当前位置:首页 > 模拟电源
  • 关于数字电源取代模拟电源的决定因素,你知道有哪些吗?

    关于数字电源取代模拟电源的决定因素,你知道有哪些吗?

    人类社会的进步离不开社会各界的努力,而各种电子产品的升级离不开设计师的努力。实际上,许多人不了解电子产品的组成,例如数字电源。 为了克服现代电源的复杂性,已经提出了数字开关电源。它实现了数字和模拟技术的集成,具有很强的适应性和灵活性,并具有直接监视,处理和适应系统条件的能力。满足几乎所有电源要求。数字电源还可以通过远程诊断确保连续的系统可靠性,并实现故障管理,过压(电流)保护和自动冗余等功能。由于数字电源的高度集成,系统的复杂度不会随功能的增加而增加太多,并且外围组件很少(数字电源的快速响应能力也可以减少对输出滤波电容器的需求),减小电路板面积,从而简化了设计和制造过程。 数字控制可以解决此问题,因为它具有比模拟控制更好的性能,更灵活,并且更易于在复杂设计中使用。但是,以下总结的六个方面是决定数字电源替代模拟电源的主要因素。 (1)瞬态响应:控制机制极大地影响了系统的瞬态响应。例如,与电流模式相比,磁滞控制器的瞬态响应可能会非常不同。每种控制模式都有优点和缺点。数字解决方案使您可以从一种模式无缝切换到另一种模式,以提供最佳的瞬态响应。尽管模拟解决方案可以提供良好的点解决方案,但是很少有足够的静态工作条件来实现您所设想的点解决方案。 (2)调整精度:一般来说,调整精度是根据线路电压,负载和温度来定义的,因为这些条件都会影响调整精度。数字控制器可以监视这些条件并采取控制措施,以优化整个工作条件范围。 (3)稳定性:与模拟解决方案(零和零更好)相比,数字控制可以提供更好的补偿,因此稳定性控制要好得多。此外,补偿可以随着条件的变化而改变,因此系统可以在各种条件下达到最佳稳定性。模拟控制器的补偿是固定的,而数字控制可以提供可调甚至自适应的补偿。 (4)故障响应:数字电源控制器提供了大量的故障响应选项。每种类型的故障都有其独特的响应特性,可以根据用户的需求进行调整。模拟控制器通常只有固定的故障响应(例如电源故障/间歇性/过载),用户只能选择使用还是不使用它。数字控制还可以提供滤波功能,以减少错误故障的可能性。 (5)效率:许多控制结果都会影响效率,包括空载时间,开关频率,栅极驱动电平,二极管仿真,加法和缺乏相等性。考虑到这些因素,由数字控制提供的当前数字控制算法已在整个工作条件范围内进行了优化。因此,在特定的工作点,您可以将模拟控制器调整到非常高的效率,而数字控制器则可以优化所有工作点。 (6)可靠性:减少组件数量和降低工作温度(通过效率优化)是数字电源提高系统可靠性的两种方法。此外,灵活的故障响应功能和检测组件参数微小变化的能力可以大大减少停机时间。 通常,对于大多数简单的设计和基本要求,数字控制可能太大。当然,数字电源控制的灵活性足以应付这些简单的应用,其功能可能超出实际需求。因此,数字控制器显然是一种流行的解决方案。 另外,数字电源控制通常比模拟控制器具有更高的集成度。但是,集成度不足以满足设计重用和灵活性的要求。然而,数字电源控制器可以在没有其他电路的情况下应用于各种应用。从这个意义上讲,该技术的灵活性远远优于传统的模拟技术。 本文只能带领大家对数字电源有了初步的了解,对大家入门会有一定的帮助,同时需要不断总结,这样才能提高专业技能,也欢迎大家来讨论文章的一些知识点。

    时间:2021-03-06 关键词: 数字电源 模拟电源 瞬态响应

  • 你知道常见的数字电源和模拟电源的不同点有哪些吗?

    你知道常见的数字电源和模拟电源的不同点有哪些吗?

    在生活中,你可能接触过各种各样的电子产品,那么你可能并不知道它的一些组成部分,比如它可能含有的数字电源和模拟电源,那么接下来让小编带领大家一起学习数字电源和模拟电源。 为了克服现代电源的复杂性,提出了数字开关电源。它实现了数字和模拟技术的集成,提供了强大的适应性和灵活性,并具有直接监视,处理和适应系统条件的能力。满足几乎所有功率要求。数字电源还可以通过远程诊断确保连续的系统可靠性,并实现故障管理,过压(电流)保护和自动冗余等功能。 由于数字电源的高度集成,系统的复杂性不会随着功能的增加而增加太多,并且外围组件很少(数字电源的快速响应能力还可以减少对输出滤波电容器的需求),减少了电路板面积,简化了设计和制造过程。同时,数字电源的自动诊断和调整功能使调试和维护更加容易。 模拟开关电源已经使用了数十年。它的设计是众所周知的,并且有许多优秀的教科书,仿真工具包,应用手册和研讨会。许多制造商还提供了大量的低成本集成电路,这些集成电路封装了许多功能,从集成的栅极驱动器和开关到电流检测和保护。简而言之,数字电源将使模拟电源冗余的想法太牵强。 数字控制具有模拟世界所不具备的某些功能,这使得开关电源设计具有迄今为止尚无法实现的功能。与工程的其他方面一样,这些好处是有代价的,并且必须根据这些优点是否大于所带来的问题来确定是否选择数字解决方案。 数字电源易于集成。由于数字电路采用二进制系统,因此代码符号表具有0和l两种。因此,只要数字1电路中存在分别表示0和1的不同状态,数字电路的基本单元就非常简单,并且对组件的要求也不严格,并且允许使用电路参数具有更大的离散度,这有利于将许多基本单元集成在同一硅芯片上以进行批量生产。 数字控制经常提到的优点之一是,它允许删除控制器中的一些无源组件,从而消除了组件公差和老化问题。另外,该优点在某些应用中具有更大的价值和深远的意义。例如,在某些多回路设计中,数字处理器的使用可以将控制功能集中在单个设备中,从而实现诸如电源轨排序,裕量设置,负载共享,相位补偿以及故障预测的软件实现之类的功能。 。 该数字电源管理芯片易于在多相和同步信号下执行多相并行应用。它具有出色的可扩展性和可重复性,可轻松实现负载电流共享,降低EMI,并简化了滤波器电路设计。数字控制的灵活性能将电源组合成串联或并联模型,以形成虚拟电源。此外,数字电源的智能特性可确保在各种输入电压和负载点下获得最佳的电源转换效率。 当然,在使用数字电源之前,必须考虑一些问题。数字控制器的PCB板空间必须包括MCU,晶体时钟,保护/滤波和ADC引脚缓冲。此外,对PWM精度和ADC动态范围也有一些限制。尽管如此,某些最新的数字电源专用MCU产品仍可以解决这些问题。 与模拟控制技术相比,数字技术的独特优势还包括在线可编程性,更高级的控制算法,更好的效率优化,更高的操作精度和可靠性以及出色的系统管理和互连功能。数字电源在模拟电源中不存在常见的错误,老化(包括模拟设备的精度),温度影响,漂移,补偿和其他问题。它不需要调整,具有良好的可靠性,并且可以获得一致且稳定的控制参数。数字电源的工作特性使其更易于实现高级控制算法,例如非线性控制(可以提高电源的瞬态响应能力)和多环控制;更新固件可以实现新的拓扑和控制算法,并且更改电源参数也无需更改板上的组件。 相信通过阅读上面的内容,大家对数字电源和模拟电源有了初步的了解,同时也希望大家在学习过程中,做好总结,这样才能不断提升自己的设计水平。

    时间:2021-03-06 关键词: 电压 数字电源 模拟电源

  • 在PCB设计中数字电源、模拟电源、数字地、模拟地的处理方法

    在PCB设计中数字电源、模拟电源、数字地、模拟地的处理方法

    通常在电子系统设计中,为了少走弯路和节省时间,应充分考虑并满足抗干扰性 的要求,避免在设计完成后再去进行抗干扰的补救措施。 AVCC:模拟部分电源供电;AGND:模拟地 DVCC:数字部分电源供电;DGND:数字地 这样区分是为了将数字部分和模拟部分隔离开,减小数字部分带给模拟电路部分的干扰。但这两部分不可能完全隔离开,数字部分和模拟部分之间是有连接的所以,在供电时至少地应该是在一起的,所以 AGND和DGND之间要用0欧姆的电阻或磁珠或电感连接起来,这样的一点连接就能够减小干扰。同样,如果两部分的供电电源相同也应该采用这样的接法。 形成干扰的基本要素有三个: (1)干扰源,指产生干扰的元件、设备或信号,用数学语言描述如下:du/dt, di/dt大的地方就是干扰源。如:雷电、继电器、可控硅、电机、高频时钟等都可 能成为干扰源。 (2)传播路径,指干扰从干扰源传播到敏感器件的通路或媒介。典型的干扰传 播路径是通过导线的传导和空间的辐射。 (3)敏感器件,指容易被干扰的对象。如:A/D、D/A变换器,单片机,数字IC, 弱信号放大器等。 抗干扰设计的基本原则是:抑制干扰源,切断干扰传播路径,提高敏感器件的 抗干扰性能。 1 抑制干扰源 抑制干扰源就是尽可能的减小干扰源的du/dt,di/dt。这是抗干扰设计中最优 先考虑和最重要的原则,常常会起到事半功倍的效果。 减小干扰源的du/dt主要是通过在干扰源两端并联电容来实现。减小干扰源的 di/dt则是在干扰源回路串联电感或电阻以及增加续流二极管来实现。 抑制干扰源的常用措施如下: (1)继电器线圈增加续流二极管,消除断开线圈时产生的反电动势干扰。仅加 续流二极管会使继电器的断开时间滞后,增加稳压二极管后继电器在单位时间内可动作更多的次数。 (2)在继电器接点两端并接火花抑制电路(一般是RC串联电路,电阻一般选几K 到几十K,电容选0.01uF),减小电火花影响。 (3)给电机加滤波电路,注意电容、电感引线要尽量短。 (4)电路板上每个IC要并接一个0.01μF~0.1μF高频电容,以减小IC对电源的 影响。注意高频电容的布线,连线应靠近电源端并尽量粗短,否则,等于增大了电容的等效串联电阻,会影响滤波效果。 (5)布线时避免90度折线,减少高频噪声发射。 (6)可控硅两端并接RC抑制电路,减小可控硅产生的噪声(这个噪声严重时可能会把可控硅击穿的)。 按干扰的传播路径可分为传导干扰和辐射干扰两类。 所谓传导干扰是指通过导线传播到敏感器件的干扰。高频干扰噪声和 有用信号的频带不同,可以通过在导线上增加滤波器的方法切断高频干扰 噪声的传播,有时也可加隔离光耦来解决。电源噪声的危害最大, 要特别注意处理。 所谓辐射干扰是指通过空间辐射传播到敏感器件的干扰。 一般的解决方法是增加干扰源与敏感器件的距离,用地线把它们隔离和在敏感器件上加蔽罩。 2 切断干扰传播路径的常用措施如下: (1)充分考虑电源对单片机的影响。电源做得好,整个电路的抗干扰就解决了一大半。许多单片机对电源噪声很敏感, 要给单片机电源加滤波电路或稳压器,以减小电源噪声对单片的干扰。比如,可以利用磁珠和电容组成π形滤波电路,当然条件要求不高时也可用100Ω电阻代替 磁珠。 (2)如果单片机的I/O口用来控制电机等噪声器件,在I/O口与噪声源之间应加隔离(增加π形滤波电路)。 控制电机等噪声器件,在I/O口与噪声源之间应加隔离(增加π形滤波 电路)。 (3)注意晶振布线。晶振与单片机引脚尽量靠近,用地线把时钟区隔离起来,晶振外壳接地并固定。此措施可解决许多疑难问题。 (4)电路板合理分区,如强、弱信号,数字、模拟信号。尽可能把干扰源 (如电机,继电器)与敏感元件(如单片机)远离。 (5)用地线把数字区与模拟区隔离,数字地与模拟地要分离,最后在一点接于电源地。A/D、D/A芯片布线也以此为原则,厂家分配A/D、D/A芯片 引脚排列时已考虑此要求。 (6)单片机和大功率器件的地线要单独接地,以减小相互干扰。 大功率器件尽可能放在电路板边缘。 (7)在单片机I/O口,电源线,电路板连接线等关键地方使用抗干扰元件 如磁珠、磁环、电源滤波器,屏蔽罩,可显著提高电路的抗干扰性能。 3 提高敏感器件的抗干扰性能 提高敏感器件的抗干扰性能是指从敏感器件这边考虑尽量减少对干扰噪声 的拾取,以及从不 正常状态尽快恢复的方法。 提高敏感器件抗干扰性能的常用措施如下: (1)布线时尽量减少回路环的面积,以降低感应噪声。 (2)布线时,电源线和地线要尽量粗。除减小压降外,更重要的是降低耦 合噪声。 (3)对于单片机闲置的I/O口,不要悬空,要接地或接电源。其它IC的闲置 端在不改变系统 逻辑的情况下接地或接电源。 (4)对单片机使用电源监控及看门狗电路,如:IMP809,IMP706,IMP813,X25043,X25045 等,可大幅度提高整个电路的抗干扰性能。 (5)在速度能满足要求的前提下,尽量降低单片机的晶振和选用低速数字 电路。 (6)IC器件尽量直接焊在电路板上,少用IC座。 为了达到很好的抗干扰,于是我们常看到PCB板上有地分割的布线方式。但是也不是所有的数字电路和模拟电路混合都一定要进行地平面分割。因为这样分割是为了降低噪声的干扰。 理论:在数字电路中一般的频率会比模拟电路中的频率要高,而且它们本身的信号会跟地平面形成一个回流(因为在信号传输中,铜线与铜线之间存在着各种各样 的电感和分布电容),如果我们把地线混合在一起,那么这个回流就会在数字和模拟电路中相互串扰。而我们分开就是让它们只在自己本身内部形成一个回流。它们 之间只用一个零欧电阻或是磁珠连接起来就是因为原来它们就是同一个物理意义的地,现在布线把它们分开了,最后还应该把它们连接起来。 如何 分析它们是属于数字部分呢还是模拟部分?这个问题常常是我们在具体画PCB时得考滤的。我个人的看法是要判断一个元件是属于模拟的,还是数字的关键是看与 它相关的主要芯片是数字的还是模拟的。比如:电源它可能给模拟电路供电,那它就是模拟部分的,如果它是给单片机或是数据类芯片供电,那它就是数字的。当它 们是同一个电源时就需要用一个桥的方法把一个电源从另一个部分引过来。最典形的就是D/A了,它应该是一个一半是数字,一半是模拟的芯片。我认为如果能把 数字输入处理好后,剩下的就可以画到模拟部分去了。 模拟电路涉及弱小信号,但是数字电路门限电平较高,对电源的要求就比模拟电路低些。既有数字电路又有模拟电路的系统中,数字电路产生的噪声会影响模拟电路,使模拟电路的小信号指标变差,克服的办法是分开模拟地和数字地。 对于低频模拟电路,除了加粗和缩短地线之外,电路各部分采用一点接地是抑制地线干扰的最佳选择,主要可以防止由于地线公共阻抗而导致的部件之间的互相干扰。 而对于高频电路和数字电路,由于这时地线的电感效应影响会更大,一点接地会导致实际地线加长而带来不利影响,这时应采取分开接地和一点接地相结合的方式。 另外对于高频电路还要考虑如何抑制高频辐射噪声,方法是:尽量加粗地线,以降低噪声对地阻抗;满接地,即除传输信号的印制线以外,其他部分全作为地线。不要有无用的大面积铜箔。 地线应构成环路,以防止产生高频辐射噪声,但环路所包围面积不可过大,以免仪器处于强磁场中时,产生感应电流。但如果只是低频电路,则应避免地线环路。数字电源和模拟电源最好隔离,地线分开布置,如果有A/D,则只在此处单点共地。 低频中没有多大影响,但建议模拟和数字一点接地。高频时,可通过磁珠把模拟和数字地一点共地。 如果把模拟地和数字地大面积直接相连,会导致互相干扰。不短接又不妥,理由如上有四种方法解决此问题∶1、用磁珠连接;2、用电容连接;3、用电感连接;4、用0欧姆电阻连接。 磁珠的等效电路相当于带阻限波器,只对某个频点的噪声有显着抑制作用,使用时需要预先估计噪点频率,以便选用适当型号。对于频率不确定或无法预知的情况,磁珠不合。 电容隔直通交,造成浮地。 电感体积大,杂散参数多,不稳定。 0欧电阻相当于很窄的电流通路,能够有效地限制环路电流,使噪声得到抑制。电阻在所有频带上都有衰减作用(0欧电阻也有阻抗),这点比磁珠强。

    时间:2020-10-12 关键词: PCB 数字电源 模拟电源

  • 教你如何选择一个正确的电源模块!

    教你如何选择一个正确的电源模块!

    在电源设计中电源模块主要包括模拟电源、开关电源、数字电源,下面小编将逐一进行介绍,教你如何选择一个正确的电源模块! 模拟电源介绍 模拟电源:即变压器电源,通过铁芯、线圈来实现,线圈的匝数决定了两端的电压比,铁芯的作用是传递变化磁场,(我国)主线圈在50HZ频率下产生了变化的磁场,这个变化的磁场通过铁芯传递到副线圈,在副线圈里就产生了感应电压,于是变压器就实现了电压的转变。 模拟电源的缺点:线圈、铁芯本身是导体,那么它们在转化电压的过程中会由于自感电流而发热(损耗),所以变压器的效率很低,一般不会超过35%。 音响器材功放中变压器的应用:大功率功放需要变压器提供更多的功率输出,那么,只有通过线圈匝数的增加、铁芯体积的增大来实现,匝数和铁芯体积的增加就会加重其损耗,所以,大功率功放的变压器必须做的非常大,这样就会导致:笨重,发热量大。 开关电源介绍 开关电源:在电流进入变压器之前,通过晶体管的开关功能,将我们通常50HZ的电流频率提升到数万HZ,在这么高的频率下,磁场变化频率也达到几万HZ,那么,就可以减少线圈匝数、铁芯体积获得同样的电压转化比,由于线圈匝数、铁芯体积的减少,损耗大大降低,一般开关电源效率达到90%,而体积可以做的非常小,并且输出稳定,所以开关电源具有模拟电源难以达到的优点。(开关电源也有自己的不足,如输出电压有纹波及开关噪声,线性电源是没有的) 音响器材-功放中开关电源的应用:开关电源的描述过程中已经表明开关电源的优势,所以即使是大功率功放,开关电源一样可以做的很精细、小巧,目前国内的数字功放以深圳崔帕斯数字音响设备公司的数字功放最为领先,他们目前已经发展到T类纯数字功放,并且下一代S类功放也在研发中了,具体请参看如下资料: 数字电源介绍 在简单易用、参数变更要求不多的应用场合,模拟电源产品更具优势,因为其应用的针对性可以通过硬件固化来实现,而在可控因素较多、实时反应速度更快、 需要多个模拟系统电源管理的、复杂的高性能系统应用中,数字电源则具有优势。此外,在复杂的多系统业务中,相对模拟电源,数字电源是通过软件编程来实现多方面的应用,其具备的可扩展性与重复使用性使用户可以方便更改工作参数,优化电源系统。通过实时过电流保护与管理,它还可以减少外围器件的数量。 在复杂的多系统业务中,相对模拟电源,数字电源是通过软件编程来实现多方面的应用,其具备的可扩展性与重复使用性使用户可以方便更改工作参数,优化电源系统。通过实时过电流保护与管理,它还可以减少外围器件的数量。 数字电源有用DSP控制的,还有用MCU控制的。相对来讲,DSP控制的电源采用数字滤波方式,较MCU控制的电源更能满足复杂的电源需求、实时反应速度更快、电源稳压性能更好。 数字电源有什麽好处它首先是可编程的,比如通讯、检测、遥测等所有功能都可用软件编程实现。另外,数字电源具有高性能和高可靠性,非常灵活。 干扰:单片机中数字和模拟之间,因为数字信号是频谱很宽的脉冲信号,因此主要是数字部分对模拟部分的干扰很强;不仅一般都采用数字电源和模拟电源分开、二者之间用滤波器连接,在一些要求较高的场合,例如某些单片机内部的AD转换器进行AD转换时,常常要让数字部分进入休眠状态,绝大部分数字逻辑停止工作,以防止它们对模拟部分形成干扰。如果干扰严重,甚至可以分别用两个电源,一般用电感和电容隔离就行了. 也可以将整个板子上数字和模拟部分的电源分别联在一起,用分别的通路直接接到电源滤波电容的焊点上. 如果对抗干扰要求不高,也可以随便接在一起。

    时间:2020-09-21 关键词: 开关电源 数字电源 模拟电源

  • 数字电源和模拟电源的区别

    数字电源和模拟电源的区别

    现在从事电源设计的设计者众多,但是电源并不是像想象的那么好设计,如果你是个老手电源工程师,这个问题很简单,那么作为新人该何时何从,该怎么才能准确的辨别出他们的不同之处,又各自有什么专属特性呢?跟随小编一起涨知识! 什么是模拟电源 模拟电源:即变压器电源,通过铁芯、线圈来实现,线圈的匝数决定了两端的电压比,铁芯的作用是传递变化磁场,(我国)主线圈在50HZ频率下产生了变化的磁场,这个变化的磁场通过铁芯传递到副线圈,在副线圈里就产生了感应电压,于是变压器就实现了电压的转变。 模拟电源的缺点:线圈、铁芯本身是导体,那么它们在转化电压的过程中会由于自感电流而发热(损耗),所以变压器的效率很低,一般不会超过35%。 音响器材功放中变压器的应用:大功率功放需要变压器提供更多的功率输出,那么,只有通过线圈匝数的增加、铁芯体积的增大来实现,匝数和铁芯体积的增加就会加重其损耗,所以,大功率功放的变压器必须做的非常大,这样就会导致:笨重,发热量大。 什么是数字电源 在简单易用、参数变更要求不多的应用场合,模拟电源产品更具优势,因为其应用的针对性可以通过硬件固化来实现,而在可控因素较多、实时反应速度更快、 需要多个模拟系统电源管理的、复杂的高性能系统应用中,数字电源则具有优势。此外,在复杂的多系统业务中,相对模拟电源,数字电源是通过软件编程来实现多方面的应用,其具备的可扩展性与重复使用性使用户可以方便更改工作参数,优化电源系统。通过实时过电流保护与管理,它还可以减少外围器件的数量。 在复杂的多系统业务中,相对模拟电源,数字电源是通过软件编程来实现多方面的应用,其具备的可扩展性与重复使用性使用户可以方便更改工作参数,优化电源系统。通过实时过电流保护与管理,它还可以减少外围器件的数量。 数字电源有用DSP控制的,还有用MCU控制的。相对来讲,DSP控制的电源采用数字滤波方式,较MCU控制的电源更能满足复杂的电源需求、实时反应速度更快、电源稳压性能更好。 数字电源有什麽好处: 它首先是可编程的,比如通讯、检测、遥测等所有功能都可用软件编程实现。另外,数字电源具有高性能和高可靠性,非常灵活。 干扰:单片机中数字和模拟之间,因为数字信号是频谱很宽的脉冲信号,因此主要是数字部分对模拟部分的干扰很强;不仅一般都采用数字电源和模拟电源分开、二者之间用滤波器连接,在一些要求较高的场合,例如某些单片机内部的AD转换器进行AD转换时,常常要让数字部分进入休眠状态,绝大部分数字逻辑停止工作,以防止它们对模拟部分形成干扰。如果干扰严重,甚至可以分别用两个电源,一般用电感和电容隔离就行了。 也可以将整个板子上数字和模拟部分的电源分别联在一起,用分别的通路直接接到电源滤波电容的焊点上。 如果对抗干扰要求不高,也可以随便接在一起。 (1)如果不使用芯片的A/D或者D/A功能,可以不区分数字电源和模拟电源。 (2)如果使用了A/D或者D/A,还需考虑参考电源设计 总结:以上只是一些简单的介绍模拟电源,数字电源的区别,想成为工程师,当然要学习更多的东西,在业余时间多扎实理论知识,并在实践中不断积累经验。

    时间:2020-03-24 关键词: 电源设计 数字电源 模拟电源

  • 一些常见的电源地、信号地、数字地和模拟地的处理方式总结

    一些常见的电源地、信号地、数字地和模拟地的处理方式总结

    一般在我们的AD系统里面,都有非常明确的模拟电源/模拟地和数字电源/数字地,这些的处理相对比较重要。通常的系统中: 1、我们常用10~20欧姆电阻来做模拟电源和数字电源的隔离。当然,使用分组的隔离电源是最好的选择,但是成本相对较高。 2、处理模拟地和数字地时,最终使用1点接连的办法,这个连接点要选在PCB上的电荷平衡点,以防止出现电压差,这需要良好的PCB和模拟设计基础及经验。 3、使用PSRR较高的LDO,尽量避免使用DCDC和纹波超过300UV的电源稳压器件。当然,我们可以通过差分输入来减少来自电源的干扰。 4、良好的屏蔽罩同样可以减少外部空间电磁辐射对AD系统的影响,诸如雷达、手机辐射、紫外线等。 电源地主要是针对电源回路电流所走的路径而言的,一般来说电源地流过的电流较大,而信号地主要是针对两块芯片或者模块之间的通信信号的回流所流过的路径,一般来说信号地流过的电流很小,其实两者都是GND,之所以分开来说,是想让大家明白在布PCB板时要清楚地了解电源及信号回流各自所流过的路径,然后在布板时考虑如何避免电源及信号共用回流路径,如果共用的话,有可能会导致电源地上的大电流在信号地产生一个电压差(可以解释为:导线是有阻抗的,只是阻值很小,但如果所流过的电流较大时,也会在此导线上产生电位差,这也叫共阻抗干扰),使信号地的真实电位高于0V。信号地的电位较大时,有可能会使本来是高电平的信号被误判为低电平。 当然电源地本来就很不干净,这样做也可以避免由于干扰使信号误判。所以将电源地和信号地在布线时稍微注意一下,就可以。一般来说即使在一起也不会产生大的问题,因为数字电路的门限较高。除了正确进行接地设计、安装,还要正确进行各种不同信号的接地处理。控制系统中,大致有以下几种地线: (1)数字地:也叫逻辑地,是各种开关量(数字量)信号的零电位。 (2)模拟地:是各种模拟量信号的零电位。 (3)信号地:通常为传感器的地。 (4)交流地:交流供电电源的地线,这种地通常是产生噪声的地。 (5)直流地:直流供电电源的地。 (6)屏蔽地:也叫机壳地,为防止静电感应和磁场感应而设。 以上这些地线处理是系统设计、安装、调试中的一个重要问题。下面就接地问题提出一些看法: (1)控制系统宜采用一点接地。一般情况下,高频电路应就近多点接地,低频电路应一点接地。在低频电路中,布线和元件间的电感并不是什么大问题,然而接地形成的环路的干扰影响很大,因此,常以一点作为接地点;但一点接地不适用于高频,因为高频时,地线上具有电感,因而增加了地线阻抗,同时各地线之间又产生电感耦合。一般来说,频率在1MHz以下时可用一点接地;高于10MHz时,采用多点接地;在1~10MHz之间可用一点接地,也可用多点接地。 (2)交流地与信号地不能共用。由于在一段电源地线的两点间会有数mV甚至几V电压,对低电平信号电路来说,这是一个非常重要的干扰,因此必须加以隔离和防止。 (3)浮地与接地的比较。全机浮空即系统各个部分与大地浮置起来,这种方法简单,但整个系统与大地绝缘电阻不能小于50MΩ。这种方法具有一定的抗干扰能力,但一旦绝缘下降就会带来干扰。还有一种方法,就是将机壳接地,其余部分浮空。这种方法抗干扰能力强,安全可靠,但实现起来比较复杂。 (4)模拟地。模拟地的接法十分重要。为了提高抗共模干扰能力,对于模拟信号可采用屏蔽浮技术。对于具体模拟量信号的接地处理要严格按照操作手册上的要求设计。 (5)屏蔽地。在控制系统中为了减少信号中的电容耦合噪声,有利于准确检测和控制,对信号采用屏蔽措施是十分必要的。根据屏蔽目的不同,屏蔽地的接法也不一样。电场屏蔽解决分布电容问题,一般接大地;电磁场屏蔽主要避免雷达、电台等高频电磁场辐射干扰,利用低阻金属材料高导流而制成,可接大地。磁场屏蔽用以防磁铁、电机、变压器、线圈等磁感应,其屏蔽方法是用高导磁材料使磁路闭合,一般接大地为好。当信号电路是一点接地时,低频电缆的屏蔽层也应一点接地。如果电缆的屏蔽层接地点有一个以上时,将产生噪声电流,形成噪声干扰源。当一个电路有一个不接地的信号源与系统中接地的放大器相连时,输入端的屏蔽应接至放大器的公共端;相反,当接地的信号源与系统中不接地的放大器相连时,放大器的输入端也应接到信号源的公共端。 对于电气系统的接地,要按接地的要求和目的分类,不能将不同类接地简单地、任意地连接在一起,而是要分成若干独立的接地子系统,每个子系统都有其共同的接地点或接地干线,最后才连接在一起,实行总接地。 补充几点: 1、首先我们要处理系统的晶体干扰问题,晶体在一个PCB上的布局比较重要。当然,选型也很重要。理论上一个系统中的外部晶体频率越低,系统越稳定,越不容易受到干扰,但是在内部做倍频基本上是芯片级的应用层次了,补台需要我们操心。 晶体的外壳如果是金属的,通常要接到数字地上,晶体尽量远离ADC电路,靠近MCU。 2、多个电源地之间可以考虑用电感来连接。计算一个比较适合的电感和BYPASS电容,可以消除一些附加在电源地上的干扰信号,这些可以用著名的PSPICE软件来模拟。 3、PCB设计时,电源的线宽应当根据电流大小布置,通常需要为普通信号线的数倍。在电池供电的微功耗设备里,建议最小的电源线宽不小于15MIL(这仅仅是我们的意见)。当然,有条件的可以用软件来模拟下电流的实际大小和需要的线宽、线厚度等,这个在POWER PCB上可以实际仿真得到相关参数。

    时间:2019-08-19 关键词: PCB ad 电源资讯 模拟电源

  • 数字电源和模拟电源的区别

    数字电源和模拟电源的区别

    数字电路工作在开关状态,对电源电压干扰严重,在复杂的电路中,数字电路与模拟电路采用不同的稳压电源,数字电路与模拟电路分开布线,最终一点共地。 题图是采用 USB 接口供电的小功率电路,就不一定分开供电,左图只有一个电源标示 ,判断不出来电路是否包含数字与模拟两部分电路。右图是公用电源,通过LC 滤波器,隔离不同功能的电源,显然电路有数字电源与模拟电源之分,但是没有独立供电,抗干扰能力较差。 设计电路要注意在源头抑制干扰,在每片数字芯片的电源与地之间,用最短的路径焊接高频滤波电容,如:CC1 高频瓷介电容 。耗电大的、干扰大的芯片,安装位置要靠近电源,并且选用钽电解电容滤波。模拟开关式电源已经使用了几十年。其设计为人们所熟知,而且有许多优秀的教科书、仿真工具包、应用手册和研讨会。还有众多厂商提供的大量低成本集成电路,其封装了许多功能,从集成栅极驱动器及开关到电流感应和保护。数字控制拥有一些模拟世界不具有的特性,其使开关式电源设计拥有迄今还不可能实现的功能。想想一家电源厂商有许多不同功率级的情况吧。采用数字控制解决方案,可让一个单处理器与单独自定义软件一起工作以满足每个功率级的需求。大规模生产时,产生的经济规模会十分巨大。模拟技术+DSP/MCU成为主要趋势,应用方案向消费领域渗透更高集成度、更快瞬时响应以及更大灵活性是数字电源的主要优势。通常情况下,模拟PWM架构能够提供较高分辨率,但无法实现数字控制架构所具备的输出电压监视、通信及其它复杂控制功能;而对于数字PWM,为了达到与模拟控制架构同等的性能指标必须具备高分辨率、高速和线性ADC,以及高分辨率、高速PWM电路,因而与模拟控制架构相比,数字控制架构的成本将大幅增加。综合考虑两者优势,Maxim公司的Ashrafzadeh 认为,最佳方案是将模拟PWM与数字电路相结合,在不牺牲模拟控制所具备的精度和无限分辨率的情况下,提供数字控制所具有的全部性能。

    时间:2019-07-23 关键词: 电源技术解析 数字电源 模拟电源

  • 数字电源取代模拟电源的决定因素

    数字电源取代模拟电源的决定因素

     数字电源比模拟电源更加简单实用,下面简单介绍几点数字电源取代模拟电源的原因。数字电源电路图如下: 数字电源电路图 (1)瞬态响应:控制机制极大影响了系统的瞬态响应。例如,与电流模式相比,磁滞控制器的瞬态响应会有很大不同。每种控制模式都既有优点,也有缺点。数字解决方案让你能无缝地从一种模式转换到另一种模式,以提供最优的瞬态响应。虽然模拟解决方案可以提供很好的点方案,但极少出现足够静态的工作状况,让你能实现所设想的点方案。 (2)调节精度:一般来说,调节精度是根据线电压、负载和温度来定义的,因为这些条件中的每一个都会影响调节精度。数字控制器可以监视这些条件,并采取控制措施,在整个工作条件范围内进行优化。 (3)稳定性:数字控制能够提供比模拟方案更好的补偿(更好地调用极点和零点),因此在稳定性上的控制要好很多。另外,补偿能够随着条件的变化而变化,使系统能在很宽范围的条件下实现最佳的稳定性。模拟控制器的补偿是固定的,而数字控制可提供可调的甚至是自适应的补偿。 (4)故障响应:数字电源控制器提供了大量故障响应的选项。每种故障都有唯一的响应特性,可根据用户的需求进行调整。模拟控制器一般只有一个固定的故障响应(如断电/断续/过载),用户也只能选择用或者不用。数字控制还能提供滤波器功能,降低虚假故障的可能。 (5)效率:许多控制结果都会影响到效率,包括死区时间、开关频率、栅极驱动等级、二极管仿真、加相和缺相等。针对这些因素,当前数字控制所提供的数字控制算法在整个工作条件范围内进行了优化。因此,在某个工作点下,你也许能将模拟控制器调整到很高的效率,但数字控制器却可对所有的工作点进行优化。 (6)可靠性:减少元件数量、降低工作温度(通过效率优化)是数字电源提高系统可靠性的两个途径。此外,灵活的故障响应和探测元器件参数微小变化的能力,可以大幅减少停机时间。 一般情况下,对大多数简单的设计和基本要求来说,数字控制可能有点大材小用。当然,数字电源控制的灵活程度足以应付这些简单的应用,其功能可能超出实际所需。因此,数字控制器显然是备受欢迎的解决办法。 一般来说,数字电源的集成度更高,适用于各种场合,技术灵活。

    时间:2019-07-19 关键词: 稳定性 电源技术解析 数字电源 模拟电源

  • 数字与模拟电源的优势对比

    数字与模拟电源的优势对比

    数字开关电源顺应时代发展,实现了数字和模拟的结合,满足社会中的绝大部分需要。 数字电源 数字电源还可通过远程诊断以确保持续的系统可靠性,实现故障管理、过电压(流)保护、自动冗余等功能。由于数字 电源的集成度很高,系统的复杂性并不随功能的增加而增加过多,外围器件很少(数字电源的快速响应能力还可以降低对输出滤波电容的要求),减少了占板面积, 简化了设计制造流程。同时,数字电源的自动诊断、调节的能力使调试和维护工作变得轻松。而数字电源相对于模拟电源的优势主要体现在以下几个方面: (1)便于高度集成化,由于数字电路采用二进制,其代码符号仪有0和l两种,因此在数字1电路中只要有个不同的状态分别表示0和1就可以,所以数字电路的基本单元十分简单,而且对元件要求也不严格,允许电路参数有较大的离散性,有利于将众多的基本单元集成在同一硅片上进行批量生产。 (2)工作准确可靠,抗干扰能力强。数字信号是l和0来表示信号的,而数字电路辨别信号的有无是很容易做到的,从而大大提高了电路的工作可靠性。同时数字信号不易受到噪声干扰,因此它的抗干扰能力极强。 (3)数字信息便于长期保存。借助某种媒体(磁盘、光盘等)可将数字信息长期保存下来。 (4)数字集成电路产品多、通用性强且成本低。 (5)保密性好,数字信息容易进行加密处理,不易被窃取。 (6)不尽能完成数值运算,还可以进行逻辑运算和判断,这在控制系统中是不可缺少的。 数字电源管理芯片易于在多相以及同步信号下进行多相式并联应用,可扩展性与重复性优秀,轻松实现负载均流,减少EMI,并简化滤波电路设 计。数字控制的灵活性能把电源组合成串联或并联模型,形成虚拟电源。而且,数字电源的智能化可保证在各种输入电压和负载点上都具有最优的功率转换效率。 相对模拟控制技术,数字技术的独特优势还包括在线可编程能力、更先进的控制算法、更好的效率优化、更高的操作精确度和可靠性、优秀的系统管 理和互联功能。数字电源不存在模拟电源中常见的误差、老化(包括模拟器件的精度)、温度影响、漂移、补偿等问题,无须调谐、可靠性好,可以获得一致、稳定 的控制参数。数字电源的运算特性使它更易于实现非线性控制(可改善电源的瞬态响应能力)和多环路控制等高级控制算法;更新固件即可实现新的拓扑结构和控制 算法,更改电源参数也无须变更板卡上的元器件。 数字平台的特点还具有可重复性,可以反复利用,降低了成本。

    时间:2019-07-19 关键词: 集成电路 电源技术解析 数字电源 模拟电源

  • 数字电源的发展趋势

    数字电源的发展趋势

    在现在的电子器件市场,数字电源的占比正在逐渐增加,似乎成为电源系统的趋势。 数字电源 模拟开关式电源已经使用了几十年。其设计为人们所熟知,而且有许多优秀的教科书、仿真工具包、应用手册和研讨会。还有众多厂商提供的大量低成本集成电路,其封装了许多功能,从集成栅极驱动器及开关到电流感应和保护。 数字控制拥有一些模拟世界不具有的特性,其使开关式电源设计拥有迄今还不可能实现的功能。想想一家电源厂商有许多不同功率级的情况吧。采用数字控制解决方案,可让一个单处理器与单独自定义软件一起工作以满足每个功率级的需求。大规模生产时,产生的经济规模会十分巨大。 “未来的数字电源将包括某种形式的数字控制,同时也包括模拟模块。”DUVenhage指出。 模拟技术+DSP/MCU成为主要趋势,应用方案向消费领域渗透更高集成度、更快瞬时响应以及更大灵活性是数字电源的主要优势。通常情况下,模拟PWM架构能够提供较高分辨率,但无法实现数字控制架构所具备的输出电压监视、通信及其它复杂控制功能;而对于数字PWM,为了达到与模拟控制架构同等的性能指标必须具备高分辨率、高速和线性ADC,以及高分辨率、高速PWM电路,因而与模拟控制架构相比,数字控制架构的成本将大幅增加。 对比了数字技术与模拟控制技术,Maxim公司的Ashrafzadeh认为,最佳方案是将模拟PWM与数字电路相结合,这样可以不降低精确度和分辨率。

    时间:2019-07-19 关键词: 电源技术解析 模拟技术 数字电源 模拟电源

  • 浅述模拟电源、开关电源、数字电源的区别

      在电源设计中我们如何选择电源模块,那么选择的前提是,我们得了解各种电源,了解各种电源的区别,那样我们才可以正确的选择电源模块。  模拟电源介绍  模拟电源:即变压器电源,通过铁芯、线圈来实现,线圈的匝数决定了两端的电压比,铁芯的作用是传递变化磁场,(我国)主线圈在50HZ频率下产生了变化的磁场,这个变化的磁场通过铁芯传递到副线圈,在副线圈里就产生了感应电压,于是变压器就实现了电压的转变。  模拟电源的缺点:线圈、铁芯本身是导体,那么它们在转化电压的过程中会由于自感电流而发热(损耗),所以变压器的效率很低,一般不会超过35%。  音响器材功放中变压器的应用:大功率功放需要变压器提供更多的功率输出,那么,只有通过线圈匝数的增加、铁芯体积的增大来实现,匝数和铁芯体积的增加就会加重其损耗,所以,大功率功放的变压器必须做的非常大,这样就会导致:笨重,发热量大。  开关电源介绍  开关电源:在电流进入变压器之前,通过晶体管的开关功能,将我们通常50HZ的电流频率提升到数万HZ,在这么高的频率下,磁场变化频率也达到几万HZ,那么,就可以减少线圈匝数、铁芯体积获得同样的电压转化比,由于线圈匝数、铁芯体积的减少,损耗大大降低,一般开关电源效率达到90%,而体积可以做的非常小,并且输出稳定,所以开关电源具有模拟电源难以达到的优点。  (开关电源也有自己的不足,如输出电压有纹波及开关噪声,线性电源是没有的)  音响器材-功放中开关电源的应用:开关电源的描述过程中已经表明开关电源的优势,所以即使是大功率功放,开关电源一样可以做的很精细、小巧,目前国内的数字功放以深圳崔帕斯数字音响设备公司的数字功放最为领先,他们目前已经发展到T类纯数字功放,并且下一代S类功放也在研发中了,具体请参看如下资料:  数字电源介绍  在简单易用、参数变更要求不多的应用场合,模拟电源产品更具优势,因为其应用的针对性可以通过硬件固化来实现,而在可控因素较多、实时反应速度更快、 需要多个模拟系统电源管理的、复杂的高性能系统应用中,数字电源则具有优势。此外,在复杂的多系统业务中,相对模拟电源,数字电源是通过软件编程来实现多方面的应用,其具备的可扩展性与重复使用性使用户可以方便更改工作参数,优化电源系统。通过实时过电流保护与管理,它还可以减少外围器件的数量。  在复杂的多系统业务中,相对模拟电源,数字电源是通过软件编程来实现多方面的应用,其具备的可扩展性与重复使用性使用户可以方便更改工作参数,优化电源系统。通过实时过电流保护与管理,它还可以减少外围器件的数量。  数字电源有用DSP控制的,还有用MCU控制的。相对来讲,DSP控制的电源采用数字滤波方式,较MCU控制的电源更能满足复杂的电源需求、实时反应速度更快、电源稳压性能更好。  数字电源有什麽好处它首先是可编程的,比如通讯、检测、遥测等所有功能都可用软件编程实现。另外,数字电源具有高性能和高可靠性,非常灵活。  干扰:单片机中数字和模拟之间,因为数字信号是频谱很宽的脉冲信号,因此主要是数字部分对模拟部分的干扰很强;不仅一般都采用数字电源和模拟电源分开、二者之间用滤波器连接,在一些要求较高的场合,例如某些单片机内部的AD转换器进行AD转换时,常常要让数字部分进入休眠状态,绝大部分数字逻辑停止工作,以防止它们对模拟部分形成干扰。如果干扰严重,甚至可以分别用两个电源,一般用电感和电容隔离就行了. 也可以将整个板子上数字和模拟部分的电源分别联在一起,用分别的通路直接接到电源滤波电容的焊点上. 如果对抗干扰要求不高,也可以随便接在一起.  温馨提示  (1)如果不使用芯片的A/D或者D/A功能,可以不区分数字电源和模拟电源。  (2)如果使用了A/D或者D/A,还需考虑参考电源设计。

    时间:2019-03-05 关键词: 开关电源 电源技术解析 数字电源 模拟电源

  • 设计成败决胜于选择:数字电源or模拟电源

    近年来,使用MCU控制开关式电源不断发展。在数字电源相比模拟电源的优点方面仍存在许多争议,两大阵营你来我往、争论激烈。实际上,每一种方法都有其自己的优点和缺点。但设计人员最终都必须做出选择,是使用模拟解决方案还是使用数字解决方案,而要做出明智的决定需要了解每种方案的优点和缺点。模拟开关式电源已经使用了几十年。其设计为人们所熟知,而且有许多优秀的教科书、仿真工具包、应用手册和研讨会。还有众多厂商提供的大量低成本集成电路,其封装了许多功能,从集成栅极驱动器及开关到电流感应和保护。总之,无论如何数字电源都会使模拟电源多余的观点太过牵强。数字控制拥有一些模拟世界不具有的特性,其使开关式电源设计拥有迄今还不可能实现的功能。正如工程其他方面一样,这些好处是有代价的,而是否选择使用数字解决方案必须根据这些优点是否胜过其带来的问题来决定。一个频频被提及的数字控制优点是其允许移除控制器中的一些无源组件,从而消除了组件容差和老化问题。另外,在一些应用中这种优点更有更大的价值和深远的意义。例如,在一些多环路设计中,使用数字处理器可以将控制功能集中于一个器件中,从而实现诸如电源轨排序、裕量设置、负载共享、相位补偿以及软件实施故障预测等功能。模块化电源设计人员拥有了更多的优势。想想一家电源厂商有许多不同功率级的情况吧。采用数字控制解决方案,可让一个单处理器与单独自定义软件一起工作以满足每个功率级的需求。大规模生产时,产生的经济规模会十分巨大。在使用数字电源以前,当然也有一些必须要考虑的问题。数字控制器的PCB空间必须包括MCU、晶体时钟、保护/滤波和 ADC 引脚缓冲。另外,对 PWM 精度和 ADC 动态范围也有一些限制。尽管如此,一些最新的数字电源专用 MCU 产品还是可以解决多大数这些问题。模拟工程师们担心的另一个问题是掌握这些数字设计技术所需的时间和精力。许多情况下,如 Z 转换和采样理论等概念通常自毕业那天起就没有接触过了!幸运的是,许多在线工具现在都是免费提供(http://www.biricha.com/),其自动根据一套用户频率域规范将一个模拟设计转换成离散时间当量。Biricha 还提供了为期数天的数字电源设计课程,专为那些希望掌握数字技术或者只是想温习一下长时间忽略的知识的工程师们量身定制。另外,在未来数月 Bodo Power 将不断出版一系列技术文章,旨在为广大模拟工程师们提供数字 PSU 设计方面的帮助。综上所述,数字电源不是让模拟电源冗余的“魔法子弹”。模拟和数字电源都会存在,并将和睦相处。如果不需要额外的数字控制功能,那么模拟电源毫无疑问就是理想选择。反之,在有众多严格调节功率级的复杂系统中,要求监控、数据通信和灵活控制环路,这时数字解决方案更能发挥其应有的作用。幸运的是,数字电源控制优化微处理器的推出以及一些新型工具和培训的出现可以让广大设计人员可以为眼前的应用选择最佳的解决方案。

    时间:2019-02-28 关键词: 电源技术解析 数字电源 模拟电源

  • 浅谈数字电源与模拟电源的发展趋势

    目前在整个市场中数字电源技术所占的比例正在逐步增长,不过,随着越来越多的系统开发商采用这种技术,数字技术似乎正在成为电源系统设计的新趋势。模拟开关式电源已经使用了几十年。其设计为人们所熟知,而且有许多优秀的教科书、仿真工具包、应用手册和研讨会。还有众多厂商提供的大量低成本集成电路,其封装了许多功能,从集成栅极驱动器及开关到电流感应和保护。  数字控制拥有一些模拟世界不具有的特性,其使开关式电源设计拥有迄今还不可能实现的功能。想想一家电源厂商有许多不同功率级的情况吧。采用数字控制解决方案,可让一个单处理器与单独自定义软件一起工作以满足每个功率级的需求。大规模生产时,产生的经济规模会十分巨大。  模拟技术+DSP/MCU成为主要趋势,应用方案向消费领域渗透更高集成度、更快瞬时响应以及更大灵活性是数字电源的主要优势。通常情况下,模拟PWM架构能够提供较高分辨率,但无法实现数字控制架构所具备的输出电压监视、通信及其它复杂控制功能;而对于数字PWM,为了达到与模拟控制架构同等的性能指标必须具备高分辨率、高速和线性ADC,以及高分辨率、高速PWM电路,因而与模拟控制架构相比,数字控制架构的成本将大幅增加。综合考虑两者优势,Maxim公司的Ashrafzadeh认为,最佳方案是将模拟PWM与数字电路相结合,在不牺牲模拟控制所具备的精度和无限分辨率的情况下,提供数字控制所具有的全部性能。  数字电源与模拟电源的优势对比  数字开关电源正是为了克服现代电源的复杂性而提出的,它实现了数字和模拟技术的融合,提供了很强的适应性与灵活性,具备直接监视、处理并适应系统条件的能力,能够满足几乎任何电源要求。数字电源还可通过远程诊断以确保持续的系统可靠性,实现故障管理、过电压(流)保护、自动冗余等功能。由于数字电源的集成度很高,系统的复杂性并不随功能的增加而增加过多,外围器件很少(数字电源的快速响应能力还可以降低对输出滤波电容的要求),减少了占板面积,简化了设计制造流程。同时,数字电源的自动诊断、调节的能力使调试和维护工作变得轻松。而数字电源相对于模拟电源的优势主要体现在以下几个方面:  1、便于高度集成化,由于数字电路采用二进制,其代码符号仪有0和l两种,因此在数字1电路中只要有个不同的状态分别表示0和1就可以,所以数字电路的基本单元十分简单,而且对元件要求也不严格,允许电路参数有较大的离散性,有利于将众多的基本单元集成在同一硅片上进行批量生产。  2、工作准确可靠,抗干扰能力强。数字信号是l和0来表示信号的,而数字电路辨别信号的有无是很容易做到的,从而大大提高了电路的工作可靠性。同时数字信号不易受到噪声干扰,因此它的抗干扰能力极强。  3、数字信息便于长期保存。借助某种媒体(磁盘、光盘等)可将数字信息长期保存下来。  4、数字集成电路产品多、通用性强且成本低。  5、保密性好,数字信息容易进行加密处理,不易被窃取。  6、不尽能完成数值运算,还可以进行逻辑运算和判断,这在控制系统中是不可缺少的。  数字电源管理芯片易于在多相以及同步信号下进行多相式并联应用,可扩展性与重复性优秀,轻松实现负载均流,减少EMI,并简化滤波电路设计。数字控制的灵活性能把电源组合成串联或并联模型,形成虚拟电源。而且,数字电源的智能化可保证在各种输入电压和负载点上都具有最优的功率转换效率。  相对模拟控制技术,数字技术的独特优势还包括在线可编程能力、更先进的控制算法、更好的效率优化、更高的操作精确度和可靠性、优秀的系统管理和互联功能。数字电源不存在模拟电源中常见的误差、老化(包括模拟器件的精度)、温度影响、漂移、补偿等问题,无须调谐、可靠性好,可以获得一致、稳定的控制参数。数字电源的运算特性使它更易于实现非线性控制(可改善电源的瞬态响应能力)和多环路控制等高级控制算法;更新固件即可实现新的拓扑结构和控制算法,更改电源参数也无须变更板卡上的元器件。  数字控制还能让硬件平台重复使用,通过设计不同固件即可满足各种最终系统的独特要求,从而加快产品上市,减少开发成本、元器件库存与风险。  数字电源取代模拟电源的决定因素  数字控制能解决问题,是因为它具有比模拟控制更好的性能、更灵活且在复杂的设计中更易用。然而下面总结的六个方面是决定了模拟电源被数字电源取代的主要因素。  1、瞬态响应:控制机制极大影响了系统的瞬态响应。例如,与电流模式相比,磁滞控制器的瞬态响应会有很大不同。每种控制模式都既有优点,也有缺点。数字解决方案让你能无缝地从一种模式转换到另一种模式,以提供最优的瞬态响应。虽然模拟解决方案可以提供很好的点方案,但极少出现足够静态的工作状况,让你能实现所设想的点方案。  2、调节精度:一般来说,调节精度是根据线电压、负载和温度来定义的,因为这些条件中的每一个都会影响调节精度。数字控制器可以监视这些条件,并采取控制措施,在整个工作条件范围内进行优化。  3、稳定性:数字控制能够提供比模拟方案更好的补偿(更好地调用极点和零点),因此在稳定性上的控制要好很多。另外,补偿能够随着条件的变化而变化,使系统能在很宽范围的条件下实现最佳的稳定性。模拟控制器的补偿是固定的,而数字控制可提供可调的甚至是自适应的补偿。  4、故障响应:数字电源控制器提供了大量故障响应的选项。每种故障都有唯一的响应特性,可根据用户的需求进行调整。模拟控制器一般只有一个固定的故障响应(如断电/断续/过载),用户也只能选择用或者不用。数字控制还能提供滤波器功能,降低虚假故障的可能。  5、效率:许多控制结果都会影响到效率,包括死区时间、开关频率、栅极驱动等级、二极管仿真、加相和缺相等。针对这些因素,当前数字控制所提供的数字控制算法在整个工作条件范围内进行了优化。因此,在某个工作点下,你也许能将模拟控制器调整到很高的效率,但数字控制器却可对所有的工作点进行优化。  6、可靠性:减少元件数量、降低工作温度(通过效率优化)是数字电源提高系统可靠性的两个途径。此外,灵活的故障响应和探测元器件参数微小变化的能力,可以大幅减少停机时间。  一般情况下,对大多数简单的设计和基本要求来说,数字控制可能有点大材小用。当然,数字电源控制的灵活程度足以应付这些简单的应用,其功能可能超出实际所需。因此,数字控制器显然是备受欢迎的解决办法。另外,数字电源控制一般比模拟控制器具有更高的集成度。然而,集成度还不足以满足设计重用和灵活性的要求;但是,数字电源控制器适用于各种各样的应用,无需借助附加电路。从这个意义上说,这项技术的灵活性要远优于传统的模拟技术。

    时间:2019-02-26 关键词: 电源技术解析 数字电源 模拟电源

  • 数字电源与模拟电源的区别

    数字电源与模拟电源的区别主要集中在控制与通信部分。在简单易用、参数变更要求不多的应用场合,模拟电源产品更具优势,因为其应用的针对性可以通过硬件固化来实现,而在可控因素较多、实时反应速度更快、需要多个模拟系统电源管理的、复杂的高性能系统应用中,数字电源则具有优势。 此外,在复杂的多系统业务中,相对模拟电源,数字电源是通过软件编程来实现多方面的应用,其具备的可扩展性与重复使用性使用户可以方便更改工作参数,优化电源系统。通过实时过电流保护与管理,它还可以减少外围器件的数量。 数字电源有用DSP控制的,还有用MCU控制的。相对来讲,DSP控制的电源采用数字滤波方式,较MCU控制的电源更能满足复杂的电源需求、实时反应速度更快、电源稳压性能更好。 数字电源有什麽好处它首先是可编程的,比如通讯、检测、遥测等所有功能都可用软件编程实现。另外,数字电源具有高性能和高可靠性,非常灵活。

    时间:2018-12-03 关键词: 电源技术解析 数字电源 模拟电源

  • 数字电源设计的挑战和机会

    数字电源设计的挑战和机会

    在过去五年中,数字电源利用数字控制给传统模拟领域带来的许多益处而迅速增长。数字控制的日益采用得到了微控制器厂商的许多新产品的支持,这些新产品专门针对数字电源市场。 图1:模拟控制的电源 在传统的模拟电源中,使用由运算放大器和比较器与一系列精心选择的外部电容器和电阻组成的控制IC来实现控制,以形成补偿网络。该补偿网络设计用于给电源提供期望的调节、瞬态负载性能和频率或s域的稳定性。补偿网络是固定的,并且经常由于反馈环路中存在带宽限制光耦合器而受损。如图1所示。 图2:数字控制的电源 数字电源是指取代传统上用于开关电源的模拟控制IC,对电源进行调节和稳定的数字控制回路。在图2所示的数字电源中,模拟控制IC及其相关的模拟补偿网络已经被微控制器所取代。 微控制器用于关闭电源的反馈回路。在典型的数字控制电源中,微控制器上的模数转换器(ADC)模块采样输出电压或电流,该输出电压或电流与需求参考值进行比较,结果为误差项。该误差项被用作离散时间控制器的输入。离散时间控制器在每一个可用的新ADC采样时以精确、预先定义的间隔执行。 正如S域中的模拟补偿器一样,离散时间控制器在时间或z域都具有频率响应。控制器系数决定电源的频率响应和稳定性,并且必须解析地计算以稳定电源。 微控制器在电源领域已经使用多年,目的是使用相对简单和低成本的微控制器来实现诸如串行接口和风扇速度控制之类的基本功能。全数字控制以前在服务器和电信市场最为普遍,在工业和医疗市场的占有率滞后。 切换到数字控制的主要禁止因素是与数字功率相关联的成本和复杂性。近年来,实现全数字控制所需的DSP功能的现代微控制器的成本急剧下降,但复杂性仍然是一个问题,源于需要混合域的方法来设计电源,工程师必须将他们的电源设计技巧和具有编写高效代码和稳定离散时间控制回路的能力结合起来。 根据设计的复杂性,为电源开发健壮且有效的固件可能需要大量的时间。各种安规标准所需的验证、测试和文件导致开发健壮可靠的数字电源需要大量资源。当然,一旦进行了初始投资,数字电源的益处之一就是能够在许多不同的产品中重用固件,在一个系列中具有不同输出电压的产品的固件的改变可以是改变控制器系数的简单情况。 数字控制回路比模拟回路具有更多优点。它对控制回路部件的环境、温度、老化和公差不敏感。它允许系统实时监控电源的性能,并根据需要调整参数来调整性能。此外,先进的离散时间控制技术允许我们实现比模拟补偿器更高的性能,在几个开关周期内从瞬态恢复过来,这是负载点(POL)转换器市场特别感兴趣的,该市场是早期数字电源使用者。 对高效率电源转换器的不断增长的需求是数字电源提供超出典型模拟控制方案能力的解决方案的关键领域。这可能涉及调整PSU的操作以达到最佳的零电压或零电流开关-减少损失和提高效率。 图3:典型控制回路持续时间与PWM开关周期 用于数字功率应用的最新微控制器包含DSP功能,该功能允许数字控制环路在单个PWM开关周期的一小部分内,每个开关周期内执行。图3显示了一个典型的数字电源的PWM开关周期。在这个简单的例子中,每个开关周期输出电压一次。几百毫微秒的ADC转换时间对于设计用于数字电源应用的微控制器来说是典型的。在ADC转换之后,调用中断服务例程来执行离散时间控制器。这是一个时间紧迫的例行程序。 如图3所示,这个例子中,MCU不花费执行控制器的时间是备用带宽。此备用带宽可用于执行特定于应用程序的其他任务或功能。任何低优先级任务都在慢速循环中运行,并且每当出现高优先级任务时都会被中断,例如运行控制循环代码的ADC中断。 考虑到微控制器给设计带来的灵活性,当标准产品可能不能满足客户每个方面需求时,数字电源非常适合于定制或修改标准电源的应用。可能有特定的通信要求,如通过USB、I2C或ECTCAT控制电源。用户可能要求调整输出电压或电流极限,或者要求实时监控、电力轨道排序或输出模块之间的精确电流分配。传统上需要硬件更改的应用程序特定要求通常可以在固件中实现。当然,用于数字电源的高性能微控制器将比它取代的模拟IC昂贵。然而,数字控制器提供了在MCU内实现其他功能的机会,而不是使用离散组件。这可以导致减少元件数量和更紧凑的解决方案,特别是对于具有复杂信号要求或可以使用一个微控制器控制的多个电源轨的设计。结果可能是一个更具成本效益的整体解决方案。当然,对于一些复杂的需求,数字化可能是唯一可行的解决方案。 XP Power具有利用标准产品范围的多样性实现复杂电源解决方案的知识和能力。在电源的核心的MCU,应用特定的电源解决方案的可能性是深远的。考虑到数字电源提供的许多好处,我们肯定会看到数字电源在未来几年里会不断增加。 本文作者:XP Power公司 Dr. Michael Hallworth

    时间:2018-10-10 关键词: 微控制器 电源技术解析 数字电源 模拟电源

  • 数字电源正在超越模拟电源

    数字电源正在超越模拟电源

    “数字电源”正在彻底改变电源的设计方法和实现方式。本文为您介绍替代传统模拟控制的数字电源技术:数字电源具有超过模拟方案的巨大优势,不仅在性能方面(效率、瞬态响应、稳定性等),而且在上市时间和总拥有成本方面也同样如此。基本概况Intersil用于DC/DC电源转换的ZL2008第二代自适应数字化电源控制器是一款业界领先的数字电源控制器。它适用于非隔离式降压、升压、降压-升压和隔离式单管正激或反激式转换器。在6mm×6mm QFN封装(图1)内是一个先进的电源控制器,集成了电源转换控制、电源管理、故障管理和遥测功能。此外,还包含一个集成的微控制器,可以运行复杂的算法,可以适应超越模拟方案性能的运行。它代表了高性价比的数字电源的最新技术。数字电源架构与模拟架构的对比电源转换控制架构从模拟到现代数字控制的进展。模拟PWM控制器通过使用一个斜坡误差信号来产生比例占空比。该误差信号利用电阻和电容网络进行补偿,以修改信号来稳定控制回路。在数字电源中最早尝试的比例占空比是通过一个数字计数器(DPWM)生成的,其计数是由数字信号处理器决定的。虽然这种方法在数字实现方面非常强大,但事实证明这种方法过于昂贵,对于大多数实际应用来说需要太多的静态电流。在现代数字电源控制当中,占空比仍然是由一个数字计数器生成的,但是现在的计数器是由数字状态机控制的。这个状态机是专门为电源控制器(而不是一般功能的DSP)设计的,所以这个解决方案更符合成本效益,且需要较少的静态电流。架构采用了比例、积分、微分(PID)补偿器来稳定电源,而不需要一个完整的DSP来补偿电源。误差电压的3个要素,误差的比例、误差的积分和误差的微分结合了相对比重,以实现稳定的运行。请注意,在架构方面数字电源胜过模拟电源具备的一些优势:数字控制无需外部元件进行补偿。这不仅减少了元件数量,而且可以轻而易举地改变补偿,包括随时改变,甚至随负载变化进行适应性改变。典型的情况是没有数字控制器的外部分压器。内部参考可以缩放,因此无需使用外部分压器。这显然减少了元件数量,而且还有助于在工厂精确校准控制器,这样用户就可以受益于高精度,而无需使用昂贵的用于分压的精密电阻。数字架构可以简便地采用数字通信,这样的操作可以进行配置、控制,且在几乎没有外部元件的条件下进行监测。一种数字电源控制器显示了现代数字电源控制器的基本架构。在该架构中,输出电压用一个差分放大器来检测。这个模拟信号与参考进行比较,生成个误差信号。该误差信号被数字化(ADC),结果通过一个数字补偿网络进行处理,这将在本文稍后的部分中予以描述。数字补偿的输出是一个占空比命令,它设定了数字PWM的持续时间。然后,数字PWM控制就可以FET驱动器,开关电源。输出电压、输入电压、输出电流、温度都可以使用一个辅助模拟数字转换器(ADC)进行检测,ADC可复用到各个检测点。配置可以利用引脚跨接、电阻器配置,或通过I2C接口的命令的方式实现。该电源可通过引脚或I2C接口进行控制。配置、操作和环境条件的监测是通过I2C接口实现的。优势1. 更高水平的集成显示了一个模拟PWM和数字PWM的典型应用原理图。尽管这两个控制器共享相同数量的功率传送(power train)元件(功率FET、电感器、输入和输出电容),模拟控制器仍需要更多的外部元件。这是因为数字控制器集成了许多功能和特性,而这些功能和特性没有集成在模拟控制器内。数字控制器减少了十几个元件。在实际实现中,数字控制器已被证明,在中高度复杂设计中可以减少多达60%的外部元件。2. 稳定性显示了一个典型的电源转换电路。该电源转换器包括一个带有固定调制增益Gfix的PWM控制器、高侧和低侧开关,输出级包含一个电感器和一个或多个电容,一个负载,以及反馈或控制回路。在这种情况下,反馈控制显示为Type 3(或III)放大器,但可以是任何反馈控制器。控制回路的用途是将输出与一个已知参考、VR进行比较,并调整PWM信号来纠正输出和参考之间的差额。除了减少元件数量方面的优势之外,数字化还提供了进一步的优势,即集成的元件值可表示为存储在数字寄存器中的值。这有助于根据设计的不同方便地改变这些值,甚至随时改变,或适应不断变化的条件。控制系统做出的任何改变都会对系统引入一种干扰。为实现一个强大而实用的系统,在这种干扰存在的条件下系统必须保持稳定。事实上,它必须在存在一大堆干扰的条件下保持稳定,包括输入电压变化、负载变化,甚至温度变化等等。我们可以通过反馈路径增益如何接近-1来描述系统的稳定性。也就是说,在增益接近-1的条件下,反馈有多接近。由于相对于输出,反馈有一个幅度(增益)和相位,我们可以用增益裕度和相位裕度来表达稳定性,这里的增益裕度是在相位为180度时,测得的相对于单位增益的增益大小有多大,以及在增益为单位增益时,相位裕度是如何接近相对于180度的相位。相位裕度和增益裕度可以通过奈奎斯特(Nyquist)图或波特(Bode)图来确定。由于波特图有一个容易读取的频率范围,因此是一个方便的工具,这将在本文中使用。如果没有反馈,图5所示系统的简化传递函数可以表示为:其中:ωesr是输出电容esr产生的零点,ωn是输出级的固有频率,Q是输出级的品质因数。为达到本文的目的,我们将忽略电容esr零点的贡献,并重点关注传递函数的其余极点。也就是说,让我们来重点关注传递函数:这个方程有两个极点。对于Q<0.5(阻尼情况下),两个极点都是实数。对于Q>0.5(欠阻尼情况下),两极为复共轭。对于一阶,Q值可以近似表示为:对于1V输出,一个电感为1μH,一个电容为100μFd,对应于1安培输出的Q值为10,对应于10安培输出的Q值为1,而对应于25安培输出电流的Q值为0.4。这个方程的波特图的Gfix等于5,ωn等于16000 Hz,所示的几个Q值是:10、1和0.4。在这个波特图中,显示了相对于180度的相位,所以相位裕量可以在增益是单位增益的频率下通过观察相位曲线的值直接读取。一个典型的可接受最低相位裕度为45度。这个水平可通过相图的虚线来表示。在三种情况下,单位增益的交叉频率范围约为30kHz到40kHz。同样可以很容易地看出,高Q值(>0.5,欠阻尼)情况下的相位裕度低于45度的限制。由于这个器件接近边缘的或甚至不能接受的相位裕度,需要进行补偿来调整系统响应以达到(更加)稳定的情形。显示了“Type III”补偿,这往往被用在一个模拟电压模式控制器反馈回路当中。请注意,这里有6个电路元件、3个电阻和3个电容,他们是回路补偿所必须的。这个网络可以为系统响应带来两个实数零点、3个极点(包括在零点的极点)。这些零点可用来补偿输出功率级(电感器和电容器)的两个极点。一个极点用来补偿电容esr,第二个极点用来确保高频率的低增益。这个网络的一个限制其实在于它提供了实数零点,以补偿输出级的极点。正如上文已经指出的那样,输出级的极点只对低Q值输出级是实数。对于Q>0.5,极点是复数,而随着Q值的增加,实数零点在补偿复数极点方面变得越来越无能为力。数字控制为补偿提供了成熟和复杂方式的能力,本文将集中于一个简单的PID滤波器,如图8所示。这个数字滤波器采用了误差信号,比例信号之和及比例延迟采样的误差信号,再加上积分输出实现补偿器。三个增益系数用来调整补偿。该滤波器的传递函数通过下式给出:其中A、B和C是各抽头(tap)的增益系数,分母的第一项为信号路径延迟,分母的第二项为加法级输出的累加器,T是PWM的开关频率。可以看到,这种补偿有两个零点,一个极点在零,另一个极在无穷大。这两个零点可用来弥补器件输出级的两个极点。这些零点作为二次方程的解出现在分子中。因此,视A、B和C值的不同,可以有两个实数零点或一对复共轭零点。因此数字PID补偿不仅可以提供与Type III同等的模拟补偿,而且也可提供复数零点,这更适合补偿复数极点。显示了这两种补偿方法的标称差别。左图是一个用采用type III补偿网络的模拟控制器进行补偿的电源转换器的波特图。虽然实现了满意的增益和相位裕量,带宽不得不大幅度减少。右图是一个没有采用数字补偿的同一个系统的波特图。请注意,数字补偿器中的复数零点最好使用复数极点进行补偿,这不仅可以产生令人满意的增益和相位裕量,而且还可以通过单位增益交叉频率确定一个令人满意的带宽。因此,数字补偿提供了一个比模拟补偿更好的补偿。此外,在使用数字补偿时,可以省去五六个元件。最后一点,人们还认为数字补偿很容易根据设计的不同而改变,甚至可以随时改变。3. 更高的效率可以在电源控制器中调整若干参数以优化效率。在模拟控制器中,这些参数都是静态的,通常为某些点的应用而设计,尽管人们认识到几乎没有应用是运行在一个设计点。数字控制器可提供更多的优势,能够调整这些参数,根据环境、负载或元件的条件来适应运行。因此,数字电源可以比模拟提供更高的效率和更好的性能。为优化控制器效率,需要一个检测元件来确定转换器的相对损耗。需要相对损耗的意义在于,我们要知道变更参数后,是否增加损耗或减少损耗。一个好的损耗测量能够利用开关转换器的戴维南(Thevenin)等效电路来确定,这里的电压源,如衍生的降压拓扑,是用输入电压乘PWM的占空比。在无损转换器中,戴维南阻抗应该为零,输出可以简单地用输入电压乘占空比。但是,在有损转换器中,戴维南阻抗的电阻元件均不为零,必须增加占空比来克服这种损耗,以维持所需的输出电压。也就是说,在有损耗的情况下,占空比大于无损的情况。事实上,损耗越高,占空比也越高。因此,占空比测量可以被用来确定转换器中的相对损耗。如图10所示,图中来自实际降压转换器的占空比(5Vin,0.6Vout)是随负载电流的变化作为损耗的函数测得的。因此,由于占空比可以作为测量相对损耗的方法使用,可以在数字实现过程中改变参数,并对占空比的影响情况进行监测。如果占空比增加,则可以在相反的方向调整参数,可以减少占空比(和相对损耗)。死区时间是高侧FET关断和低侧FET导通之间的时间,反之亦然。如果死区时间过长,体二极管导通代表可能会出现损耗。如果死区时间太短,那么就可能发生交叉导通,也引入了损耗,如图11所示。在大多数设计中,最佳死区时间不是固定值。图12显示了几种情况下低侧栅极信号和开关节点的波形。上图为60纳秒时的固定死区时间。左上图是电流为1安培的情况,右上图是20安培负载电流的情况。请注意,也就是说,波形之间的相对差额在中电压范围。还要注意,在20安培情况下,开关节点电压中有一些下冲,这表明死区时间过长(导致体二极管导通)。下图有12纳秒的固定死区时间。请注意,在这种情况下,在电流函数痕迹之间差别不大。因此,理想的死区时间可能无法由一定的电压波形来确定。理想的死区时间很可能是负载电流的一个函数。请注意,开关节点电压过冲说明有交叉导通,即这种情况说明死区时间太短。显示了分别使用60纳秒和28纳秒最佳死区时间设置的1安培和20安培的波形。请注意,开关节点的下冲或过冲较少。因为我们知道,相对损耗可以通过占空比测得,数字控制可以改变死区时间,同时观察占空比,从而优化了转换器的效率。该算法可优化随负载变化,以及温度变化,及器件老化的效率,得到最佳效率。显示了使用模拟控制器(下曲线)和使用相同功率传送元件(FET、电感和电容)的Intersil的数字控制器(上曲线)的比较。在本例中,数字方式可以提供5%的效率增益,这代表可以减少超过25%的损耗。提高效率的另一个区域是当平均电流小于纹波电流一半时,对低侧FET导通时间进行计时。在同步整流中,低侧FET保持导通,允许电流逆向进入电感。这意味着RMS电流比平均电流要高。事实上,即使没有平均电流,RMS电流仍然很高。由于环流的结果会出现损耗。一种解决方案是改变低侧FET的导通时间来优化效率。显示了这样的事实,如果低侧FET导通时间太长,反向电流就会导致较高的损耗。如果低侧FET的导通时间太短,则低侧FET体二极管的电流导通。还有一个优化低侧FET计时的方法,可以使用如上所述的占空比观测技术确定最佳计时。显示了利用这项技术与同步整流相比减少的相对损耗。在二极管仿真情况下,非常低的电流的急剧变化是由于转换到数字控制器中脉冲省略模式。这些例子说明了数字控制在效率方面表现优于模拟。本文小结在本文中,我们已说明了数字电源控制优于传统模拟控制的许多方面。虽然数字控制尚不能完全接管模拟控制的市场,但我们相信,数字控制大有前途,而设计者们会发现采用数字电源控制器的设计越来越得心应手。发布者:小宇

    时间:2018-08-24 关键词: 电源技术解析 模拟控制器 数字电源 模拟电源

  • 采用数字电源还是模拟电源?

    近几年,使用微处理器控制开关式电源不断发展。在数字电源相比模拟电源的优点方面仍存在许多争议,两大阵营你来我往、争论激烈。 实际上,每一种方法都有其自己的优点和缺点。但设计人员最终都必须做出选择,是使用模拟解决方案还是使用数字解决方案,而要做出明智的决定需要了解每种方案的优点和缺点。 模拟开关式电源已经使用了几十年。其设计为人们所熟知,而且有许多优秀的教科书、仿真工具包、应用手册和研讨会。还有众多厂商提供的大量低成本集成电路,其封装了许多功能,从集成栅极驱动器及开关到电流感应和保护。总之,无论如何数字电源都会使模拟电源多余的观点太过牵强。 数字控制拥有一些模拟世界不具有的特性,其使开关式电源设计拥有迄今还不可能实现的功能。正如工程其他方面一样,这些好处是有代价的,而是否选择使用数字解决方案必须根据这些优点是否胜过其带来的问题来决定。 一个频频被提及的数字控制优点是其允许移除控制器中的一些无源组件,从而消除了组件容差和老化问题。另外,在一些应用中这种优点更有更大的价值和深远的意义。例如,在一些多环路设计中,使用数字处理器可以将控制功能集中于一个器件中,从而实现诸如电源轨排序、裕量设置、负载共享、相位补偿以及软件实施故障预测等功能。 模块化电源设计人员拥有了更多的优势。想想一家电源厂商有许多不同功率级的情况吧。采用数字控制解决方案,可让一个单处理器与单独自定义软件一起工作以满足每个功率级的需求。大规模生产时,产生的经济规模会十分巨大。 在使用数字电源以前,当然也有一些必须要考虑的问题。数字控制器的 PCB 板级空间必须包括 MCU、晶体时钟、保护/滤波和 ADC 引脚缓冲。另外,对 PWM 精度和 ADC 动态范围也有一些限制。尽管如此,一些最新的数字电源(请访问 http://www.ti.com/piccolo)专用 MCU 产品还是可以解决多大数这些问题。 模拟工程师们担心的另一个问题是掌握这些数字设计技术所需的时间和精力。许多情况下,如 Z 转换和采样理论等概念通常自毕业那天起就没有接触过了!幸运的是,许多在线工具现在都是免费提供(http://www.biricha.com/),其自动根据一套用户频率域规范将一个模拟设计转换成离散时间当量。Biricha 还提供了为期数天的数字电源设计课程,专为那些希望掌握数字技术或者只是想温习一下长时间忽略的知识的工程师们量身定制。另外,在未来数月 Bodo Power 将不断出版一系列技术文章,旨在为广大模拟工程师们提供数字 PSU 设计方面的帮助。 综上所述,数字电源不是让模拟电源冗余的“魔法子弹”。模拟和数字电源都会存在,并将和睦相处。如果不需要额外的数字控制功能,那么模拟电源毫无疑问就是理想选择。反之,在有众多严格调节功率级的复杂系统中,要求监控、数据通信和灵活控制环路,这时数字解决方案更能发挥其应有的作用。幸运的是,数字电源控制优化微处理器的推出以及一些新型工具和培训的出现可以让广大设计人员可以为眼前的应用选择最佳的解决方案。 编辑:博子

    时间:2018-08-23 关键词: 电源技术解析 模拟技术 数字电源 模拟电源

  • 模拟电源、数字电源、开关电源区别简介,简单实用

    在电源设计中我们如何选择电源模块,那么选择的前提是,我们得了解各种电源,了解各种电源的区别,那样我们才可以正确的选择电源模块。 模拟电源介绍 模拟电源:即变压器电源,通过铁芯、线圈来实现,线圈的匝数决定了两端的电压比,铁芯的作用是传递变化磁场,(我国)主线圈在 50HZ 频率下产生了变化的磁场,这个变化的磁场通过铁芯传递到副线圈,在副线圈里就产生了感应电 压,于是变压器就实现了电压的转变。 模拟电源的缺点:线圈、铁芯本身是导体,那么它们在转化电压的过程中会 由于自感电流而发热(损耗),所以变压器的效率很低,一般不会超过 35%。 音响器材功放中变压器的应用:大功率功放需要变压器提供更多的功率输出, 那么,只有通过线圈匝数的增加、铁芯体积的增大来实现,匝数和铁芯体积的增加就会加重其损耗,所以,大功率功放的变压器必须做的非常大,这样就会导致: 笨重,发热量大。 开关电源介绍 开关电源:在电流进入变压器之前,通过晶体管的开关功能,将我们通常 50HZ 的电流频率提升到数万 HZ,在这么高的频率下,磁场变化频率也达到几万 HZ,那么,就可以减少线圈匝数、铁芯体积获得同样的电压转化比,由于线圈匝数、铁芯体积的减少,损耗大大降低,一般开关电源效率达到 90%,而体积可以 做的非常小,并且输出稳定,所以开关电源具有模拟电源难以达到的优点。 (开关电源也有自己的不足,如输出电压有纹波及开关噪声,线性电源是没有的) 音响器材-功放中开关电源的应用:开关电源的描述过程中已经表明开关电 源的优势,所以即使是大功率功放,开关电源一样可以做的很精细、小巧。 数字电源介绍 在简单易用、参数变更要求不多的应用场合,模拟电源产品更具优势,因为其应用的针对性可以通过硬件固化来实现,而在可控因素较多、实时反应速度更快、 需要多个模拟系统电源管理的、复杂的高性能系统应用中,数字电源则更有优势。此外,在复杂的多系统业务中,相对模拟电源,数字电源是通过软件编程来实现多方面的应用,其具备的可扩展性与重复使用性使用户可以方便更改工作参数,优化电源系统。通过实时过电流保护与管理,它还可以减少外围器件的数量。 在复杂的多系统业务中,相对模拟电源,数字电源是通过软件编程来实现多方面的应用,其具备的可扩展性与重复使用性使用户可以方便更改工作参数,优化电源系统。通过实时过电流保护与管理,它还可以减少外围器件的数量。 数字电源有用DSP 控制的,还有用MCU 控制的。相对来讲,DSP 控制的电源 采用数字滤波方式,较 MCU 控制的电源更能满足复杂的电源需求、实时反应速度更快、电源稳压性能更好。 数字电源有什麽好处 首先它是可编程的,比如通讯、检测、遥测等所有功能都可用软件编程实现。另外,数字电源具有高性能和高可靠性,非常灵活。 干扰:单片机中数字和模拟之间,因为数字信号是频谱很宽的脉冲信号,因 此主要是数字部分对模拟部分的干扰很强;不仅一般都采用数字电源和模拟电源 分开、二者之间用滤波器连接,在一些要求较高的场合,例如某些单片机内部的 AD 转换器进行 AD 转换时,常常要让数字部分进入休眠状态,绝大部分数字逻辑 停止工作,以防止它们对模拟部分形成干扰。如果干扰严重,甚至可以分别用两个电源,一般用电感和电容隔离就行了。 也可以将整个板子上数字和模拟部分的 电源分别联在一起,用分别的通路直接接到电源滤波电容的焊点上。如果对抗干扰要求不高,也可以随便接在一起。 温馨提示 (1)如果不使用芯片的 A/D 或者 D/A 功能,可以不区分数字电源和模拟电源。 (2)如果使用了 A/D 或者 D/A,还需考虑参考电源设计。

    时间:2018-03-29 关键词: 开关电源 电源技术解析 数字电源 模拟电源

  • 数字电源VS模拟电源,优劣详解解析

    本文主要是对数字电源和模拟电源这两大阵营各自的存在模式以及其自身存在的优劣势作出简要的分析,为之后对于这方面的选择提供参考性的建议。 1 数字电源VS模拟电源发展趋势 目前在整个市场中数字电源技术所占的比例正在逐步增长,不过,随着越来越多的系统开发商采用这种技术,数字技术似乎正在成为电源系统设计的新趋势。 模拟开关式电源已经使用了几十年。其设计为人们所熟知,而且有许多优秀的教科书、仿真工具包、应用手册和研讨会。还有众多厂商提供的大量低成本集成电路,其封装了许多功能,从集成栅极驱动器及开关到电流感应和保护。 数字控制拥有一些模拟世界不具有的特性,其使开关式电源设计拥有迄今还不可能实现的功能。想想一家电源厂商有许多不同功率级的情况吧。采用数字控制解决方案,可让一个单处理器与单独自定义软件一起工作以满足每个功率级的需求。大规模生产时,产生的经济规模会十分巨大。 “未来的数字电源将包括某种形式的数字控制,同时也包括模拟模块。”Duvenhage指出。 模拟技术+DSP/MCU成为主要趋势,应用方案向消费领域渗透更高集成度、更快瞬时响应以及更大灵活性是数字电源的主要优势。通常情况下,模拟PWM架构能够提供较高分辨率,但无法实现数字控制架构所具备的输出电压监视、通信及其它复杂控制功能;而对于数字PWM,为了达到与模拟控制架构同等的性能指标必须具备高分辨率、高速和线性ADC,以及高分辨率、高速PWM电路,因而与模拟控制架构相比,数字控制架构的成本将大幅增加。综合考虑两者优势,Maxim公司的Ashrafzadeh认为,最佳方案是将模拟PWM与数字电路相结合,在不牺牲模拟控制所具备的精度和无限分辨率的情况下,提供数字控制所具有的全部性能。 2 数字电源VS模拟电源的优势对比 数字开关电源正是为了克服现代电源的复杂性而提出的,它实现了数字和模拟技术的融合,提供了很强的适应性与灵活性,具备直接监视、处理并适应系 统条件的能力,能够满足几乎任何电源要求。数字电源还可通过远程诊断以确保持续的系统可靠性,实现故障管理、过电压(流)保护、自动冗余等功能。由于数字 电源的集成度很高,系统的复杂性并不随功能的增加而增加过多,外围器件很少(数字电源的快速响应能力还可以降低对输出滤波电容的要求),减少了占板面积, 简化了设计制造流程。同时,数字电源的自动诊断、调节的能力使调试和维护工作变得轻松。而数字电源相对于模拟电源的优势主要体现在以下几个方面: (1)便于高度集成化,由于数字电路采用二进制,其代码符号仪有0和l两种,因此在数字1电路中只要有个不同的状态分别表示0和1就可以,所以数字电路的基本单元十分简单,而且对元件要求也不严格,允许电路参数有较大的离散性,有利于将众多的基本单元集成在同一硅片上进行批量生产。 (2)工作准确可靠,抗干扰能力强。数字信号是l和0来表示信号的,而数字电路辨别信号的有无是很容易做到的,从而大大提高了电路的工作可靠性。同时数字信号不易受到噪声干扰,因此它的抗干扰能力极强。 (3)数字信息便于长期保存。借助某种媒体(磁盘、光盘等)可将数字信息长期保存下来。 (4)数字集成电路产品多、通用性强且成本低。 (5)保密性好,数字信息容易进行加密处理,不易被窃取。 (6)不尽能完成数值运算,还可以进行逻辑运算和判断,这在控制系统中是不可缺少的。 数字电源管理芯片易于在多相以及同步信号下进行多相式并联应用,可扩展性与重复性优秀,轻松实现负载均流,减少EMI,并简化滤波电路设 计。数字控制的灵活性能把电源组合成串联或并联模型,形成虚拟电源。而且,数字电源的智能化可保证在各种输入电压和负载点上都具有最优的功率转换效率。 相对模拟控制技术,数字技术的独特优势还包括在线可编程能力、更先进的控制算法、更好的效率优化、更高的操作精确度和可靠性、优秀的系统管 理和互联功能。数字电源不存在模拟电源中常见的误差、老化(包括模拟器件的精度)、温度影响、漂移、补偿等问题,无须调谐、可靠性好,可以获得一致、稳定 的控制参数。数字电源的运算特性使它更易于实现非线性控制(可改善电源的瞬态响应能力)和多环路控制等高级控制算法;更新固件即可实现新的拓扑结构和控制 算法,更改电源参数也无须变更板卡上的元器件。 数字控制还能让硬件平台重复使用,通过设计不同固件即可满足各种最终系统的独特要求,从而加快产品上市,减少开发成本、元器件库存与风险。 3 数字电源取代模拟电源的决定因素 数字控制能解决问题,是因为它具有比模拟控制更好的性能、更灵活且在复杂的设计中更易用。然而下面总结的六个方面是决定了模拟电源被数字电源取代的主要因素。 (1)瞬态响应:控制机制极大影响了系统的瞬态响应。例如,与电流模式相比,磁滞控制器的瞬态响应会有很大不同。每种控制模式都既有优点,也有缺点。数字解决方案让你能无缝地从一种模式转换到另一种模式,以提供最优的瞬态响应。虽然模拟解决方案可以提供很好的点方案,但极少出现足够静态的工作状况,让你能实现所设想的点方案。 (2)调节精度:一般来说,调节精度是根据线电压、负载和温度来定义的,因为这些条件中的每一个都会影响调节精度。数字控制器可以监视这些条件,并采取控制措施,在整个工作条件范围内进行优化。 (3)稳定性:数字控制能够提供比模拟方案更好的补偿(更好地调用极点和零点),因此在稳定性上的控制要好很多。另外,补偿能够随着条件的变化而变化,使系统能在很宽范围的条件下实现最佳的稳定性。模拟控制器的补偿是固定的,而数字控制可提供可调的甚至是自适应的补偿。 (4)故障响应:数字电源控制器提供了大量故障响应的选项。每种故障都有唯一的响应特性,可根据用户的需求进行调整。模拟控制器一般只有一个固定的故障响应(如断电/断续/过载),用户也只能选择用或者不用。数字控制还能提供滤波器功能,降低虚假故障的可能。 (5)效率:许多控制结果都会影响到效率,包括死区时间、开关频率、栅极驱动等级、二极管仿真、加相和缺相等。针对这些因素,当前数字控制所提供的数字控制算法在整个工作条件范围内进行了优化。因此,在某个工作点下,你也许能将模拟控制器调整到很高的效率,但数字控制器却可对所有的工作点进行优化。 (6)可靠性:减少元件数量、降低工作温度(通过效率优化)是数字电源提高系统可靠性的两个途径。此外,灵活的故障响应和探测元器件参数微小变化的能力,可以大幅减少停机时间。 一般情况下,对大多数简单的设计和基本要求来说,数字控制可能有点大材小用。当然,数字电源控制的灵活程度足以应付这些简单的应用,其功能可能超出实际所需。因此,数字控制器显然是备受欢迎的解决办法。 另外,数字电源控制一般比模拟控制器具有更高的集成度。然而,集成度还不足以满足设计重用和灵活性的要求;但是,数字电源控制器适用于各种各样的应用,无需借助附加电路。从这个意义上说,这项技术的灵活性要远优于传统的模拟技术。

    时间:2018-03-29 关键词: 电源技术解析 数字电源 模拟电源

  • Intersil推出业内首款15A、42V模拟电源模块

    全球领先的半导体解决方案供应商瑞萨电子株式会社(TSE: 6723)子公司Intersil今天宣布,推出业内首款42V单通道DC/DC步降电源模块ISL8215M,可提供高达15A的持续电流。该模块可在单一宽输入电压范围中运行,包括工业标准的12V、18V和24V中间总线电源轨。它提供0.6V - 12V可调节输出电压、60mA/mm2的最高功率密度,封装尺寸仅为13mm x 19mm。其96.5%的峰值效率为工业、医疗、RF通信、汽车电子、以及使用锂离子电池的便携式设备中的FPGA、DSP和MCU提供优异的负载点转换性能。 ISL8215M是一套完整的DC/DC电源模块,它在单个紧凑封装内包含了控制器、MOSFET、电感器和无源器件,简化了系统设计并加快产品上市速度。该模块的专有高密度阵列(HDA)封装,通过单层导电封装基板(可降低引线电感,并主要通过系统板散热)提供无可比拟的电子性能和热性能。ISL8215M安装在铜引线框架结构上,允许模块在没有气流或散热器的条件下在宽温度范围内全负载运行,进一步缩小尺寸和降低成本。 ISL8215M还提供快速瞬态响应和卓越的回路稳定性,其40ns典型最小导通时间允许单步低占空比降压转换为负载点电压。该器件提供可选择的轻负载效率,以延长锂离子电池寿命,并支持符合能源之星®(Energy Star)标准的产品。该器件提供电压、温度和电流保护功能,可确保在异常工作条件下的安全运行。ISL8215M还在故障清除时提供自动重启功能,以保护负载和系统。 Intersil公司工业模拟和电源产品部副总裁Philip Chesley表示:“ISL8215M具有无可比拟的功率密度和超高效率的性能。该模块具有小巧的尺寸、40V以上的输入电压、15A输出电流性能和丰富的功能,帮助客户轻松实现日益紧凑的电源设计。” ISL8215M的关键特性和规格 · 完整的15A单通道电源,集成了控制器、MOSFET、电感器和无源器件; · 可在单一7V - 42V宽输入电压范围内运行; · 0.6V - 12V可调节输出电压,线路、负载和温度的精度为+/-1.5%,40ns导通时间低占空比; · 高达96.5%的峰值效率; · 300kHz - 2MHz可调节开关频率,默认值为300kHz; · 外部时钟信号同步高达1MHz; · 可选择的轻负载PSM/DEM效率模式,有助于延长电池寿命; · 故障保护包括输入欠压锁定、过温、可编程过流、输出过压和输出预偏置启动,确保安全运行; · 可编程软启动可减少来自输入电源的浪涌电流; · 专用的使能引脚和电源良好标志,简化了具有电压跟踪的系统电源轨排序。

    时间:2017-09-13 关键词: intersil 电源资讯 isl8215m 模拟电源

首页  上一页  1 2 下一页 尾页
发布文章

技术子站