器送来的电压信号转换成脉冲序列,通过光耦隔离后送出。在主机侧,通过一个频率电压转换电路将脉冲序列还原成模拟信号。此时,相当于光耦隔离的是数字量,可以消除光耦非线性的影响。这是一种有效、简单易行的模拟量传输方式。 当然,也可以选择线性光耦进行设计,如精密线性光耦TIL300,高速线性光耦6N135/6N136。线性光耦一般价格比普通光耦高,但是使用方便,设计简单;随着器件价格的下降,使用线性光耦将是趋势。 2:提高光电耦合器的传输速度 当采用光耦隔离数字信号进行控制系统设计时,光电耦合器的传输特性,即传输速度,往往成为系统最大数据传输速率的决定因素。在许多总线式结构的工业测控系统中,为了防止各模块之间的相互干扰,同时不降低通讯波特率,我们不得不采用高速光耦来实现模块之间的相互隔离。常用的高速光耦有6N135/6N136,6N137/6N138。但是,高速光耦价格比较高,导致设计成本提高。这里介绍两种方法来提高普通光耦的开关速度。由于光耦自身存在的分布电容,对传输速度造成影响,光敏三极管内部存在着分布电容Cbe和Cce。由于光耦的电流传输比较低,其集电极负载电阻不能太小,否则输出电压的摆幅就受到了限制。但是,负载电阻又不宜过大,负载电阻RL越大,由于分布电容的存在,光电耦合器的频率特性就越差,传输延时也越长。 用2只光电耦合器T1,T2接成互补推挽式电路,可以提高光耦的开关速度。当脉冲上升为“1”电平时,T1截止,T2导通。相反,当脉冲为“0”电平时,T1导通,T2截止。这种互补推挽式电路的频率特性大大优于单个光电耦合器的频率特性。 此外,在光敏三极管的光敏基极上增加正反馈电路,这样可以大大提高光电耦合器的开关速度。通过增加一个晶体管,四个电阻和一个电容,实验证明,这个电路可以将光耦的最大数据传输速率提高10倍左右。 3:光耦的功率接口设计 微机测控系统中,经常要用到功率接口电路,以便于驱动各种类型的负载,如直流伺服电机、步进电机、各种电磁阀等。这种接口电路一般具有带负载能力强、输出电流大、工作电压高的特点。工程实践表明,提高功率接口的抗干扰能力,是保证工业自动化装置正常运行的关键。 就抗干扰设计而言,很多场合下,既能采用光电耦合器隔离驱动,也能采用继电器隔离驱动。一般情况下,对于那些响应速度要求不很高的启停操作,我们采用继电器隔离来设计功率接口;对于响应时间要求很快的控制系统,采用光电耦合器进行功率接口电路设计。这是因为继电器的响应延迟时间需几十ms,而光电耦合器的延迟时间通常都在10us之内,同时采用新型、集成度高、使用方便的光电耦合器进行功率驱动接口电路设计,可以达到简化电路设计,降低散热的目的。 对于交流负载,可以采用光电可控硅驱动器进行隔离驱动设计,例如TLP541G,4N39。光电可控硅驱动器,特点是耐压高,驱动电流不大,当交流负载电流较小时,可以直接用它来驱动。当负载电流较大时,可以外接功率双向可控硅。其中,R1为限流电阻,用于限制光电可控硅的电流;R2为耦合电阻,其上的分压用于触发功率双向可控硅。当需要对输出功率进行控制时,可以采用光电双向可控硅驱动器。 以上便是此次小编带来的“光耦”相关内容,通过本文,希望大家对光耦的实用技巧具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!

    时间:2021-04-12 关键词: 光电耦合器 光耦 指数

  • 了解光耦的必经之路,带你看光耦的技术参数

    了解光耦的必经之路,带你看光耦的技术参数

    在各种电路中,光耦得到了广泛的应用。原因在于,光耦能够通过光来传输电信号。上篇文章中,小编介绍了光耦的分类以及使用原则。为增进大家对光耦的了解,本文将详细介绍光耦的技术参数。如果你对光耦具有兴趣,不妨继续往下阅读哦。 一、输入特性 光耦合器的输入特性实际也就是其内部发光二极管的特性。常见的参数有: 1. 正向工作电压Vf(Forward Voltage)Vf是指在给定的工作电流下,LED本身的压降。常见的小功率LED通常以If=20mA来测试正向工作电压,当然不同的LED,测试条件和测试结果也会不一样。 2. 反向电压Vr(Reverse Voltage ) 是指LED所能承受的最大反向电压,超过此反向电压,可能会损坏LED。在使用交流脉冲驱动LED时,要特别注意不要超过反向电压。 3. 反向电流Ir(Reverse Current) 通常指在最大反向电压情况下,流过LED的反向电流。 4. 允许功耗Pd(Maximum Power Dissipation) LED所能承受的最大功耗值。超过此功耗,可能会损坏LED。 5. 中心波长λp(Peak Wave Length) 是指LED所发出光的中心波长值。波长直接决定光的颜色,对于双色或多色LED,会有几个不同的中心波长值。 6. 正向工作电流If(Forward Current) If是指LED正常发光时所流过的正向电流值。不同的LED,其允许流过的最大电流也会不一样。 7. 正向脉冲工作电流Ifp(Peak Forward Current) Ifp是指流过LED的正向脉冲电流值。为保证寿命,通常会采用脉冲形式来驱动LED,通常LED规格书中给中的Ifp是以0.1ms脉冲宽度,占空比为1/10的脉冲电流来计算的。 二、输出特性 光耦合器的输出特性实际也就是其内部光敏三极管的特性,与普通的三极管类似。常见的参数有: 1. 集电极电流Ic(Collector Current) 光敏三极管集电极所流过的电流,通常表示其最大值 2. 集电极-发射极电压Vceo(C-E Voltage) 集电极-发射极所能承受的电压。 3. 发射极-集电极电压Veco(E-C Voltage) 发射极-集电极所能承受的电压 4. 反向截止电流Iceo 5. C-E饱和电压Vce(sat)(C-E SaturaTIon Voltage) 三、传输特性 1.电流传输比CTR(Current Transfer Radio) 2.上升时间Tr (Rise TIme)& 下降时间Tf(Fall TIme) 其它参数诸如工作温度、耗散功率等不再一一敷述。 四、隔离特性 1.入出间隔离电压Vio(IsolaTIon Voltage) 光耦合器输入端和输出端之间绝缘耐压值。 2.入出间隔离电容Cio(Isolation Capacitance): 光耦合器件输入端和输出端之间的电容值 3.入出间隔离电阻Rio:(Isolation Resistance) 半导体光耦合器输入端和输出端之间的绝缘电阻值。光耦合器的技术参数主要有发光二极管正向压降VF、正向电流IF、电流传输比CTR、输入级与输出级之间的绝缘电阻、集电极-发射极反向击穿电压V(BR)CEO、集电极-发射极饱和压降VCE(sat)。此外,在传输数字信号时还需考虑上升时间、下降时间、延迟时间和存储时间等参数。 电流传输比是光耦合器的重要参数,通常用直流电流传输比来表示。当输出电压保持恒定时,它等于直流输出电流IC与直流输入电流IF的百分比。 使用光电耦合器主要是为了提供输入电路和输出电路间的隔离,在设计电路时,必须遵循下列原则:所选用的光电耦合器件必须符合国内和国际的有关隔离击穿电压的标准;由英国埃索柯姆(Isocom)公司、美国FAIRCHILD生产的4N××系列(如4N25、4N26、4N35)光耦合器,在国内应用地十分普遍。可以用于单片机的输出隔离;所选用的光耦器件必须具有较高的耦合系数。 以下为光电耦合器的常用参数: 反向电流IR:在被测管两端加规定反向工作电压VR时,二极管中流过的电流。 反向击穿电压VBR:被测管通过的反向电流IR为规定值时,在两极间所产生的电压降。 正向压降VF:二极管通过的正向电流为规定值时,正负极之间所产生的电压降。 正向电流IF:在被测管两端加一定的正向电压时二极管中流过的电流。结电容CJ:在规定偏压下,被测管两端的电容值。 反向击穿电压V(BR)CEO:发光二极管开路,集电极电流IC为规定值,集电极与发射集间的电压降。 输出饱和压降VCE(sat):发光二极管工作电流IF和集电极电流IC为规定值时,并保持IC/IF≤CTRmin时(CTRmin在被测管技术条件中规定)集电极与发射极之间的电压降。 反向截止电流ICEO:发光二极管开路,集电极至发射极间的电压为规定值时,流过集电极的电流为反向截止电流。 电流传输比CTR:输出管的工作电压为规定值时,输出电流和发光二极管正向电流之比为电流传输比CTR。 脉冲上升时间tr,下降时间tf:光耦合器在规定工作条件下,发光二极管输入规定电流IFP的脉冲波,输出端管则输出相应的脉冲波,从输出脉冲前沿幅度的10%到90%,所需时间为脉冲上升时间tr。从输出脉冲后沿幅度的90%到10%,所需时间为脉冲下降时间tf。 传输延迟时间tPHL,tPLH:从输入脉冲前沿幅度的50%到输出脉冲电平下降到1.5V时所需时间为传输延迟时间tPHL。从输入脉冲后沿幅度的50%到输出脉冲电平上升到1.5V时所需时间为传输延迟时间tPLH。 入出间隔离电容CIO:光耦合器件输入端和输出端之间的电容值。入出间隔离电阻RIO:半导体光耦合器输入端和输出端之间的绝缘电阻值。入出间隔离电压VIO:光耦合器输入端和输出端之间绝缘耐压值。 以上便是此次小编带来的“光耦”相关内容,通过本文,希望大家对光耦的技术参数具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!

    时间:2021-04-12 关键词: 技术参数 光耦 指数

  • 光耦有哪些分类?光耦的使用原则是什么?

    光耦有哪些分类?光耦的使用原则是什么?

    光耦已是常用器件,通过光耦,我们能够以光为媒介来传输电信号,传输速度进一步加快。为增进大家对光耦的认识,本文将基于两点介绍光耦:1.光耦的分类、2.光耦的使用原则。如果你对光耦具有兴趣,不妨继续往下阅读哦。 一、光耦的分类 光电耦合器分为两种:一种为非线性光耦,另一种为线性光耦。非线性光耦的电流传输特性曲线是非线性的,这类光耦适合于开关信号的传输,不适合于传输模拟量。常用的4N系列光耦属于非线性光耦。 线性光耦的电流传输特性曲线接近直线,并且小信号时性能较好,能以线性特性进行隔离控制。常用的线性光耦是PC817A—C系列。 开关电源中常用的光耦是线性光耦。如果使用非线性光耦,有可能使振荡波形变坏,严重时出现寄生振荡,使数千赫的振荡频率被数十到数百赫的低频振荡依次为号调制。由此产生的后果是对彩电,彩显,VCD,DCD等等,将在图像画面上产生干扰。同时电源带负载能力下降。在彩电,显示器等开关电源维修中如果光耦损坏,一定要用线性光耦代换。常用的4脚线性光耦有PC817A----C。PC111 TLP521等常用的六脚线性光耦有:LP632 TLP532 PC614 PC714 PS2031等。常用的4N25 4N26 4N35 4N36是不适合用于开关电源中的,因为这4种光耦均属于非线性光耦。 由于光电耦合器的品种和类型非常多,在光电子DATA手册中,其型号超过上千种,通常可以按以下方法进行分类: ⑴按光路径分,可分为外光路光电耦合器(又称光电断续检测器)和内光路光电耦合器。外光路光电耦合器又分为透过型和反射型光电耦合器。 ⑵按输出形式分,可分为: a、光敏器件输出型,其中包括光敏二极管输出型,光敏三极管输出型,光电池输出型,光可控硅输出型等。 b、NPN三极管输出型,其中包括交流输入型,直流输入型,互补输出型等。 c、达林顿三极管输出型,其中包括交流输入型,直流输入型。 d、逻辑门电路输出型,其中包括门电路输出型,施密特触发输出型,三态门电路输出型等。 e、低导通输出型(输出低电平毫伏数量级)。 f、光开关输出型(导通电阻小于10Ω)。 g、功率输出型(IGBT/MOSFET等输出)。 h, 光敏电阻型(通过光,控制输出电阻, 输出电阻可以双向, 可以交流, 改变了PC817之类只能一个方向的不便, 纯电阻材料, 无极性输出, 如LCR-0202) 二、光耦的使用原则 1、光耦合器的电流传输比(CTR)的允许范围是50%~200%。这是因为当CTR《50%时,光耦中的LED就需要较大的工作电流(IF》5.0mA),才能正常控制单片开关电源IC的占空比,这会增大光耦的功耗。若CTR》200%,在启动电路或者当负载发生突变时,有可能将单片开关电源误触发,影响正常输出。2、若用放大器电路去驱动光电耦合器,必须精心设计,保证它能够补偿耦合器的温度不稳定性和漂移。 2、推荐采用线性光耦合器,其特点是CTR值能够在一定范围内做线性调整。 上述使用的光电耦合器时工作在线性方式下,在光电耦合器的输入端加控制电压,在输出端会成比例地产生一个用于进一步控制下一级电路的电压,是单片机进行闭环调节控制,对电源输出起到稳压的作用。 为了彻底阻断干扰信号进入系统,不仅信号通路要隔离,而且输入或输出电路与系统的电源也要隔离,即这些电路分别使用相互独立的隔离电源。对于共模干扰,采用隔离技术,即利用变压器或线性光电耦合器,将输入地与输出地断开,使干扰没有回路而被抑制。在开关电源中,光电耦合器是一个是非常重要的外围器件,设计者可以充分的利用它的输入输出隔离作用对单片机进行抗干扰设计,并对变换器进行闭环稳压调节。 以上便是此次小编带来的“光耦”相关内容,通过本文,希望大家对光耦的分类以及光耦的使用原则具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!

    时间:2021-04-12 关键词: 光耦 使用原则 指数

首页  上一页  1 2 3 4 5 6 7 8 9 10 下一页 尾页
发布文章

技术子站

更多

项目外包