当前位置:首页 > 热敏电阻
  • Vishay新款高温NTC热敏电阻适合应用于汽车快速、高精度温度检测

    Vishay新款高温NTC热敏电阻适合应用于汽车快速、高精度温度检测

    2021年2月18日,宾夕法尼亚、MALVERN——日前,Vishay Intertechnology, Inc.宣布推出新款符合AEC-Q200标准的NTC热敏电阻——NTCLE350E4,采用PEEK绝缘镍铁(NiFe)合金引线,热梯度低。Vishay BCcomponents NTCLE350E4热敏电阻耐高温达+185°C,适合各种汽车应用快速、高精度温度检测。 NiFe合金NTCLE350E4传感器导线导热性目前在市场上最低。因此,器件热梯度小于0.01K/K(或1%),几乎不向周围环境散发热量,可进行高精度温测,优于铜等其他导线材料几个度量级。为加强高湿度条件下的可靠性,传感器PEEK绝缘引线与封装环氧树脂之间具有高粘合强度。NTC检测芯子最大直径为2.4mm,空气中快速响应时间为6秒。NTCLE350E4具有高精度、快速响应和耐高温能力,适用于内燃发动机冷却液、燃料、歧管气体压力(MAP / TMAP)传感器,以及暖通空调(HVAC)应用。在电力牵引电机中,器件可灌封或模压到传感器中,保护大电流连接器。除废气再循环(EGR)应用外,NTCLE350E4还可以用作变速箱系统和液冷起动发电机系统的油温传感器(OTS)。传感器符合RoHS标准,+25°C(R25)条件下阻值为2.1kW至30kΩ,公差为1%,β值(B25 / 85)为3435K至3984K,公差±0.5%。器件最大功耗100mW,提高了耐毒性气体和耐酸性能力。NTCLE350E4现可提供样品并已实现量产,供货周期为12周。

    时间:2021-02-18 关键词: Vishay 热敏电阻 NTC

  • NTC热敏电阻测温原理,电路设计以及程序设计

    近日一位朋友在后台发消息说,刚毕业入职一家小家电公司,正参与设计电磁炉控制电路,其中需要用到测温元器件,想了解所用的温度传感器有没有正负极、测温原理等内容。以前正好做过这一块内容,和大家学习一下。 电磁炉测温用的温度传感器其实是一个负温度系数的热敏电阻NTC,不仅如此,NTC在家电产品的测温中应用广泛,例如热水壶、咖啡机、消毒柜等用的都是NTC测温。既然NTC是一颗电阻,那么就不存在正负极的问题。 NTC热敏电阻测温的工作原理 所谓热敏电阻,就是指对温度比较敏感的电阻,随着温度的变化NTC的电阻值也会随之变化,环境温度和电阻值之间存在一定的关系曲线,通过测量阻值的变化情况就可以确定当前的温度值。这就是NTC测温的工作原理,其阻值和温度之间的关系曲线如下图所示。 NTC测温电路 在低成本的测温应用中,NTC一般和一个精密的定值电阻串联通过采集电阻两端的电压变化来确定环境温度。常用的测温电路如下图所示。 如上图的左侧电路。NTC和定值电阻R串联,当环境温度发生变化后,NTC的电阻值发生变化,导致NTC两端的电压发生变化,单片机通过采集NTC两端的电压就可以反推出当前的温度值。这是一种低成本常用的测温电路。 推荐杜洋老师《爱上单片机》手把手动手学习单片机: NTC测温程序设计 NTC的电阻值和温度是呈现一定的比例关系的,该比例关系和B值相关,各个厂家的Datasheet都会写明该公式,公式如下: NTC阻值和温度公式:Rt = Rn *EXP(B*(1/T-1/Tn)) 对上面的公式解释如下: 1.       Rt是热敏电阻的当前阻值; 2.       R是热敏电阻在Tn常温下的标称阻值; 3.       B值是热敏电阻的温度系数; 4.       EXP是e的n次方; 5.       这里T和Tn指的是K度即开尔文温度,K度=273.15(绝对温度)+摄氏度; 6.       T为当前温度;Tn为常温25℃; 比如 B值为3950的10K阻值的NTC,10K就是25℃时的阻值,B值为3950。通过以上公示就可以确立阻值和温度的关系。 部分程序代码如下: #define B 3950.0 //温度系数#define TN 298.15 //额定温度(绝对温度加常温:273.15+25)#define RN 10 // 额定阻值(绝对温度时的电阻值10k)#define BaseVol 5.04 //ADC基准电压float Get_Tempture(u16 adc){ float RV,RT,Tmp; RV=BaseVol/1024.0*(float)adc;//ADC为10位ADC,求出NTC电压:RV=ADCValu/1024*BaseVoltag RT=RV*10/(BaseVol-RV);//求出当前温度阻值 (BaseVoltage-RV)/R16=RV/RT;  Tmp=1/(1/TN+(log(RT/RN)/B))-273.15; //RT = RN exp*B(1/T-1/TN) return Tmp;} PT100测温原理 这里专指电阻测温,除了NTC之外,还有PT100正温度系数的热敏电阻、热电偶等。PT100相比较于NTC,更为精准主要用在工业产品的测温中,一般通过惠斯通电桥来检测电压的变化进而反推出温度值。如下图就是惠斯通电桥电路。 -END- 来源 | 玩转嵌入式 作者 | 刘小舒 | 整理文章为传播相关技术,版权归原作者所有 | | 如有侵权,请联系删除 | 【1】STM32如何配置外部中断? 【2】STM32单片机:独立看门狗、窗口看门狗的配置 【3】使用KeilMDK以及标准外设库创建STM32工程的详细过程 【4】编码器是什么?STM32编码器接口及应用编程 【5】STM32学了很久,为什么还是不会做项目? 免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

    时间:2020-11-25 关键词: 测温 热敏电阻

  • 值得了解的新款环氧树脂封装NTC热敏电阻---NTCLE317E4103SBA

    值得了解的新款环氧树脂封装NTC热敏电阻---NTCLE317E4103SBA

    在科学技术高度发达的今天,各种各样的高科技出现在我们的生活中,为我们的生活带来便利,那么你知道这些高科技可能会含有的NTC热敏电阻吗? 日前,VishayIntertechnology,Inc.(NYSE股市代号:VSH)宣布,推出新款环氧树脂封装NTC热敏电阻---NTCLE317E4103SBA,采用加长PEEK绝缘镍铁合金引线,热梯度超低,适用于汽车和工业应用高精度温度测量、感测和控制。 NTC热敏电阻是一种由锰(Mn)、镍(Ni)、铜(Cu)等成分构成的氧化物烧结体。NTC热敏电阻是一种随着温度的变化其电阻阻值呈相反趋势变化,且变化率极大的半导体电阻器。 镍铁合金VishayBCcomponentsNTCLE317E4103SBA传感器导线导热性达到市场最低水平。器件具有出色的热解耦性,温度测量精度达±0.5°C,优于其他导线材料(如铜)几个度量级。 NTC热敏电阻是一类在工业测温领域应用相当广泛的温度传感器。与半导体集成温度传感器相比,NTC热敏电阻具有测温范围宽、使用方便、价格低廉等特点;与铂热电阻或热电偶相比,NTC热敏电阻具有灵敏度高、电路简单、价格低廉的特点。 为加强高湿度条件下的可靠性,日前发布的器件PEEK绝缘引线与封装环氧树脂之间具有极高的粘合强度。NTCLE317E4103SBA小磁珠最大直径为1.6mm,在空气中的响应时间不到3秒。75mm灵活的径向长引线满足特殊安装或组装要求。 热敏电阻的温度测量范围可达-100℃ ~500℃ ,其灵敏度可达-44000ppm/ ℃(25℃ 时),其实际使用尺寸十分灵活,可小至0.01英寸或更小的直径,最大几乎没有限制。 器件具有出色的精度和快速响应速度,适用于锅炉、烟/火探测器、电池组电池管理系统(BMS)、充电电路、直流风扇电机、汽车座椅加热和HVAC传感器以及打印头。符合RoHS标准的传感器+25°C(R25)条件下电阻为10kΩ,曲线跟踪范围25°C至85°C,β值(B25/85)为3984K,公差±0.5%。器件最大功耗50mW,工作温度-55°C至+150°C。 以上就是NTC热敏电阻的一些值得大家学习的详细资料解析,希望在大家刚接触的过程中,能够给大家一定的帮助,如果有问题,也可以和小编一起探讨。

    时间:2020-11-13 关键词: ntc Vishay 热敏电阻

  • Power Integrations推出全新MinE-CAP IC,可将AC-DC变换器的体积最多缩小40%

    Power Integrations推出全新MinE-CAP IC,可将AC-DC变换器的体积最多缩小40%

    全新的MinE-CAP器件可大幅缩小输入大容量电容的尺寸,减小高达95%的浪涌电流,无需NTC热敏电阻并且避免相关损耗 深耕于高压集成电路高能效功率转换领域的知名公司Power Integrations公司(纳斯达克股票代号:POWI)近日发布适用于高功率密度、通用输入AC-DC变换器的MinE-CAP™ IC。这种新型IC可将离线电源所需的高压大容量电解电容器的尺寸减半,使得适配器的尺寸最多缩小40%。MinE-CAP器件还可大幅减小浪涌电流,这有助于省去NTC热敏电阻,提高系统效率,并减少热耗散。 Power Integrations产品营销总监Chris Lee表示:“MinE-CAP将改变紧凑型充电器和适配器的游戏规则。电解电容体积比较庞大,占内部体积的很大一部分,而且常常限制了适配器设计的外形尺寸选择,尤其是最小厚度。MinE-CAP IC允许设计人员在很大一部分储能中主要使用低电压额定电容,这样可以使这些元件的体积随电压线性缩小。USB PD技术为市场普遍采用小型65W充电器提供了巨大的推动力,许多公司都在设法通过提高开关频率来缩小反激式变压器的尺寸。MinE-CAP提供的体积节省比将开关频率翻倍的方法更大,同时还能有效提高系统效率。” MinE-CAP器件可利用PowiGaN™氮化镓晶体管的小尺寸和低RDSon,根据交流输入电压条件,主动、自动连接和断开大容量电容网络的各个部分。使用MinE-CAP的设计人员可选用交流高输入电压所需的最小高额定电压大容量电容,并将大部分储能分配给低压电容,这些电容由MinE-CAP提供保护,直到在交流低输入电压下需要时为止。这种方法可大幅缩小输入大容量电容的尺寸,而不会影响输出纹波、工作效率或无需重新设计变压器。 传统的功率变换解决方案通过提高开关频率来使用更小的变压器,从而减小电源尺寸。创新的MinE-CAP IC不仅可以大幅缩小电源的整体尺寸,同时还能减少元件数,降低EMI,并且避免与高频设计相关的变压器/箝位损耗增加的挑战。它的应用范围包括智能手机充电器、家电、电动工具、照明和汽车。 Power Integrations印度分公司销售总监Bhaskar Thiagaragan表示:“MinE-CAP IC支持宽范围输入电压,适用于几乎所有的地区。在印度,我们的设计通常适用于90VAC至350VAC输入电压范围,并在此基础上设置充足的浪涌降额。这里的工程师经常抱怨需要使用各种昂贵的高压电容。MinE-CAP可大幅减少高压储能元件的数量,并使低电压电容免受电网电压剧烈波动的影响,从而大大增强耐用性,同时减少系统维护和产品返修。” 新器件采用微型MinSOP-16A封装,可与Power Integrations的InnoSwitch™系列电源IC无缝配合,所需外部元件极少。MinE-CAP MIN1072M IC现已开始供货,客户可随时从PI办事处和特许分销商处订购,基于10000片的订购量单价为1.75美元。同时,还推出了两份全新设计范例报告(DER),它们均采用MinE-CAP IC和Power Integrations的InnoSwitch3-Pro系列PowiGaN IC(型号INN3370C-H302)。DER-626是一款适用于手机/笔记本电脑充电器的提供3.3V - 21V PPS输出的65W USB PD 3.0电源。DER-822是一款使用INN3379C-H302设计的、适用于USB PD/PPS电源适配器的60W USB PD 3.0电源。

    时间:2020-10-29 关键词: 充电器 适配器 热敏电阻

  • 你知道温度传感器中的热敏电阻应该如何选择吗?

    你知道温度传感器中的热敏电阻应该如何选择吗?

    你知道如何为温度传感器选择正确的热敏电阻吗?当面对数以千计的热敏电阻类型时,选型可能会造成相当大的困难。在这篇技术文章中,我将为您介绍选择热敏电阻时需牢记的一些重要参数,尤其是当要在两种常用的用于温度传感的热敏电阻类型(负温度系数NTC热敏电阻或硅基线性热敏电阻)之间做出决定时。NTC热敏电阻由于价格低廉而广泛使用,但在极端温度下提供精度较低。 硅基线性热敏电阻可在更宽温度范围内提供更佳性能和更高精度,但通常其价格较高。下文中我们将会介绍,正在市场投放中的其他线性热敏电阻,可以提供更具成本效益的高性能选件,帮助解决广泛的温度传感需求的同时不会增加解决方案的总体成本。 适用于您应用的热敏电阻将取决于许多参数,例如: ·物料清单(BOM)成本。 ·电阻容差。 ·校准点。 ·灵敏度(每摄氏度电阻的变化)。 ·自热和传感器漂移。 物料清单成本 热敏电阻本身的价格并不昂贵。由于它们是离散的,因此可以通过使用额外的电路来改变其电压降。例如,如果您使用的是非线性的NTC热敏电阻,且希望在设备上出现线性电压降,则可选择添加额外的电阻器帮助实现此特性。但是,另一种可降低BOM和解决方案总成本的替代方案是使用自身提供所需压降的线性热敏电阻。好消息是,借助我们的新型线性热敏电阻系列,这两。这意味着工程师可以简化设计、降低系统成本并将印刷电路板(PCB)的布局尺寸至少减少33%。 电阻容差 热敏电阻按其在25°C时的电阻容差进行分类,但这并不能完全说明它们如何随温度变化。您可以使用设计工具或数据表中的器件电阻与温度(R-T)表中提供的最小、典型和最大电阻值来计算相关的特定温度范围内的容差。 为了说明容差如何随热敏电阻技术的变化而变化,让我们比较一下NTC和我们的基于TMP61硅基热敏电阻,它们的额定电阻容差均为±1%。图1说明了当温度偏离25°C时,两个器件的电阻容差都会增加,但在极端温度下两者之间会有很大差异。计算此差异非常重要,这样您就可选择相关温度范围内保持较低容差的器件。 图1:电阻容差:NTC与TMP61 校准点 并不知晓热敏电阻在其电阻容差范围内的位置会降低系统性能,因为您需要更大的误差范围。校准将告知您期望的电阻值,这可帮助您大幅减少误差范围。但是,这是制造过程中的一个附加步骤,因此应尽量将校准保持在更低水平。 校准点的数量取决于所使用的热敏电阻类型以及应用的温度范围。对于较窄的温度范围,一个校准点适用于大多数热敏电阻。对于需要宽温度范围的应用,您有两种选择:1)使用NTC校准三次(这是由于它们在极端温度下的灵敏度低且有较高电阻容差),或2)使用硅基线性热敏电阻校准一次,其比NTC更加稳定。 灵敏度 当试图从热敏电阻获得良好精度时,每摄氏度电阻(灵敏度)出现较大变化只是其中一个难题。但是,除非您通过校准或选择低电阻容差的热敏电阻在软件中获得正确的电阻值,否则较大的灵敏度也将无济于事。 由于NTC电阻值呈指数下降,因此在低温下具有极高的灵敏度,但是随着温度升高,灵敏度也会急剧下降。硅基线性热敏电阻的灵敏度不像NTC那样高,因此它可在整个温度范围内进行稳定测量。随着温度升高,硅基线性热敏电阻的灵敏度通常在约60°C时超过NTC的灵敏度。 自热和传感器漂移 热敏电阻以热量形式散发能耗,这会影响其测量精度。散发的热量取决于许多参数,包括材料成分和流经器件的电流。 传感器漂移是热敏电阻随时间漂移的量,通常通过电阻值百分比变化给出的加速寿命测试在数据表中指定。如果您的应用要求使用寿命较长,且灵敏度和精度始终如一,请选择具有较低自热且传感器漂移小的热敏电阻。 那么,您应该何时在NTC上使用像TMP61这样的硅线性热敏电阻呢? 查看表1,您可以发现:相同价格下,几乎在硅基线性热敏电阻的规定工作温度范围内的任何情况下,硅基线性热敏电阻都可以从其线性和稳定性中获益。硅基线性热敏电阻也有商用和汽车用两种版本,并采用表面贴装器件NTC通用标准0402和0603封装。 表1:NTC与TI硅基线性热敏电阻 有关TI热敏电阻的完整R-T表以及带有示例代码的简便温度转换方法,请下载我们的热敏电阻设计工具。以上就是温度传感器选择正确的热敏电阻解析,希望能给大家帮助。

    时间:2020-10-26 关键词: 传感器 温度 热敏电阻

  • NTC测温的原理,硬件、软件如何实现

    常用的测温方案有这么几种:数字测温芯片、PT100、PT1000、热电偶、NTC等,其中NTC测温的成本是最低的,但是精度也是最低的,主要用在对测温精度要求不高的场所。下面结合自己的使用情况介绍一下NTC。 1.什么是NTC NTC是负温度系数的热敏电阻,即随着温度上升其电阻值变小,但是其变化趋势呈现指数变化,故误差较大,不适用用于精确测量的场合。NTC的温度-阻值变化曲线如下图所示。 一般将室温(25℃)下的NTC的电阻值作为标准值,如100K的NTC是指25℃下其阻值为100K。 2.NTC的测量方法 NTC测量的时候应分为两个步骤: 步骤一。在25℃下,测量其标称电阻值。比如100K的NTC。在25℃时用万用表或者电阻仪其电阻值,记录测量值与标称值进行对比; 步骤二。在特定温度下测量其电阻值。比如:将100K的NTC置于60℃的恒温环境下(建议用油槽进行测量,因为油槽的温度比较恒定)测量其电阻值,记录测量值与标称值进行对比,测试电阻值应为24.5K左右; 可以根据自己的需求多测几个温度点。 上图是标称值为100K的NTC在24-40℃情况下的电阻值情况。 3.N TC电阻如何使用 在测温精度要求不高的需求中可以使用NTC来测温,一般NTC电阻和一定值电阻串联,通过测量电阻两端的电压即可计算出NTC的阻值,进而可以知道当前环境大致的温度值。其电路图如下所示。 以下是我在使用的程序代码,用来处理NTC的数据,首先计算出当前的NTC电阻值,再转换成温度值。所使用NTC的B值为3950,单片机为10位的AD采样,编程环境为IAR。 需要注意的是NTC的测温曲线线性度不是很好,为了提高精度在不同的温度段需要分段处理,以防止测温误差过大。 免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

    时间:2020-10-26 关键词: ntc 热敏电阻

  • PT100如何测温,信号如何处理,如何接线

    PT100是正温度系数的热敏电阻,线性度比较好可以用来连续测温,下面介绍PT100的测温原理和接线方式。 1.什么是PT100 PT100是铂电阻,随着温度的升高电阻增大,并且基本呈线性方式,很适合用作连续测温,所以很多工业用温度传感器都是用PT100来实现的。这里的100是指铂电阻的阻值在0℃时为100Ω。相应的PTT1000是指,在0℃时电阻值为1000Ω。 2.PT100的测温原理和调理方式 在使用PT100测温时,通常用惠斯通电桥来实现。即利用三个定值电阻和PT100组成惠斯通电桥,当温度发生变化时导致PT100阻值发生变化,从而使电阻两端的压差发生变化。 后端处理电路以AD620/AD623查分运放为例,通过调节电阻R51可以设置查分运放的放大倍数,信号经过调理后可以进入单片机进行AD采样。如下的电路,是我应经成熟应用的,产品已经量产多年,比较稳定,大家可以参考。 3.PT100的接线方式 PT100的接线方式有四线制、三线制、两线制,在采样精度要求不是非常精确的情况下,三线制用的比较多。如下图所示,是PT100的三线制和两线制的接线方法。 其实从图上可以看出,接线类似,在接线时注意要把电阻接入采样端。 免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

    时间:2020-10-26 关键词: 测温 热敏电阻

  • 采用加长PEEK绝缘镍铁引线的NTC热敏电,你了解吗?

    采用加长PEEK绝缘镍铁引线的NTC热敏电,你了解吗?

    什么是采用加长PEEK绝缘镍铁引线的NTC热敏电?它有什么作用?日前,Vishay Intertechnology, Inc.(NYSE 股市代号:VSH)宣布,推出新款环氧树脂封装NTC热敏电阻---NTCLE317E4103SBA,采用加长PEEK绝缘镍铁合金引线,热梯度超低,适用于汽车和工业应用高精度温度测量、感测和控制。 镍铁合金Vishay BCcomponents NTCLE317E4103SBA传感器导线导热性达到市场最低水平。器件具有出色的热解耦性,温度测量精度达( 0.5 (C,优于其他导线材料(如铜)几个度量级。 为加强高湿度条件下的可靠性,日前发布的器件PEEK绝缘引线与封装环氧树脂之间具有极高的粘合强度。NTCLE317E4103SBA小磁珠最大直径为1.6 mm,在空气中的响应时间不到3秒。75 mm灵活的径向长引线满足特殊安装或组装要求。 器件具有出色的精度和快速响应速度,适用于锅炉、烟/火探测器、电池组电池管理系统(BMS)、充电电路、直流风扇电机、汽车座椅加热和HVAC传感器以及打印头。符合RoHS标准的传感器+25°C(R25)条件下电阻为10 kΩ,曲线跟踪范围25 (C至85 °C,β值(B25/85)为3984 K,公差± 0.5 %。器件最大功耗50 mW,工作温度-55 °C至+150 °C。以上就是采用加长PEEK绝缘镍铁引线的NTC热敏电解析,希望能给大家帮助。

    时间:2020-10-20 关键词: peek绝缘镍铁 Vishay 热敏电阻

  • Vishay推出NTC热敏电阻,采用加长PEEK绝缘镍铁引线实现快速、高精度测量

    Vishay推出NTC热敏电阻,采用加长PEEK绝缘镍铁引线实现快速、高精度测量

    宾夕法尼亚、MALVERN —2020年10月9日 —日前,Vishay Intertechnology, Inc.宣布,推出新款环氧树脂封装NTC热敏电阻---NTCLE317E4103SBA,采用加长PEEK绝缘镍铁合金引线,热梯度超低,适用于汽车和工业应用高精度温度测量、感测和控制。 镍铁合金Vishay BCcomponents NTCLE317E4103SBA传感器导线导热性达到市场最低水平。器件具有出色的热解耦性,温度测量精度达± 0.5 °C,优于其他导线材料(如铜)几个度量级。 为加强高湿度条件下的可靠性,日前发布的器件PEEK绝缘引线与封装环氧树脂之间具有极高的粘合强度。NTCLE317E4103SBA小磁珠最大直径为1.6 mm,在空气中的响应时间不到3秒。75 mm灵活的径向长引线满足特殊安装或组装要求。 器件具有出色的精度和快速响应速度,适用于锅炉、烟/火探测器、电池组电池管理系统(BMS)、充电电路、直流风扇电机、汽车座椅加热和HVAC传感器以及打印头。符合RoHS标准的传感器+25°C(R25)条件下电阻为10 kΩ,曲线跟踪范围25 °C至85 °C,β值(B25/85)为3984 K,公差± 0.5 %。器件最大功耗50 mW,工作温度-55 °C至+150 °C。 NTCLE317E4103SBA现可提供样品并已实现量产,供货周期为6周。

    时间:2020-10-09 关键词: 镍铁引线 Vishay 热敏电阻

  • PTC热敏电阻构成的汽车温度指示器电路

    PTC热敏电阻构成的汽车温度指示器电路

    该电路用于指示两个不同的水温触发点,当温度达到设定值是,LED发光。该电路围绕LM2904双运放大器,从12V汽车系统供电。热敏电阻与一个10kΩ电阻串联,与9.1V电源正极并接地。 PTC热敏电阻构成的汽车温度指示器电路:

    时间:2020-09-09 关键词: 指示器 ptc 热敏电阻

  • 温度传感器的热敏电阻选择方式,你知道吗?

    温度传感器的热敏电阻选择方式,你知道吗?

    你知道温度传感器的热敏电阻选择方式吗?当面对数以千计的热敏电阻类型时,选型可能会造成相当大的困难。在这篇技术文章中,我将为您介绍选择热敏电阻时需牢记的一些重要参数,尤其是当要在两种常用的用于温度传感的热敏电阻类型(负温度系数NTC热敏电阻或硅基线性热敏电阻)之间做出决定时。 NTC热敏电阻由于价格低廉而广泛使用,但在极端温度下提供精度较低。硅基线性热敏电阻可在更宽温度范围内提供更佳性能和更高精度,但通常其价格较高。下文中我们将会介绍,正在市场投放中的其他线性热敏电阻,可以提供更具成本效益的高性能选件,帮助解决广泛的温度传感需求的同时不会增加解决方案的总体成本。 适用于您应用的热敏电阻将取决于许多参数,例如: ·物料清单(BOM)成本。 ·电阻容差。 ·校准点。 ·灵敏度(每摄氏度电阻的变化)。 ·自热和传感器漂移。 物料清单成本 热敏电阻本身的价格并不昂贵。由于它们是离散的,因此可以通过使用额外的电路来改变其电压降。例如,如果您使用的是非线性的NTC热敏电阻,且希望在设备上出现线性电压降,则可选择添加额外的电阻器帮助实现此特性。但是,另一种可降低BOM和解决方案总成本的替代方案是使用自身提供所需压降的线性热敏电阻。好消息是,借助我们的新型线性热敏电阻系列,这两。这意味着工程师可以简化设计、降低系统成本并将印刷电路板(PCB)的布局尺寸至少减少33%。 电阻容差 热敏电阻按其在25°C时的电阻容差进行分类,但这并不能完全说明它们如何随温度变化。您可以使用设计工具或数据表中的器件电阻与温度(R-T)表中提供的最小、典型和最大电阻值来计算相关的特定温度范围内的容差。 为了说明容差如何随热敏电阻技术的变化而变化,让我们比较一下NTC和我们的基于TMP61硅基热敏电阻,它们的额定电阻容差均为±1%。图1说明了当温度偏离25°C时,两个器件的电阻容差都会增加,但在极端温度下两者之间会有很大差异。计算此差异非常重要,这样您就可选择相关温度范围内保持较低容差的器件。 图1:电阻容差:NTC与TMP61 校准点 并不知晓热敏电阻在其电阻容差范围内的位置会降低系统性能,因为您需要更大的误差范围。校准将告知您期望的电阻值,这可帮助您大幅减少误差范围。但是,这是制造过程中的一个附加步骤,因此应尽量将校准保持在更低水平。 校准点的数量取决于所使用的热敏电阻类型以及应用的温度范围。对于较窄的温度范围,一个校准点适用于大多数热敏电阻。对于需要宽温度范围的应用,您有两种选择:1)使用NTC校准三次(这是由于它们在极端温度下的灵敏度低且有较高电阻容差),或2)使用硅基线性热敏电阻校准一次,其比NTC更加稳定。 灵敏度 当试图从热敏电阻获得良好精度时,每摄氏度电阻(灵敏度)出现较大变化只是其中一个难题。但是,除非您通过校准或选择低电阻容差的热敏电阻在软件中获得正确的电阻值,否则较大的灵敏度也将无济于事。 由于NTC电阻值呈指数下降,因此在低温下具有极高的灵敏度,但是随着温度升高,灵敏度也会急剧下降。硅基线性热敏电阻的灵敏度不像NTC那样高,因此它可在整个温度范围内进行稳定测量。随着温度升高,硅基线性热敏电阻的灵敏度通常在约60°C时超过NTC的灵敏度。 自热和传感器漂移 热敏电阻以热量形式散发能耗,这会影响其测量精度。散发的热量取决于许多参数,包括材料成分和流经器件的电流。 传感器漂移是热敏电阻随时间漂移的量,通常通过电阻值百分比变化给出的加速寿命测试在数据表中指定。如果您的应用要求使用寿命较长,且灵敏度和精度始终如一,请选择具有较低自热且传感器漂移小的热敏电阻。 那么,您应该何时在NTC上使用像TMP61这样的硅线性热敏电阻呢? 查看表1,您可以发现:相同价格下,几乎在硅基线性热敏电阻的规定工作温度范围内的任何情况下,硅基线性热敏电阻都可以从其线性和稳定性中获益。硅基线性热敏电阻也有商用和汽车用两种版本,并采用表面贴装器件NTC通用标准0402和0603封装。以上就是温度传感器的热敏电阻选择方式,希望能给大家帮助。

    时间:2020-05-25 关键词: 德州仪器 温度传感器 热敏电阻

  • 如何选购主流的温度传感器?

    如何选购主流的温度传感器?

    你知道如何选择温度传感器吗?随着技术不断的发展,作为工业、物联网、医疗等行业最常见的传感器,温度传感器发展至今可谓是百花齐放,各执其责。按照作用方式来分的话,分为接触式和非接触式温度传感器。接触式温度传感器包括双金属温度计、玻璃液体温度计、压力式温度计、电阻温度计、热敏电阻和温差电偶等;非接触式的基本是根据黑体辐射的基本定理,而这类传感器只有对黑体所测的温度才是真实温度,对于非黑体需要进行材料表面发射率的修正,不过材料表面发射率的测试精度很难保证,因为其发射率受温度、波长、表面状态、涂层等因素有关。 不过,现在主流的温度传感器分为四种,即RTD、热敏电阻、热电偶以及具有数字和模拟接口的集成电路传感器。 RTD RTD温度传感器主要是金属制成,通过温度变化影响自身电阻值来测量温度。虽然常用金属有铜、镍和镍合金,但是铂凭借良好的线性、重复性和稳定性稳固了温度参考传递国际标准的地位。RTD的电阻是随着温度的上升而增大,但是也并非是很严格线性,根据下图我们可以看到,会产生轻微偏差,一般情况下可以对电阻值进行数字化处理,查找校正因子。 还是以铂为例,在性能方面,铂RTD除了具有上述所说的线性、重复性和稳定性的优点,-200~+650℃的测温范围,0.1~1.0℃的测温精度上也是比较优良的性能。不过,RTD的缺点也是比较明显,由于需要恒定电压/电流,所以通电过程中产生的功率会影响其所测温度,影响准确度(需进一步纠正)。另外,在RTD模拟信号输出时,放大器和ADC组件的自身误差也需要计算在内。 热敏电阻 类似于RTD,热敏电阻也是电阻式传感器。它的分类主要是按照温度系数划定,分为正温度系数热敏电阻器(PTC)和负温度系数热敏电阻器(NTC)。PTC主要材料为掺杂的BaTiO3半导体陶瓷,而NTC主要材料是过渡金属氧化物半导体陶瓷。 以NTC为例,虽然不是线性变化,但是它的线性度是指数函数,电阻值随着温度的升高而降低。由于其本身材料因素,所以它的整体价格相对于铂RTD来说比较经济,同时,材料选用也是相对灵活,能够加工成各式各样的形状以及小型化处理。另外,由于其电阻随温度变化极为灵敏,它的测量精度与铂RTD不相上下,为0.05~1.5℃。 同样的,由于通电过程中,产生的自热和ADC等因素会对测量结果造成影响,所以NTC的测量结果也需要进行纠正。它的适用温度范围相对来说也比较苛刻,一般在0-150℃左右。需要指出的是,由于NTC元件容易老化,稳定性也一般。 热电偶 热电偶传感器是属于非常常见的接触式传感器,通过两种不同的导体材料两端接合形成回路。当结合点两端的温度不同,回路就会产生电动势,也称为热电势,根据热电势的大小,在连接的表盘上显示温度。 由于使用材料的灵活性,热电偶传感器的测温范围很广,工作温度最高可以达到2000℃以上,且属于耐用器件,可用于危险恶劣的环境下。同时它的感应接合点是直接暴露的,所以它对温度变化的响应较快。其实我们从原理上就可以看出来,热电偶传感器不需要外接电源,所以它不容易产生自发热。 显然,热电偶传感器在准确度以及稳定性上会稍逊一筹,它的测温精度在0.5-5.0℃,而由于暴露,抗腐蚀性较弱,所以稳定性不如RTD和热敏电阻。 IC类传感器 IC类温度传感器属于集成式的传感器,目前分为模拟输出传感器、数字输出传感器、远程温度传感器以及温度开关类的具有温控器功能的传感器。不过,从主流分类来看,模拟集成温度传感器和模拟集成数字传感器使用较多。这两款传感器都属于内置ADC,将温度传感器集成在芯片上进行测量、计算、输出等动作。IC类温度传感器的优点在于功耗较低,体积小,集成度高,生产测试过程中已经做过校准,所以出厂后无需再次校准。 缺点在于,它的测试温度范围仅为-70~+150℃,测温精度与热电偶传感器差不多,为0.5-5.0℃。在物联网成为风口、传感器需求加速增长的时代下,温度传感器无疑将会成为最重要的器件之一,如何选择合适的温度传感器,需要从温度范围、精度、成本等多个角度考量。以上就是主流的温度传感器的选择方法,希望能给大家帮助。 不过,现在主流的温度传感器分为四种,即RTD、热敏电阻、热电偶以及具有数字和模拟接口的集成电路传感器。 RTD RTD温度传感器主要是金属制成,通过温度变化影响自身电阻值来测量温度。虽然常用金属有铜、镍和镍合金,但是铂凭借良好的线性、重复性和稳定性稳固了温度参考传递国际标准的地位。RTD的电阻是随着温度的上升而增大,但是也并非是很严格线性,根据下图我们可以看到,会产生轻微偏差,一般情况下可以对电阻值进行数字化处理,查找校正因子。 还是以铂为例,在性能方面,铂RTD除了具有上述所说的线性、重复性和稳定性的优点,-200~+650℃的测温范围,0.1~1.0℃的测温精度上也是比较优良的性能。不过,RTD的缺点也是比较明显,由于需要恒定电压/电流,所以通电过程中产生的功率会影响其所测温度,影响准确度(需进一步纠正)。另外,在RTD模拟信号输出时,放大器和ADC组件的自身误差也需要计算在内。 热敏电阻 类似于RTD,热敏电阻也是电阻式传感器。它的分类主要是按照温度系数划定,分为正温度系数热敏电阻器(PTC)和负温度系数热敏电阻器(NTC)。PTC主要材料为掺杂的BaTiO3半导体陶瓷,而NTC主要材料是过渡金属氧化物半导体陶瓷。 以NTC为例,虽然不是线性变化,但是它的线性度是指数函数,电阻值随着温度的升高而降低。由于其本身材料因素,所以它的整体价格相对于铂RTD来说比较经济,同时,材料选用也是相对灵活,能够加工成各式各样的形状以及小型化处理。另外,由于其电阻随温度变化极为灵敏,它的测量精度与铂RTD不相上下,为0.05~1.5℃。 同样的,由于通电过程中,产生的自热和ADC等因素会对测量结果造成影响,所以NTC的测量结果也需要进行纠正。它的适用温度范围相对来说也比较苛刻,一般在0-150℃左右。需要指出的是,由于NTC元件容易老化,稳定性也一般。 热电偶 热电偶传感器是属于非常常见的接触式传感器,通过两种不同的导体材料两端接合形成回路。当结合点两端的温度不同,回路就会产生电动势,也称为热电势,根据热电势的大小,在连接的表盘上显示温度。 由于使用材料的灵活性,热电偶传感器的测温范围很广,工作温度最高可以达到2000℃以上,且属于耐用器件,可用于危险恶劣的环境下。同时它的感应接合点是直接暴露的,所以它对温度变化的响应较快。其实我们从原理上就可以看出来,热电偶传感器不需要外接电源,所以它不容易产生自发热。 显然,热电偶传感器在准确度以及稳定性上会稍逊一筹,它的测温精度在0.5-5.0℃,而由于暴露,抗腐蚀性较弱,所以稳定性不如RTD和热敏电阻。 IC类传感器 IC类温度传感器属于集成式的传感器,目前分为模拟输出传感器、数字输出传感器、远程温度传感器以及温度开关类的具有温控器功能的传感器。不过,从主流分类来看,模拟集成温度传感器和模拟集成数字传感器使用较多。这两款传感器都属于内置ADC,将温度传感器集成在芯片上进行测量、计算、输出等动作。IC类温度传感器的优点在于功耗较低,体积小,集成度高,生产测试过程中已经做过校准,所以出厂后无需再次校准。 缺点在于,它的测试温度范围仅为-70~+150℃,测温精度与热电偶传感器差不多,为0.5-5.0℃。在物联网成为风口、传感器需求加速增长的时代下,温度传感器无疑将会成为最重要的器件之一,如何选择合适的温度传感器,需要从温度范围、精度、成本等多个角度考量。以上就是主流的温度传感器的选择方法,希望能给大家帮助。

    时间:2020-05-01 关键词: 温度传感器 热电偶 热敏电阻

  • 大功率白光LED模组的电路驱动方案

    大功率白光LED模组的电路驱动方案

    电路驱动一只大功率白光LED(WLED),当温度过高以及热敏电阻发生开路或短路故障时,将关闭LED。如果工作在极限工作温度范围以外,任何IC的寿命都会缩短。当芯片的结温超过特定值后,就会彻底损坏。Philips Lumileds LUXEON大功率LED模组由于是在热增强型基底上制造的,因而发热会少一些。这种基底材料改善了热性能,允许持续工作在大电流下,从而满足高亮度照明的要求。可是对于象照相机闪光灯这样的应用,为避免持续工作时的功耗损坏器件,则需要提供额外的热保护功能。 图1电路包括一款适合于照相机闪光灯应用的电荷泵调节器(IC1),该器件可以为最多8 只白光LED (WLED)提供调节电流。并联所有8路,可以为单个1W、LUXEON Star大功率WLED模组提供高达480mA电流。当开漏输入EN被拉到地时,IC1进入关断模式。 图1. 电路驱动一只大功率WLED,当温度过高以及热敏电阻发生开路或短路故障时,将关闭LED 可以利用一只热敏电阻和一个带内部基准的双路开漏极比较器(IC2),来构建空间紧凑和极具成本效益的热关断电路。VTHERM跌落至1.2V内部基准电压以下时,比较器A将EN拉低到地。当热敏电阻(R2)温度很高时,就会执行该操作。比较器B用于提供开路失效保护功能,即当热敏电阻的接点断开时,EN将被拉低。热敏电阻发生开路故障时,VTHERM被R1拉高,从而使比较器B拉低EN。电阻分压器R3-R4设定开路故障的门限电压,电阻R1和热敏电阻R2设置热关断门限。

    时间:2020-04-30 关键词: LED 热敏电阻

  • NTC温度传感器解析

    NTC温度传感器解析

    什么是NTC温度传感器?它有什么作用?我们应该掌握那些含金量的技术?小编也一起提高下NTC温度传感器的相关技术。NTC温度传感器是一种热敏电阻、探头,其原理为:电阻值随着温度上升而迅速下降。其通常由2或3种金属氧化物组成, 混合在类似流体的粘土中,并在高温炉内锻烧成致密的烧结陶瓷。实际尺寸十分灵活,它们可小至.010英寸或很小的直径。最大尺寸几乎没有限制,但通常适用半英寸以下。 NTC温度传感器 NTC热敏电阻、探头组(合)件.一种用热敏电阻外壳,延长引线,有时还用了一个接头组合而成的成品热敏电阻组(合)件。 结构 一般由NTC热敏电阻、探头(金属壳或塑胶壳等,延长引线,及金属端子或连端器组成 原理 利用NTC热敏电阻在一定的测量功率下,电阻值随着温度上升而迅速下降。利用这一特性, 可将NTC热敏电阻通过测量其电阻值来确定相应的温度,从而达到检测和控制温度的目的。 应用 ● 空调,冰箱,冷柜,热水器,饮水机,暖风机,洗碗机,消毒柜,洗衣机,烘干机等家电设备上. ● 汽车空调,水温传感器,进气温度传感器,发动机 ● 开关电源,UPS不间断电源,变频器,电锅炉等 ● 智能马桶,电热毯等 特点: ● 灵敏度高,响应速度快 ● 阻值和B值精度高,一致性互换性好 ● 采用双层包封工艺,具有良好的绝缘密封性和抗机械碰撞,抗弯折能力 ● 结构简单灵活,可根据客户不同设秆要求定制. NTC温度传感器的性能介绍: ntc温度传感器通常由2或3种金属氧化物组成, 混合在类似流体的粘土中, 并在高温炉内锻烧成致密的烧结陶瓷。氧连结金属往往会提供自由电子。陶瓷通常是极好的绝缘体。但只有在理论上,当温度接近绝对零度时,热敏电阻型陶瓷才是这种情况。但是,当温度增加至较常见的范围时,热激发会抛出越来越多的自由电子。随着许多电子载流通过陶瓷,有效阻值则降低。电阻随温度的变化极为灵敏。典型变化为每摄氏度减少(-)7[%]至3[%]。这时适合宽温度范围内使用的任何传感器来说是最灵敏的。 额定室温电阻取决于基本材料的电阻率,大小和几何形状,以及电极的接触面积。厚而窄的热敏电阻具有相对高的电阻,而形状是薄而宽的则具有较低电阻。实际尺寸也十分灵活,它们可小至.010英寸或很小的直径。最大尺寸几乎没有限制,但通常适用半英寸以下。以上就是NTC温度传感器的一些技术知识,希望能给大家启发。

    时间:2020-04-01 关键词: 探头 ntc温度传感器 热敏电阻

  • 热敏电阻的使用方法

    热敏电阻的使用方法

    很多人都知道热敏电阻,那么它一个个如何使用呢?热敏电阻是元器件其中之一,大多数用于仪器线路温度补偿和温差电偶冷端温度补偿等。利用NTC热敏电阻的自热特性可实现自动增益控制,构成RC振荡器稳幅电路,延迟电路和保护电路。在自热温度远大于环境温度时阻值还与环境的散热条件有关,因此在流速计、流量计、气体分析仪、热导分析中常利用热敏电阻这一特性,制成专用的检测元件。 1 过液面控制 将两只负温度系数热敏电阻置于容器高、低液面安全位置,并施加定值加热电流。处于底部浸没于液体中的热敏电阻表面温度与周界温度相同,而处于高处暴露于空气中的热敏电阻表面温度则高于周界温度。若液面淹没高处电阻,使其表面溢度下降阻值增高,判断电路可利用阻值变化而及时通知报警装置,动作电路切断进液管路,起到过液面保护作用。若液面下降到低位,底部热敏电阻逐渐暴露于空气中,此时表面温度升高阻值下降,判断电路可利用阻值变化而及时通知动作电路打开进液管路供液。 2 温度测量 作为测量温度的热敏电阻一般结构简单。由于本身阻值较大,所以可忽略连接处的接触电阻,并可应用在数千米之外的远距离遥测过程。 3 温度补偿 利用负温度特性,可在某些电子装置中起到补偿作用。当过载而使电流和温度增加时,热敏电阻阻值加大反向下拉电流,起到补偿、保护等作用。此时应注意热敏电阻需串接在电子线路中。 4 温度拉制 在机电保护与控制中,常将临界点热敏电阻串接在继电器控制回路中,当某一设备遇突发性故障发生过载时,引起温度增高。若达到临界点阻值突然下降,继电器电流超过动作电流额定值而动作,起到切断、保护作用。 5 温度保护 热敏电阻在一些设备的功能管理中起着非常关键的作用,如无线话机、笔记本计算机、等。如果充电电阻很大,这些设备的电池完成充电就会很快。但同时也会存在过热的危险。如果过热使得温度超过电池的居里温度,电池的损坏就不能恢复。但如果充电电压太低,则电池充电时间就会长到无法忍受。在电池中使用热敏电阻,就可以检测过热的电阻或电池的过热,从而调整充电的速度。其结果是,电池开始充电时的电压会比较大,这样,在比较短的时间内就可以以较大的充电电压快速充电。而当将要达到临界电压或临界温度时,可以控制充电的速度使之降低,然后,再比较平稳地完成充电。 6 过热保护 例如笔记本计算机越来越小的尺寸,主板对温度是非常敏感的,而主板又是非常接近发热的电源电阻,不断提高的CPU 主频不仅提高了CPU 的速度,也使得它的工作温度高。在这种场合,表面封装式热敏电阻既可以快速响应又有过热的保护,也比较容易使用。以上就是热敏电阻的一些使用方法,在使用的过程中要严格遵守。

    时间:2020-03-31 关键词: 温度 电路 热敏电阻

  • 热敏电阻的工作原理

    热敏电阻的工作原理

    什么是热敏电阻?它的工作原理是什么?一说到热敏电阻,大家都会知道是敏感元件之一。按照温度系数不同分为正温度系数热敏电阻器和负温度系数热敏电阻器。这些皮毛的知识大家都能略知一二,那么热敏电阻还有哪些技术是我们不太熟悉的呢,跟着小编一起学起来! 一、热敏电阻技术简介 自1950年荷兰菲力浦公司的海曼等人发现BaTIO3系陶瓷半导化后可获得正温度系数(PTC)特性以来,人们对它的了解越来越深刻。与此同时,在其应用方面也正日益广泛,渗透到日常生活、工农业技术、军事科学、通讯、宇航等各个领域。形成这种状况的原因在于PTC热敏电阻具有其独特的电-热-物理性能。目前正处于:对PTC陶瓷材料性能的进一步优化和对PTC陶瓷元件应用的进一步推广,三者相互促进的阶段。PTC热敏电阻器的应用是当今最为热门而前景又十分宽广的新型应用技术。 热敏电阻按电阻温度系数分为正电阻温度系数(PTC)和负电阻温度系数(NTC)热敏电阻。PTC是PosiTIve temperature Coefficient的缩写,实为正的温度系数之意,习惯上用于泛批量正电阻温度系数很大的半导体材料或元器件等。PTC元件的实用化始于60年代初期。最早的商品是用于晶体管电路的温度补偿元件。随后,用于电机过热保护、彩电消磁限流及恒温发热等场合的系列化产品相继商品化,并很快形成大生产规模。 PTC元件的应用范围十分广泛,有待开发的应用产品极其丰富。这一点已成越来越多的行家所共识。 二、PTC热敏电阻的简介 PTC热敏电阻发热元件是现代以至将来高科技尖端之产品。它被广泛应用于轻工、住宅、交通、航天、农业、医疗、环保、采矿、民用器械等,它与镍、铬丝或远红外等发热元件相比,具有卓越的优点。 1、有恒温、调温、自动控温的特殊功能当在PTC元件施加交流或直流电压升温时,在居里点温度以下,电阻率很低;当一旦超越居里点温度,电阻率突然增大,使其电流下降至稳定值,达到自动控制温度、恒温目的。 2、不燃烧、安全可靠 PTC元件发热时不发红,无明火(电阻丝发红且有明火),不易燃烧。PTC元件周围温度超越限值时,其功率自动下降至平衡值,不会产生燃烧危险。 3、省电 PTC元件的能量输入采用比例式,有限流作用,比镍铬丝等发热元件的开关式能量输入还节省电力。 4、寿命长 PTC元件本身为氧化物,无镍铬丝之高温氧化弊端,也没有红外线管易碎现象,寿命长。并且多孔型比无孔型寿命更长。 5、结构简单 PTC元件本身自动控温,不需另加自动控制温度线路装置。 6、使用电压范围广 PTC元件在低压(6-36伏)和高压(110-240伏)下都能正常使用。 PTC热敏电阻的应用 低压PTC元件适用于各类低电压加热器,仪器低温补偿,汽车上和电脑周边设备上的加热器。 高压PTC元件适用于下列电气设备的加热:电热保温碟、烘鞋器、热熔胶枪、电饭煲、电热靴、电热驱蚊器、静脉注射加热、轻便塑料封口机、蒸气发梳、蒸气发生器、加湿器、卷发器、录象机、复印机、自动售货机、热风帘、暖手器、茶叶烘干机、水管加热器、旅行干衣机、汽车烤漆房、液化气瓶加热器、沐浴器、美容器、电热餐桌、奶瓶恒温器、电热炙疗器、电热水瓶、电热毯等。 PTC热敏电阻的技术要求 三、热敏电阻应用 PTC热敏电阻在电路控制及传感器中的应用:晶体管温度补偿电路、测温控温电路、过热保护电路、孵育箱、电风扇、彩卷冲洗、开水壶、电热水器、电热毯、日光灯、节能灯、电池充电、变压器绕阻、取暖器、延迟器、压缩机、彩电、彩显、过流保安、液位控制、电子镇流器、程控交换机、电子元件老化台。 PTC热敏电阻在电热器具中的应用:暖风机、暖房机、干燥机(柜)、滚筒干衣机、干手器、吹风机、卷发器、蒸汽美容器、电饭煲、驱蚊器、暖手器、干鞋器、高压锅、消毒柜、煤油气化炉、电熨斗、电烙铁、塑料焊枪、封口机。 PTC热敏电阻在汽车中的应用:电器过载保护装置、混合加热器、低温启动加热器、燃料加热器、蜂窝状加热器、燃油液位指示器、发动机冷却水温度检测表。 PTC热敏电阻的选用方法:每一种热敏电阻都有“耐压”、“耐流”、“维持电流”及“动作时间”等参数。您可以根据具体电路的要求并对照产品的参数进行选择,具体的方法如下: 1、首先确定被保护电路正常工作时的最大环境温度、电路中的工作电流、热敏电阻动作后需承受的最大电压及需要的动作时间等参数; 2、根据被保护电路或产品的特点选择“芯片型”、“径向引出型”、“轴向引出型”或“表面贴装型”等不同形状的热敏电阻; 3、根据最大工作电压,选择“耐压”等级大于或等于最大工作电压的产品系列; 4、根据最大环境温度及电路中的工作电流,选择“维持电流”大于工作电流的产品规格; 5.确认该种规格热敏电阻的动作时间小于保护电路需要的时间; 6.对照规格书中提供的数据,确认该种规格热敏电阻的尺寸符合要求。以上就是热敏电阻的相关技术知识,希望能给大家帮助。

    时间:2020-03-31 关键词: ntc ptc 热敏电阻

  • TDK技术注释: 如何使用浪涌电流限制器NTC

    TDK技术注释: 如何使用浪涌电流限制器NTC

    在启动电子设备(如开关电源(SMPS)或逆变器)时,设备会通过具有高峰值的瞬时异常电流。它被称为励磁涌流,如果没有保护,它可能破坏半导体器件或对平滑电容器的使用寿命产生有害影响。NTC热敏电阻用作ICL(励磁涌流抑制器),方便、有效地保护电气、电子器件的电路免受励磁涌流的影响。NTC热敏电阻的优点NTC热敏电阻是一种采用具有负温度系数(NTC)的特殊半导体陶瓷的温度相关电阻。它们在室温下具有很高的电阻,当它们通电时,自己产生热量,随着温度升高,电阻下降。由于具有这种特性,它们被用作电气和电子设备的电流保护装置,方便、有效地限制异常电流,包括在通电时的励磁涌流。用作电流保护装置的NTC热敏电阻也称为电源热敏电阻。固定电阻或NTC热敏电阻可以用来限制励磁涌流。然而,固定电阻总是导致功率损耗和性能下降。NTC热敏电阻以其较高的初始电阻限制励磁涌流,然后由于通电而温度升高,电阻降到室温水平的百分之几,从而达到比使用固定电阻更低的功率损耗。换句话说,用NTC热敏电阻限制励磁涌流的效果比使用具有相同初始功率损耗的固定电阻的效果要大。以下是NTC热敏电阻在限制励磁涌流中的应用示例。应用:开关电源(SMPS)中的励磁涌流限制各种开关电源(SMPS)——它们体积小、重量轻、性能高——通常被用作电子设备的电源。给SMPS通电时,具有高峰值的励磁涌流给平滑电容器充电,从而给装置充电。由于这种励磁涌流会对电容器的使用寿命产生有害影响,损坏电源开关的触点或破坏整流二极管,所以有必要采取相应的对策。如下图所示,通过插入NTC热敏电阻来限制SMPS的励磁涌流被广泛地用作形成用于限制电源中的励磁涌流的低成本简易电路的方式。即使在整流器电路之后连接NTC热敏电阻,也可以得到相同的结果。图1 开关电源中的励磁涌流限制应用:交流-直流电源模块中的励磁涌流限制各种电源电路和外围电路紧凑地集成到一起的内置电源称为电源模块。交流-直流电源模块是由交流-直流整流电路、直流-直流转换器以及少量外部零部件组成的电源,可以形成一个节省空间的优化电源系统。插入一个NTC热敏电阻(电源热敏电阻)可以有效地限制在通电时施加到输入和输出电容器上励磁涌流。图2 交流-直流电源模块中的励磁涌流限制应用:直流-直流转换器中的励磁涌流限制在直流-直流转换器等的直流电源电路等中,NTC热敏电阻用作电源热敏电阻,有效地限制励磁涌流,输入和输出电容器在接通电源时充电。NTC热敏电阻的电阻在通电后变得非常低,达到比使用固定电阻时更低的功率损耗。图3 直流-直流转换器中的励磁涌流限制应用:工业逆变器中的励磁涌流限制感应电机经常用于工厂、大型设施、办公楼等的风扇、泵、空调和其他设备。感应电机结构简单、稳定,但其转速取决于频率。为了控制转速,需要逆变器。装有逆变器的电机被称为变速驱动(VSD),它能够显著降低功耗。逆变器系统包括转换器部分、逆变器部分和安装在转换器部分之后的直流链路电容器(平滑电容器)。启动时,装置充电,峰值比稳定电流大几倍的励磁涌流充满直流链路电容器。这种励磁涌流可能对直流电容器的使用寿命产生有害影响或破坏半导体器件。为了防止励磁涌流,所以连接NTC热敏电阻(电源热敏电阻)。图4 工业逆变器中的励磁涌流限制(三相)图5 工业逆变器中的励磁涌流限制(单相)

    时间:2019-08-06 关键词: ntc smps 热敏电阻

  • 基于大功率白光LED模组的电路驱动方案设计

    基于大功率白光LED模组的电路驱动方案设计

    电路驱动一只大功率白光LED(WLED),当温度过高以及热敏电阻发生开路或短路故障时,将关闭LED。如果工作在极限工作温度范围以外,任何IC的寿命都会缩短。当芯片的结温超过特定值后,就会彻底损坏。Philips Lumileds LUXEON大功率LED模组由于是在热增强型基底上制造的,因而发热会少一些。这种基底材料改善了热性能,允许持续工作在大电流下,从而满足高亮度照明的要求。可是对于象照相机闪光灯这样的应用,为避免持续工作时的功耗损坏器件,则需要提供额外的热保护功能。 电路包括一款适合于照相机闪光灯应用的电荷泵调节器(IC1),该器件可以为最多8 只白光LED (WLED)提供调节电流。并联所有8路,可以为单个1W、LUXEON Star大功率WLED模组提供高达480mA电流。当开漏输入EN被拉到地时,IC1进入关断模式。 电路驱动一只大功率WLED,当温度过高以及热敏电阻发生开路或短路故障时,将关闭LED 可以利用一只热敏电阻和一个带内部基准的双路开漏极比较器(IC2),来构建空间紧凑和极具成本效益的热关断电路。VTHERM跌落至1.2V内部基准电压以下时,比较器A将EN拉低到地。当热敏电阻(R2)温度很高时,就会执行该操作。比较器B用于提供开路失效保护功能,即当热敏电阻的接点断开时,EN将被拉低。热敏电阻发生开路故障时,VTHERM被R1拉高,从而使比较器B拉低EN。电阻分压器R3-R4设定开路故障的门限电压,电阻R1和热敏电阻R2设置热关断门限。

    时间:2019-07-29 关键词: 电源技术解析 门限电压 热敏电阻

  • 驱动保护功能

    驱动保护功能

    LED在生活中处处可见,有显示屏的,也有照明的,但是有很多人不知道LED灯需要LED驱动器来驱动,电路驱动一只大功率白光LED (WLED),当温度过高以及热敏电阻发生开路或短路故障时,将关闭LED。如果工作在极限工作温度范围以外,任何IC的寿命都会缩短。当芯片的结温超过特定值后,就会彻底损坏。下面来介绍驱动器的相关知识。 Philips Lumileds LUXEON大功率LED模组由于是在热增强型基底上制造的,因而发热会少一些。这种基底材料改善了热性能,允许持续工作在大电流下,从而满足高亮度照明的要求。可是对于象照相机闪光灯这样的应用,为避免持续工作时的功耗损坏器件,则需要提供额外的热保护功能。 图1电路包括一款适合于照相机闪光灯应用的电荷泵调节器(IC1),该器件可以为最多8 只白光LED (WLED)提供调节电流。并联所有8路驱动器,可以为单个1W、LUXEON Star大功率WLED模组提供高达480mA电流。当开漏输入EN被拉到地时,IC1进入关断模式。     图1. 电路驱动一只大功率WLED,当温度过高以及热敏电阻发生开路或短路故障时,将关闭LED 可以利用一只热敏电阻和一个带内部基准的双路开漏极比较器(IC2),来构建空间紧凑和极具成本效益的热关断电路。VTHERM跌落至1.2V内部基准电压以下时,比较器A将EN拉低到地。当热敏电阻(R2)温度很高时,就会执行该操作。比较器B用于提供开路失效保护功能,即当热敏电阻的接点断开时,EN将被拉低。热敏电阻发生开路故障时,VTHERM被R1拉高,从而使比较器B拉低EN。电阻分压器R3-R4设定开路故障的门限电压,电阻R1和热敏电阻R2设置热关断门限。 以上就是LED驱动的相关技术知识,如果要从事相关行业,需要设计人员有雄厚的知识储备,还需要积累大量的项目开发经验。

    时间:2019-07-23 关键词: 电源技术解析 高温 LED驱动 热敏电阻

  • 单片机实现热热敏电阻测温电路

    单片机在电子产品中的应用已经越来越广泛,在很多的电子产品中也用到了温度检测和温度控制,但那些温度检测与控制电路通常较复杂,成本也高,本文提供了一种低成本的利用单片机多余I/O口实现的温度检测电路,该电路非常简单,且易于实现,并且适用于几乎所有类型的单片机。其电路如下图所示:   图中: P1.0、P1.1和P1.2是单片机的3个I/O脚; RK为100k的精密电阻; RT为100K-精度为1%的热敏电阻; R1为100Ω的普通电阻; C1为0.1μ的瓷介电容。 其工作原理为: 1.先将P1.0、P1.1、P1.2都设为低电平输出,使C1放电至放完。 2.将P1.1、P1.2设置为输入状态,P1.0设为高电平输出,通过RK电阻对C1充电,单片机内部计时器清零并开始计时,检测P1.2口状态,当P1.2口检测为高电平时,即C1上的电压达到单片机高电平输入的门嵌电压时,单片机计时器记录下从开始充电到P1.2口转变为高电平的时间T1。 3.将P1.0、P1.1、P1.2都设为低电平输出,使C1放电至放完。 4.再将P1.0、P1.2设置为输入状态,P1.1设为高电平输出,通过RT电阻对C1充电,单片机内部计时器清零并开始计时,检测P1.2口状态,当P1.2口检测为高电平时,单片机计时器记录下从开始充电到P1.2口转变为高电平的时间T2。 5.从电容的电压公式:   可以得到:T1/RK=T2/RT,即 RT=T2×RK/T1 通过单片机计算得到热敏电阻RT的阻值。并通过查表法可以得到温度值。 从上面所述可以看出,该测温电路的误差来源于这几个方面:单片机的定时器精度,RK电阻的精度,热敏电阻RT的精度,而与单片机的输出电压值、门嵌电压值、电容精度无关。因此,适当选取热敏电阻和精密电阻的精度,单片机的工作频率够高,就可以得到较好的测温精度。 当单片机选用4M工作频率,RK、RT均为1%精度的电阻时,温度误差可以做到小于1℃。 如果P1.2具有外部上升沿中断的功能,程序可以更简单,效果更好。 单片机工作的程序流程图如下:  

    时间:2019-07-22 关键词: 单片机 测温电路 热敏电阻

首页  上一页  1 2 3 4 5 下一页 尾页
发布文章

技术子站

更多

项目外包