当前位置:首页 > 电路仿真
  • 你能区分电路仿真Multisim与Proteus吗?

    你能区分电路仿真Multisim与Proteus吗?

    你知道什么是Multisim与Proteus吗?你能区分吗?本文主要介绍Multisim与Proteus的相关信息,并着重对Multisim与Proteus的区分进行详尽的阐述。 Multisim Multisim是美国国家仪器(NI)有限公司推出的以Windows为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。 工程师们可以使用Multisim交互式地搭建电路原理图,并对电路进行仿真。Multisim提炼了SPICE仿真的复杂内容,这样工程师无需懂得深入的SPICE技术可以很快地进行捕获、仿真和分析新的设计,这也使其更适合电子学教育。通过Multisim和虚拟仪器技术,PCB设计工程师和电子学教育工作者可以完成从理论到原理图捕获与仿真再到原型设计和测试这样一个完整的综合设计流程。 软件以图形界面为主,采用菜单、工具栏和热键相结合的方式,具有一般Windows应用软件的界面风格,用户可以根据自己的习惯和熟悉程度自如使用。一、Multisim的主窗口界面。启动Multisim 2001后,将出现如图1所示的界面。界面由多个区域构成:菜单栏,各种工具栏,电路输入窗口,状态条,列表框等。通过对各部分的操作可以实现电路图的输入、编辑,并根据需要对电路进行相应的观测和分析。用户可以通过菜单或工具栏改变主窗口的视图内容。二、菜单栏菜单栏位于界面的上方,通过菜单可以对Multisim的所有功能进行操作。不难看出菜单中有一些与大多数Windows平台上的应用软件一致的功能选项,如File,Edit,View,Options,Help。此外,还有一些EDA软件专用的选项,如Place,Simulation,Transfer以及Tool等。 Proteus Proteus软件是英国Lab Center Electronics公司出版的EDA工具软件(该软件中国总代理为广州风标电子技术有限公司)。它不仅具有其它EDA工具软件的仿真功能,还能仿真单片机及外围器件。它是目前比较好的仿真单片机及外围器件的工具。虽然目前国内推广刚起步,但已受到单片机爱好者、从事单片机教学的教师、致力于单片机开发应用的科技工作者的青睐。Proteus是英国著名的EDA工具(仿真软件),从原理图布图、代码调试到单片机与外围电路协同仿真,一键切换到PCB设计,真正实现了从概念到产品的完整设计。是目前世界上唯一将电路仿真软件、PCB设计软件和虚拟模型仿真软件三合一的设计平台,其处理器模型支持8051、HC11、PIC10/12/16/18/24/30/DsPIC33、AVR、ARM、8086和MSP430等,2010年又增加了Cortex和DSP系列处理器,并持续增加其他系列处理器模型。在编译方面,它也支持IAR、Keil和MATLAB等多种编译器。 功能特点 Proteus软件具有其它EDA工具软件(例:Multisim)的功能。这些功能是: 1.原理布图 2.PCB自动或人工布线 3.SPICE电路仿真 革命性的特点 1.互动的电路仿真 用户甚至可以实时采用诸如RAM,ROM,键盘,马达,LED,LCD,AD/DA,部分SPI器件,部分IIC器件。 2.仿真处理器及其外围电路 可以仿真51系列、AVR、PIC、ARM、等常用主流单片机。还可以直接在基于原理图的虚拟原型上编程,再配合显示及输出,能看到运行后输入输出的效果。配合系统配置的虚拟逻辑分析仪、示波器等,Proteus建立了完备的电子设计开发环境。 电路仿真Multisim与Proteus比拼有啥区别 这好比是问XP/Win7好,还是windows Phone/CE好。 Proteus的程序包在100MB大小内,而Multisim则是好几百MB,相比Proteus程序大小大了近十倍。 所以说,功能上,Multisim要强大得多,它专注于多功能的模电、数电仿真,意思是说你可以画一个比较复杂的模电电路,各种信号的处理,Multisim完成可以胜任,而Proteus则更专注于MCU(含8051系列,PIC系统、AVR系列、ARM系列)的功能仿真,仿真MCU时很方便也很准确,但像前面据说的那种繁杂的信号处理,Proteus相对弱一些,比如仿真时处理速度会很慢,慢到1uS都是有可能的。 总结一下,Multisim是全能的奥运选手,而Proteus是专项的奥运选手。 Multisim有超强板级的模拟/数字电路板的设计工作。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。高版本可以进行单片机等MCU的仿真。Multisim有实际元器件和虚拟元器件,它们之间根本差别在于:一种是与实际元器件的型号、参数值以及封装都相对应的元器件,在设计中选用此类器件,不仅可以使设计仿真 与实际情况有良好的对应性,还可以直接将设计导出到Ultiboard中进行PCB的设计;虚拟元器件只能用于电路的仿真。 Proteus具有模拟电路仿真、数字电路仿真、单片机及其外围电路组成的系统的仿真、RS一232动态仿真。 C调试器、SPI调试器、键盘和LCD系统仿真的功能;有各种虚拟仪器,如示波器、逻辑分析仪、信号发生器等。 目前支持的单片机类型有:68000系列、8051系列、AVR系列、PIC12系列、PIC16系列、PIC18系列、Z80系列、HC11系列以及各种外围芯片。 支持大量的存储器和外围芯片。 简单概括为: Multisim可以进行复杂模拟/数字电路的仿真、简单的PCB板设计、简单的单片机仿真 Altium Designer可以进行简单的模拟/数字电路的仿真、强大的PCB板设计 Proteus可以进行直观的模拟/数字电路、单片机、ARM的仿真。也可以进行简单PCB板的设计。 使用导航: 要进行模拟/数字电路的精确、细微仿真使用Multisim; 要进行电路板PCB设计使用Altium Designer; 要进行单片机仿真使用Proteus,仿真51系列单片机可以使用Keil C与Proteus联调(在Keil中运行程序时Proteus即可运行硬件仿真),以上就是Multisim与Proteus的区别,希望能给大家帮助。

    时间:2020-05-17 关键词: 电路仿真 proteus multisim

  • 如何选好一款合适的电路仿真软件

    如何选好一款合适的电路仿真软件

    电路仿真,顾名思义就是设计好的电路图通过仿真软件进行实时模拟,模拟出实际功能,然后通过其分析改进,从而实现电路的优化设计。是EDA(电子设计自动化)的一部分。 电子电路仿真技术是当今相关专业学习者及工作者必须掌握的技术之一,它有诸多优点: 第一,电子电路仿真软件一般都有海量而齐全的电子元器件库和先进的虚拟仪器、仪表,十分方便仿真与测试; 第二,仿真电路的连接简单快捷智能化,不需焊接,使用仪器调试不用担心损坏;大大减少了设计时间及金钱的成本; 第三,电子电路仿真软件可进行多种准确而复杂的电路分析。 随着电子电路仿真技术的不断发展,许多公司推出了各种功能先进、性能强劲的仿真软件。既然它们能百家争鸣,那么肯定是在某些方面各有优劣的。下面就针对几款主流电子电路仿真软件的优缺点进行比较。 今天小编就选了几款电路仿真软件,来分析下各自有哪些优缺点。 一、Machining数控仿真软件 数控加工仿真软件,数控仿真软件采用逼真的3D机床模型和数控面板来模拟真实机床的操作和加工过程,初学者通过使用本软掌握数控编程原理与应用,在使用过程中用户可以看到自己的编程结果从而达到可视化的效果,对提高数控学习人员学习G代码的编写和机床的操作有很大的帮助。使数控学习不在枯燥无味。 Machining数控仿真软件功能特色 •机械操作员仿真 •数控自动程序,MDI 手动输入手动编辑的业务模式 ; •粗糙定义基准工具,跟踪刃刀,安装工具,加工程序和手动操作 ; •刀具补偿、 系统参数设置; •机床冷却液模拟 •三维工件的实时切削和铁屑模拟 •三维刀具轨迹的显示 二、Cadence Cadence 公司是老牌的EDA工具提供商,采用Cadence的软件、硬件和半导体IP,用户能更快速向市场交付产品。Cadence公司创新的"系统设计实现" (SDE)战略,将帮助客户开发出更具差异化的产品——小到芯片大至系统——涵盖移动设备、消费电子、云数据中心、汽车、航空、物联网、工业应用以及其他细分市场。 其电路仿真软件Cadence Sigrity 2018版本包含了最新的3D解决方案,帮助PCB设计团队缩短设计周期的同时实现设计成本和性能的最优化。 独有的3D设计及分析环境,完美集成了Sigrity工具与Cadence Allegro技术,较之于当前市场上依赖于第三方建模工具的产品,Sigrity 2018版本可提供效率更高、出错率更低的解决方案,大幅度缩短设计周期的同时、降低设计失误风险。 此外,全新的3D Workbench解决方案弥补了机械和电气领域之间的隔阂,产品开发团队自此能够实现跨多板信号的快速精准分析。 Sigrity 2018最新版可帮助设计人员全面了解其系统,并将设计及分析扩展应用到影响高速互连优化的方方面面:不仅包括封装和电路板,还包括连接器和电缆领域。集成的3D设计及分析环境使PCB设计团队能够在Sigrity工具中实现PCB和IC封装高速互连的优化,然后在Allegro PCB、Allegro Package Designer或Allegro SiP Layout中自动执行已优化的PCB和IC封装互连,无需进行重新绘制。而直至今日,优化结果导回设计软件的流程始终是一项容易出错、需要仔细验证的手动工作。通过自动化该流程,Sigrity 2018最新版能够降低设计出错风险,免去设计人员花费数小时重新绘制和重新编辑工作的时间,更能避免在原型送到实验室之后才发现错误而浪费掉数天的时间。这不仅大大减少了原型迭代次数,更通过避免设计返工和设计延期而为设计项目节省大量的资金。 Cadence的电路仿真软件的一个小缺点是,操作较为复杂,比较适合复杂板的开发。 三、Altium Designer Altium Designer 除了全面继承包括Protel 99SE、Protel DXP在内的先前一系列版本的功能和优点外,还增加了许多改进和很多高端功能。该平台拓宽了板级设计的传统界面,全面集成了FPGA设计功能和SOPC设计实现功能,从而允许工程设计人员能将系统设计中的FPGA与PCB设计及嵌入式设计集成在一起。 Altium Designer 主要用于原理图设计、电路仿真、PCB绘制编辑,也是电赛必备软件。 Altium Designer 的缺点是对复杂板的设计不及Cadence。 四、Infineon Designer Infineon Designer兼具模拟和数字电路仿真软件功能,是一款在线工具,可实现在线仿真,设计产品原型。 Infineon Designer也是基于DesignSoft TINA产品。利用 Infineon Designer,工程师只需一个浏览器,便能为特定应用找到相匹配的器件。整个仿真过程直观、快速,无需安装任何软件或购买许可证。 主要涵盖产品级、应用级和系统仿真三个方面,包括基于参数搜索的产品查找器、应用方案查找器以及系统仿真工具。支持16个产品查找器,适用于7000多款英飞凌产品。 免费简单易用是这类在线仿真工具的优点,缺点是功能不够强大,支持的器件有限。 本文介绍了四种电路仿真软件,不知道有没有哪一款是您需要的呢

    时间:2019-11-26 关键词: 电路仿真 电路仿真软件

  • 电路仿真软件哪个好? 7款主流电路仿真软件优缺点大比拼

      微电子及集成电路技术发展日新月异,离不开EDA电子电路仿真软件的支持。每天不知有多少电路设计及验证者,使用着各种电路仿真软件工具。俗话说,工欲善其事必先利其器,如何挑选合适的电路仿真软件工具?是决定工作效率的一个关键。对于市场上各类电路仿真软件工具,工程师至少要做到知己知彼,什么样的电路仿真软件工具适合什么样的电路设计?各种电路仿真软件工具的优点及不足?本文为大家整理了常用的几款电路仿真软件工具,并对这些电路仿真软件工具的优缺点做了简单比较。 一、Cadence Cadence 公司是老牌的EDA工具提供商,采用Cadence的软件、硬件和半导体IP,用户能更快速向市场交付产品。Cadence公司创新的"系统设计实现" (SDE)战略,将帮助客户开发出更具差异化的产品——小到芯片大至系统——涵盖移动设备、消费电子、云数据中心、汽车、航空、物联网、工业应用以及其他细分市场。 其电路仿真软件Cadence® Sigrity™ 2018版本包含了最新的3D解决方案,帮助PCB设计团队缩短设计周期的同时实现设计成本和性能的最优化。 独有的3D设计及分析环境,完美集成了Sigrity工具与Cadence Allegro®技术,较之于当前市场上依赖于第三方建模工具的产品,Sigrity™ 2018版本可提供效率更高、出错率更低的解决方案,大幅度缩短设计周期的同时、降低设计失误风险。 此外,全新的3D Workbench解决方案弥补了机械和电气领域之间的隔阂,产品开发团队自此能够实现跨多板信号的快速精准分析。 Sigrity 2018最新版可帮助设计人员全面了解其系统,并将设计及分析扩展应用到影响高速互连优化的方方面面:不仅包括封装和电路板,还包括连接器和电缆领域。集成的3D设计及分析环境使PCB设计团队能够在Sigrity工具中实现PCB和IC封装高速互连的优化,然后在Allegro PCB、Allegro Package Designer或Allegro SiP Layout中自动执行已优化的PCB和IC封装互连,无需进行重新绘制。而直至今日,优化结果导回设计软件的流程始终是一项容易出错、需要仔细验证的手动工作。通过自动化该流程,Sigrity 2018最新版能够降低设计出错风险,免去设计人员花费数小时重新绘制和重新编辑工作的时间,更能避免在原型送到实验室之后才发现错误而浪费掉数天的时间。这不仅大大减少了原型迭代次数,更通过避免设计返工和设计延期而为设计项目节省大量的资金。 Cadence的电路仿真软件的一个小缺点是,操作较为复杂,比较适合复杂板的开发。   二、Altium Designer Altium Designer 是原Protel软件开发商Altium公司推出的一体化的电子产品开发系统,主要运行在Windows操作系统。这套软件通过把原理图设计、电路仿真、PCB绘制编辑、拓扑逻辑自动布线、信号完整性分析和设计输出等技术的完美融合,为设计者提供了全新的设计解决方案,使设计者可以轻松进行设计,熟练使用这一软件使电路设计的质量和效率大大提高。 Altium Designer 除了全面继承包括Protel 99SE、Protel DXP在内的先前一系列版本的功能和优点外,还增加了许多改进和很多高端功能。该平台拓宽了板级设计的传统界面,全面集成了FPGA设计功能和SOPC设计实现功能,从而允许工程设计人员能将系统设计中的FPGA与PCB设计及嵌入式设计集成在一起。 由于Altium Designer 在继承先前Protel软件功能的基础上,综合了FPGA设计和嵌入式系统软件设计功能,Altium Designer 对计算机的系统需求比先前的版本要高一些。 目前最高版本为:Altium Designer 19.0.12 。 Altium Designer 的缺点是对复杂板的设计不及Cadence。   三、Proteus Proteus软件是英国Lab Center Electronics公司出版的EDA工具软件,支持电路图设计、PCB布线和电路仿真。Proteus支持单片机应用系统的仿真和调试,使软硬件设计在制作PCB板前能够得到快速验证,不仅节省成本,还缩短了单片机应用的开发周期。Proteus 是单片机工程师必须掌握的工具之一。 Proteus软件分为ARES和ISIS模块,ARES用来制作PCB,ISIS用来绘制电路图和进行电路仿真。 Proteus的缺点是,对电路的数据计算方面不足。   四、 Multisim Multisim是美国国家仪器(NI)有限公司推出的以Windows为基础的电路仿真软件工具,适用于板级的模拟/数字电路板的设计工作。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。 在模电、数电的复杂电路虚拟仿真方面,Multisim是当之无愧的一哥。它有形象化的极其真实的虚拟仪器,无论界面的外观还是内在的功能,都达到了的最高水平。它有专业的界面和分类,强大而复杂的功能,对数据的计算方面极其准确。在电子竞赛的学生中拥有广泛 的粉丝,尤其是模拟电路时,用得最多的电路仿真软件就是Multisim。同时,Multisim不仅支持mcu,还支持汇编语言和C语言为单片机注入程序,并有与之配套的制版软件NI Ultiboard10,可以从电路设计到制板layout一条龙服务。 Multisim的缺点是,软件过于庞大,对MCU的支持不足,制板等附加功能比不上其他的专门的软件。   五、Matlab电路仿真软件包Simulink Simulink是MATLAB中的一种可视化电路仿真软件, 是一种基于MATLAB的框图设计环境,是实现动态系统建模、仿真和分析的一个软件包,被广泛应用于线性系统、非线性系统、数字控制及数字信号处理的建模和仿真中。使用MatlabSimulink的好处是:其数据处理十分有效、精细,运行速度较快;其数据的格式兼容性十分好,便于数据的后处理与分析,尤其是控制特性的研究分析。 Matlab的缺点在于Matlab是对理想模型的仿真,不能考虑非理性状态下的情况。   六、TINA-TI TINA 是一款易于使用但功能强大的电路仿真软件,基于 SPICE 引擎。其研发者是欧洲DesignSoft Kft.公司,大约流行四十多个国家,并有二十余种不同语言的版本,其中包括中文版,大约含有两万多个分立或集成电路元器件。 TINA-TI 是由 DesignSoft 专为德州仪器 (TI) 而准备的。 TINA-TI 提供了 SPICE 的所有传统直流、瞬态和频率域分析以及更多。TINA 具有广泛的后处理功能,允许用户按照希望的方式设置结果的格式。虚拟仪器允许选择输入波形、探针电路节点电压和波形。 TINA 的原理图捕捉非常直观 - 真正的"快速入门"。 对于用户来说,Tina的界面简单直观,元器件不算多,但是分类很好,而且TI公司的元器件最齐全,当在Multisim找不到对应的器件时,就会用到Tina来仿真。 Tina-TI的缺点是,功能相对较少,对TI公司之外的元器件支持较少。   七、Infineon Designer Infineon Designer兼具模拟和数字电路仿真软件功能,是一款在线工具,可实现在线仿真,设计产品原型。 Infineon Designer也是基于DesignSoft TINA产品。利用 Infineon Designer,工程师只需一个浏览器,便能为特定应用找到相匹配的器件。整个仿真过程直观、快速,无需安装任何软件或购买许可证。 主要涵盖产品级、应用级和系统仿真三个方面,包括基于参数搜索的产品查找器、应用方案查找器以及系统仿真工具。支持16个产品查找器,适用于7000多款英飞凌产品。 免费简单易用是这类在线仿真工具的优点,缺点是功能不够强大,支持的器件有限。  

    时间:2019-05-28 关键词: cadence altium 电路仿真 matlab 电路仿真软件

  • Protel DXP电路仿真流程与实例仿真分析

    Protel DXP电路仿真流程与实例仿真分析

    电路仿真是指在电脑上通过软件来模拟具体电路的实际工作过程,并计算出在给定条件下电路中各节点(包括中间节点和输出节点) 的输出波形。电路仿真是否成功,取决于电路原理图、元件模型的仿真属性、电路的网表结构以及仿真设置等。Protel DXP 执行混合信号仿真的设计流程如图1所示。图1  电路仿真流程a ) 原理图设计: 首先, 新建一个原理图文件*.schdoc ,打开编辑环境,与普通原理图大致相同;然后,打开Libraries ,加载必要的元器件库,添加元器件并设置参数,这里所有的元器件都必须具有Simulation 仿真属性,否则仿真时将出现错误信息,在DXP中假定所有元器件都是理想元器件;最后,用导线进行电气连接或网络标号,对整个电路进行编译ERC 校验,确保整个电路没有错误。b) 设置仿真环境: 执行菜单命令,打开Analysessetup 对话框,设置仿真方式并指定要显示的数据,DXP 提供10 种分析仿真方式,包括直流工作点、直流扫描、交流小信号、瞬态过程、Fourier 、噪声、传输函数、温度扫描、参数扫描以及蒙特卡罗分析等。c) 仿真:设置仿真环境后单击OK 按钮,系统进行电路仿真,生成一*.sdf 文件,同时打开窗口显示分析结果。d) 分析结果:观察电路仿真结果,分析仿真波形是否符合电路设计要求,如果不符合,则重新调整电路参数进行仿真,直到满意为止。以图2 所示的分压式偏置电路放大器为例进行性能分析。分析分两步进行:首先进行直流分析(静态分析) ,求出晶体管各极的静态工作点电压和电流IB、IC、IE、VB、VC、VE 等,使晶体管大致处于放大区中心处;然后进行交流分析(动态分析) ,即在输入信号作用下求出静态工作点上叠加的各极信号电压和电流,计算放大器的性能指标,其中最基本的是电压放大倍数Au(电压增益) 、输入电阻和输出电阻等,这里主要介绍Au 。在各种电子设备中,放大器是必不可少的组成部分。 工程近似估算1) 静态分析因β= 128 ,则有:2) 动态分析(相位差为180°)Protel DXP 仿真分析按图2 电路编辑仿真原理图,添加适当的元器件(必须具有仿真属性) ,设置仿真参数,执行Design/Simulation/ Mixed Sim 菜单命令,设置仿真环境。1) 静态分析在Analysis/ option 栏中选择Operating Point Analysis (工作点分析) 仿真方式,Active Signals 中选择b、c、e、q[ib]、q[ic]、q[ie]为激励信号,单击OK 按钮,得到如图3 所示的仿真结果。图3  静态点仿真结果2) 动态分析执行同样菜单命令,在对话框中选择Transient/Fourier Analysis (瞬态分析) 仿真方式,设置相应仿真参数,选择in、out 为激励信号,单击OK 按钮,得到如图4 所示的仿真波形。图4  动态分析仿真结果添加测量坐标显示测量数据:输入交流信号幅度为10 mV ,输出交流信号幅度为0.77 V ,所以电压放大倍数为77 ,且输入和输出信号波形之间相位相反。分析图3 和图4 仿真结果,与工程近似估算值大致相近,仿真正确。

    时间:2019-03-27 关键词: 电路仿真 电源技术解析

  • Synopsys以本地环境重新定义电路仿真

     新思科技日前宣布:其电路仿真器将引入面向仿真管理和分析的本地环境。该环境适用于HSPICE®、FineSim®和CustomSim™仿真器的2016.03版本,提供了一个能够提高模拟验证生产力的综合解决方案。其所包括的解决方案使设计人员能够全面访问可用于Synopsys SPICE和FastSPICE仿真器的高级功能,并淘汰了对第三方环境的需求。作为新思科技的早期合作客户,三星电子的系统LSI业务非常重视配备FineSim SPICE的新环境,并且已经将之部署在其模拟设计社区。 高级节点设计必须能够适应各种不同的电压和运行条件,并且具有多种运行模式。为了在不同运行条件下验证电路,设计团队进行了数千次仿真实验,并且需要整理大量数据。为了应对这一日益复杂的局面,Synopsys开发了一种基于GUI的晶体管级综合仿真和分析环境。这种环境与其电路仿真器深度集成,并淘汰了对第三方环境的需求。 该环境的主要功能包括: · 基于网络列表的流,可直接导入SPICE、Verilog和DSPF · 统一的角点设置,适用于多测试平台的扫频,以及蒙特·卡罗分析(Monte Carlo analysis) · 面向批处理模式仿真的高级任务分配与监控 · 与Synopsys的Custom WaveView™图形波形查看器集成,可广泛用于波形后处理 · 采用行业标准TCL脚本语言的自动化回归功能 · 语言敏感文本编辑器,可用于基于网络列表的导航、交叉探查和句法检查 · 高级可视数据导航和数据挖掘功能,如制图、统计分析、直方图和散点图 · 详细报告生成,包括基于网络的HTML文档 Synopsys执行副总裁兼总经理Antun Domic表示:“这次电路仿真功能组合的升级提供了一个独立的模拟验证环境,提高了电路验证的生产力,并消除了对第三方工具的需求。重新定义电路仿真的组成成分提高了我们产品带给客户的价值,并且兑现了我们交付创新解决方案、解决客户电路验证需求的承诺。” 2016年2月17日,星期三,太平洋标准时间上午10:00,Synopsys将首次公开举办一场题为《使用Synopsys仿真和分析环境(SAE),提高模拟验证生产力》的网络研讨会,研讨会将历时一个小时。本次网络研讨会包括SAE介绍及其提高生产力和生产量的主要性能。Altera公司将对其如何使用SAE的分析与验证功能,从而提高其高级节点设计生产力进行亮点展示。本次网络研讨会可在2016年内按需查看。

    时间:2016-03-17 关键词: synopsys 电路仿真 本地环境

  • Synopsys以本地环境重新定义电路仿真 加快模拟验证速度

    亮点: · HSPICE、FineSim和CustomSim的2016.03版本包括针对模拟验证的本地环境 · 淘汰对第三方模拟设计环境的需求 · 简化多测试平台、多角点仿真设置、任务监控与后仿真分析 · 可部署在三星电子的系统LSI业务(System LSI Business)之上来进行模拟验证 新思科技(Synopsys, Inc.,纳斯达克股票代码:SNPS)日前宣布:其电路仿真器将引入面向仿真管理和分析的本地环境。该环境适用于HSPICE®、FineSim®和CustomSim™仿真器的2016.03版本,提供了一个能够提高模拟验证生产力的综合解决方案。其所包括的解决方案使设计人员能够全面访问可用于Synopsys SPICE和FastSPICE仿真器的高级功能,并淘汰了对第三方环境的需求。作为新思科技的早期合作客户,三星电子的系统LSI业务非常重视配备FineSim SPICE的新环境,并且已经将之部署在其模拟设计社区。 高级节点设计必须能够适应各种不同的电压和运行条件,并且具有多种运行模式。为了在不同运行条件下验证电路,设计团队进行了数千次仿真实验,并且需要整理大量数据。为了应对这一日益复杂的局面,Synopsys开发了一种基于GUI的晶体管级综合仿真和分析环境。这种环境与其电路仿真器深度集成,并淘汰了对第三方环境的需求。 该环境的主要功能包括: · 基于网络列表的流,可直接导入SPICE、Verilog和DSPF · 统一的角点设置,适用于多测试平台的扫频,以及蒙特·卡罗分析(Monte Carlo analysis) · 面向批处理模式仿真的高级任务分配与监控 · 与Synopsys的Custom WaveView™图形波形查看器集成,可广泛用于波形后处理 · 采用行业标准TCL脚本语言的自动化回归功能 · 语言敏感文本编辑器,可用于基于网络列表的导航、交叉探查和句法检查 · 高级可视数据导航和数据挖掘功能,如制图、统计分析、直方图和散点图 · 详细报告生成,包括基于网络的HTML文档 Synopsys执行副总裁兼总经理Antun Domic表示:“这次电路仿真功能组合的升级提供了一个独立的模拟验证环境,提高了电路验证的生产力,并消除了对第三方工具的需求。重新定义电路仿真的组成成分提高了我们产品带给客户的价值,并且兑现了我们交付创新解决方案、解决客户电路验证需求的承诺。” 2016年2月17日,星期三,太平洋标准时间上午10:00,Synopsys将首次公开举办一场题为《使用Synopsys仿真和分析环境(SAE),提高模拟验证生产力》的网络研讨会,研讨会将历时一个小时。本次网络研讨会包括SAE介绍及其提高生产力和生产量的主要性能。Altera公司将对其如何使用SAE的分析与验证功能,从而提高其高级节点设计生产力进行亮点展示。本次网络研讨会可在2016年内按需查看。

    时间:2016-02-26 关键词: 电路仿真 模拟验证 第三方环境

  • Protel DXP电路仿真流程与实例仿真分析

    电路仿真是指在电脑上通过软件来模拟具体电路的实际工作过程,并计算出在给定条件下电路中各节点(包括中间节点和输出节点) 的输出波形。电路仿真是否成功,取决于电路原理图、元件模型的仿真属性、电路的网表结构以及仿真设置等。Protel DXP 执行混合信号仿真的设计流程如图1所示。 图1  电路仿真流程 a ) 原理图设计: 首先, 新建一个原理图文件*.schdoc ,打开编辑环境,与普通原理图大致相同;然后,打开Libraries ,加载必要的元器件库,添加元器件并设置参数,这里所有的元器件都必须具有Simulation 仿真属性,否则仿真时将出现错误信息,在DXP中假定所有元器件都是理想元器件;最后,用导线进行电气连接或网络标号,对整个电路进行编译ERC 校验,确保整个电路没有错误。 b) 设置仿真环境: 执行菜单命令,打开Analysessetup 对话框,设置仿真方式并指定要显示的数据,DXP 提供10 种分析仿真方式,包括直流工作点、直流扫描、交流小信号、瞬态过程、Fourier 、噪声、传输函数、温度扫描、参数扫描以及蒙特卡罗分析等。 c) 仿真:设置仿真环境后单击OK 按钮,系统进行电路仿真,生成一*.sdf 文件,同时打开窗口显示分析结果。 d) 分析结果:观察电路仿真结果,分析仿真波形是否符合电路设计要求,如果不符合,则重新调整电路参数进行仿真,直到满意为止。 以图2 所示的分压式偏置电路放大器为例进行性能分析。 分析分两步进行:首先进行直流分析(静态分析) ,求出晶体管各极的静态工作点电压和电流IB、IC、IE、VB、VC、VE 等,使晶体管大致处于放大区中心处;然后进行交流分析(动态分析) ,即在输入信号作用下求出静态工作点上叠加的各极信号电压和电流,计算放大器的性能指标,其中最基本的是电压放大倍数Au(电压增益) 、输入电阻和输出电阻等,这里主要介绍Au 。在各种电子设备中,放大器是必不可少的组成部分。 工程近似估算 1) 静态分析 因β= 128 ,则有: 2) 动态分析 (相位差为180°) Protel DXP 仿真分析 按图2 电路编辑仿真原理图,添加适当的元器件(必须具有仿真属性) ,设置仿真参数,执行Design/Simulation/ Mixed Sim 菜单命令,设置仿真环境。 1) 静态分析 在Analysis/ option 栏中选择Operating Point Analysis (工作点分析) 仿真方式,Active Signals 中选择b、c、e、q[ib]、q[ic]、q[ie]为激励信号,单击OK 按钮,得到如图3 所示的仿真结果。 图3  静态点仿真结果 2) 动态分析 执行同样菜单命令,在对话框中选择Transient/Fourier Analysis (瞬态分析) 仿真方式,设置相应仿真参数,选择in、out 为激励信号,单击OK 按钮,得到如图4 所示的仿真波形。 图4  动态分析仿真结果 添加测量坐标显示测量数据:输入交流信号幅度为10 mV ,输出交流信号幅度为0.77 V ,所以电压放大倍数为77 ,且输入和输出信号波形之间相位相反。分析图3 和图4 仿真结果,与工程近似估算值大致相近,仿真正确。

    时间:2014-06-09 关键词: 电源管理 电路仿真

  • 基于CPLD的RS-232串口通信实现

    CPLD(Complex Programable Logic Device)是一种复杂的用户可编程逻辑器件。采用连续连接结构,延时可预测,从而使电路仿真更加准确。CPLD是标准的大规模集成电路产品,可用于各种数字逻辑系统的设计。开发工具Quartus II、ISE等功能强大,编程语言灵活多样,使设计开发缩短了周期。 随着嵌入式的发展,对数据的传输和人机交互通信的要求越来越高。而串口通信因其资源消耗少、技术成熟而被广泛应用。系统中上位机与嵌入式芯片之间的交互通信可以通过专用集成芯片作为外设RS-232异步串行接口,如TI、EXAR、EPIC公司的550、452等系列UAWT集成电路,或在拥有 Nios系统的FPGA上可以方便地嵌入UART模块。但是在设计中用户会提出自己的要求,如:数据加密或只使用UART部分功能等,即要求更灵活的 UART.而且有时CPLD资源剩余,出于成本考虑也会要求设计一种模拟的UART.对于上述的两种情况,就可以在CPLD其丰富的资源上制作一款 UART,实现PC机与嵌入式系统之间的数据交换。 1 串口通信协议 1.1 UART简介 通用异步收发器(Universal AsynchrONous Receiver Transmitter,UART)。异步通信的特点:不要求收发双方时钟的严格一致,实现容易,设备开销较小。具有相关工业标准提供的标准的接口电平规范等优点,在工业控制领域被广泛采用。 异步通信一帧字符信息由4部分组成:起始位、数据位、奇偶校验位和停止位。 本设计基于RS-232的数据帧结构,设置数据帧结构如图1所示:1 bit起始位,8 bit数据位,1 bit停止位,无校验位。每帧实质上传送1 Byte数据。   1.2 自定义数据包格式 多个上文所描述的帧就可以组成一个数据包。串口通信是在RS-232数据帧结构的基础上定义的,传输以数据包为单位进行。包结构如图2所示。   本文采用和校验的结构,一个数据包包含15 Byte.其中第1个字节是数据包头即握手字符。第2字节为控制字符,EE代表写命令,DD代表读命令。第3至第14为可利用数据。第15字节作为校验字符,理论上应等于这个数据包中数据字符串之和的后8bit. 2 设计方案 2.1 UART的设计结构 笔者设计采用模块化设计,方案的UART主要由逻辑控制模块、波特率发生模块、发送模块和接收模块等组成。波特率发生模块可以建立精确的时钟,确保数据采样准确、工作时序顺畅。逻辑控制模块、波特率发生模块、发送模块和接收模块完成工作有:确定数据起始位、数据收发,串并转换、建立握手连接、判断命令、数据校验等功能。 2.2 状态图 利用串口通信在数据交互过程中涉及到了多种工作状态,情况比较多样,而利用程序设计中的有限状态机(FSM)理论进行编程设计,这个问题可以迎刃而解。 有限状态机是由寄存器组和组合逻辑构成的硬件时序电路,有限状态机的状态(即由寄存器组各位的1和0的组合状态所构成的有限个状态)只能在同一时钟跳变沿的情况下才能从一个状态转向另一个状态。 本设计的有限个状态编码使用独热码形式,即寄存器组每一个bit位代表一种状态(如“0100”,“1000”为四态机中的两种状态),这种状态码的好处是避免了状态混乱。状态机采用Mealy型有限状态机,这种状态机的下一个状态不但取决于各个输入值,还取决于当前所在状态,符合UART的工作原理。   逻辑控制模块、数据接收模块和发送模块的设计都使用到了状态机,其中以逻辑状态机为主状态机,其余两个为从状态机。确定各种工作状态和工作流程后便可构建出状态图,方便直观地进行后续设计。 通过状态图可以方便、准确地得到程序设计框图如图4所示。   能得到较好的实验数据。 3.4 发送器 发送器在接收逻辑处理模块给出的命令后发送相应的数据给PC机。发送内容主要包括:数据正确或握手成功信息DD,示意PC机继续下一步操作;数据重发或握手失败CC,示意PC机重新发送数据;以及PC机欲从嵌入式系统中读出的数据。   4 实验验证 工程设计的某嵌入式系统要求PC机向CPLD发送数据。CPLD选用ATREL公司的MAX7000系列芯片EPM7128SLC84-15.芯片拥有2 500个可使用门阵列、128个宏单元、8个逻辑阵列块、84个用户I/O接口。CPLD的IO操作电平是TTL电平,通过MAX232电平转换芯片将 PC机串口电平转换为TTL电平,就建立起了串口通信的电气基础。PC机上拥有VC++编写的数据下载程序,波特率为9600 bit/s,每个数据帧含1位起始位,8位数据位,无校验位,1位停止位。通信数据格式用上文提到的和校验数据格式,以数据包为单位发送,如图6所示。   图6 数据下载 从实验结果可看到PC机每发送一个完整的15 Byte数据包,CPLD回复握手成功和数据校验正确,表明设计可行。 5 结束语 本文从工程设计实际出发,没有选取通用的UART芯片,通过分析异步通信中UART的结构特点,运用CPLD的丰富资源和一些工程技术制作了自定义通信数据包格式的串口通信模块。通过与PC机上数据传输程序联试,实现了信息的传输和人机互动,证明设计方案的正确。如今嵌入式技术应用十分广泛而且市场需求很广阔,PC机与嵌入式系统的通信实现了人机互动使系统功能更加强大。研究对增强嵌入式系统操作性有重要意义。

    时间:2014-05-16 关键词: cpld 电路仿真 人机互动

  • 基于FPGA的QCM湿度测量系统程序设计与仿真

     摘要:为了实时检测常温下的湿度,以便负责人根据需要调整环境状态。采用测频计数法结合频差法设计了以FPGA芯片(EP2C8Q208C8N)为基础的可用于湿度测量的石英晶体谐振频率漂移检测电路。重点介绍在FPGA平台上通过测量石英晶体的谐振频率来间接测量湿度的方法,讨论了FPGA平台上的每个模块的设计过程,给出了部分模块和整体电路的仿真图,解释了仿真结果。FPGA参与外围硬件电路的辅助设计,会使设计更加简单,周期更短。 湿度若能够实时进行测量,对于生产、生活方面是很至关重要的,尤其是在那些仓储、种植、养殖、家庭、医疗、科研等关注湿度变化的地方。如果异常湿度不能及时被测量到,就会使生产降低、身体感到不适。现代湿度测量从机械式发展为精确度更高的电子式湿度传感器。石英压电谐振式湿度传感器就是利用了谐振元件的固有频率与被测量之间存在关系而进行测量的一种电子装置。通过在线可编程芯片FPGA来对传感器数据进行采集、测量和处理,能极大地整合和简化系统设计。文中将主要描述石英晶体(QCM)湿度测量系统中FPGA部分的程序设计,分别给出单个模块的设计思路和(或)工作流程图,对部分模块给出仿真结果,最后对总体程序进行了仿真,给出整体结果。 1 基本原理 在压电石英晶体的晶片表面涂覆湿度敏感材料,制成一个附着有吸湿膜的石英晶体谐振器。若该石英晶体放置于湿度环境中,由于吸湿膜通过氢键或者分子间作用力吸附了环境中的水汽分子,使得石英晶体的质量发生变化。根据Sauerbrey公式,如式(1)所示,为晶片上吸附水汽分子后石英晶体质量变化量,Fo为基频,△f为相同基频下的无湿敏膜标准石英晶体谐振(以下简称标准晶振)频率Fo与有湿敏膜传感石英晶体谐振(以下简称传感晶振)频率的频率差,S为晶片上湿敏膜的面积。石英晶体的质量若发生变化,其谐振频率也会随之发生变化。只要通过测量出石英谐振频率的变化量,再利用频率差-质量差-相对湿度三者之间存在的关系,由频率转换得到相对湿度。 系统由湿度传感器、QCM振荡电路、FPGA平台、显示电路等模块组成,如图1所示。FPGA平台将集成测量、控制、驱动等功能模块,先通过参比对照测出两个通道的频率值,再计算两通道频率值的差,根据转换表转换出相对湿度值,送出显示。采用基频10 MHz,AT切型的石英晶体作为湿度传感器。 2 总体方案构造 2.1 FPGA芯片 FPGA,通过软件辅助编程的方式实现电路功能的一种半定制ASIC芯片。FPGA是在线可编程器件中的一种,基于查找表LUT的电路原理。N输入的查找表,将输入的真值表存储在SRAM中,系统通过“查表”的方式,输出预存结果。FPGA在电路设计和使用的过程中高度体现了以专用性、高效性,以人为本的设计思想。FPGA芯片采用的是美国Altera公司设计生产的Cyclone II系列中的EP2C8Q208C8N。它含有516个可编程逻辑块CLBs,8256个逻辑单元LEs,165888个存储位,138个可使用的I/O端口,端口最大电压为3.3 V,核心电压为1.2 V,工作适宜温度为0~85℃。 2.2 FPGA总体电路构建 FPGA程序设计是整个相对湿度测量系统设计中关键的一部分,集成了控制、测量与锁存、差值计算、物理量转换,显示驱动等模块。通过软件编程辅助设计的电路,既可降低硬件电路设计的成本,同时也发挥软件设计带来的优点。另外用FPGA做设计还可随时就应用过程中出现的问题调整程序,使系统作更大优化。整个FPGA运行的流程图如图2所示。整个FPGA电路模块的设计和仿真都将在Quartus II 9.0软件环境下完成。在FPGA中相对湿度的测量将采用实时测量的方案。 3 模块设计与仿真 3.1 控制模块 控制模块主要完成对FPGA工作进程的控制。它包括系统启动/暂停、使能控制、系统复位等功能,其工作流程如图3所示。其中N值大小可以因需求不同作数值调整。 3.2 测量与锁存模块 测量模块是FPGA设计中最关键的模块之一。为得到频率差,采用双通道分别进行标准晶振和传感晶振的频率测量。数据信号在一个闸门内的计数值很大,所以不考虑因闸门信号与数据信号不同步造成的±1字的误差。测量模块中的频率测量采用直接计数法完成。在使能高电平期间,频率信号触发沿每到来一次时,计数器加1计数;在使能低电平期间计数器数据锁存,保存至下一次的测量完成。最小测量精度为1 Hz,采用8421BCD码计数(便于观察和后续电路设计)。 对测量和锁存模块进行仿真分析,如图4所示。从图中可以看出系统在异步复位信号sys_clr高电平下复位,否则在使能信号sys_ena高电平有效时,系统计数,直到使能无效,result_Q最后一个计数值送入锁存器result_latch保存至下一次测量结束。在整个系统中复位信号周期性出现在保持时间末刻,以使计数寄存器下一次从0开始计数。 3.3 频率差值计算模块 获得两个通道的频率值后,根据频差计算公式(2),将两者送入减法器中。 △F=Fo-Fs (2) 减法器采用BCD码减法,按以下规则顺序执行: 1)比较大小,如果被减数大于或等于减数,差为正,符号记为0;如果减数小于被减数,将被减数与减数的位置对调,差为负,符号记为1; 2)按照二进制法逐位减法运算; 3)从最低位开始包括被减数、减数、差的每4位组成一组,高位不够4位用零补齐; 4)如果每一组的被减数大于减数,则若差大于9,则差减去6,其他不变; 5)如果每一组的被减数小于等于减数,则若差大于5(最小1组大于6),则差减去6,其他不变; 6)修正后的结果即为频率差。 随机设计了几组数据进行仿真测试,如图5所示,经比对,结果正确。其中a8至a1为被减数a的高位至低位,即为标准晶振的频率值;b8至b1为减数b的高位至低位,即为传感晶振的频率值;差为asb8至asb1,符号为sign。 3.4 物理量转换模块 在20%至85%这段相对湿度区间,频率差与相对湿度值之间的曲线接近线性。设计中频率差与相对湿度值之间的转换以查找表的形式来实现,一个湿度范围对应一组频率差。通常情况下,由于材料、制作工艺的不同,频率差的变化也会有所不同。为了仿真,假定相对湿度变化1%时,频率差变化2个值。 3.5 显示驱动模块 后端显示用LCD1602液晶屏构成。由于1602中命令和数据共享总线,首先需要对其初始化,目的就在于对总线状态、显示样式的设置。初始化过程为清屏→显示状态设置→工作方式设置→CG RAM设置→DD RAM设置。一旦初始化结束后,就可以将结果等内容在液晶屏上动态显示。 4 总体电路测试与仿真 为便于仿真观察,程序上对时钟和信号周期进行了修改,但设计思路不变,不影响整个的工作流程。打开Quartus II的仿真器,插入输入输出信号,依照实际情况给出输入信号波形,仿真结果如图6所示。其中clk20M为20 MHz的时钟信号,经20分频,得到一个周期为的闸门信号(实际中为2s)。因为传感石英晶体质量因受湿度的影响而增加,其谐振频率随之下降,故传感晶振频率总小于标准晶振。cnt_clk0、cnt_ clk1分别为两个通道的频率信号,其周期设置在0 s~3.4μs为8 ns和10 ns,在3.4~6.4 μs至为19 ns和30 ns,在6.4~7.3μs至为35 ns和50 ns;系统一开始清零;result_Q为通道0的频率测量值,result_Q1为通道1的频率测量值。在仿真中取频率的最大变化为50,每1%的相对湿度,有2的变化。由图可看出,当系统在接到清零信号后,立即对计数寄存器进行了数据复位。当测量周期结束后,分别得到以下数值:在0 s~3.4μs这一段,通道0计数值为125,通道1为100,差值为25,湿度为50%;在3.4~6.4μs至,通道0为53,通道1为33,差值为20,湿度为40%。 5 结论 设计运用了功能强大的FPGA作为湿度测量系统的主要部件,充分发挥其高度集成的内部资源和弥补了硬件上设计的漏洞和误差。文中对相对湿度测量系统中的FPGA部分的程序进行了设计说明和仿真,给出总体电路的仿真结果。证明了设计方案的可行性,体现了软件结合设计所带来的简便性和实用性。 如果将该FPGA测量平台与其他外围硬件电路组合,即可完成湿度测量系统的设计,同时也可用于特殊气体的检测。

    时间:2014-01-29 关键词: FPGA 电路仿真 石英晶体 湿度测量 ep2c8q208c8n

  • PLD的PROTEUS电路仿真

    1 PROTEUS软件简介 PROTEUS是来自英国公司的工具软件,在全球广泛使用。和其它工具相比,这款软件的最大特点就在于它能够模拟单片机。可以直接在基于原理图的虚拟原型EDA上编程,并实现软件源码级的实时调试。还能看到运行后输入输出的效果。但是现在大家都只注意到PROTEUS对单片机的仿真和如何与Keil进行关联调试,其实PROTEUS还能够进行PLD的电路仿真。 PLD(可编程逻辑器件)是一种数字集成电路的半成品,在其芯片上按一定排列方式集成了大量的门和触发器等基本逻辑元件,使用者可利用某种开发工具对其进行加工,即按设计要求将这些片内的元件连接起来,使之完成某个逻辑电路或系统的功能,成为一个可在实际电子系统中使用的专用集成电路。 一般的PLD设计软件只能进行PLD芯片的时序逻辑仿真,而PROTEUS能进行PLD的电路仿真,可以模拟设计的PLD芯片在电路中实际运行的情况。 我们通过使用GAL16V8设计一个在单片机系统里常用的三八译器,然后在PROTEUS中通过观察GAL16V8中三八译码器的输入与输出的对应关系来完成PLD的电路仿真。 2. PLD的设计 首先用Protel 99SE完成PLD的设计。 完成后的PLD原理图如下所示: 图1画好的PLD原理图这是一个3-8译码器的PLD文件。输入信号为目标元件的2、3、4三个脚,输出信号为目标元件的12-19脚,6-8脚为使能控制端。 Protel 99SE的PLD原理图的设计与普通原理图相同,但有几点是需要注意: 生成PLD元理图后,在原理图中自动加入了两个PLD的元件库(PLD_Devices.lib、PLD_Symbols.lib),PLD的电路图绘制必需使用这两个库中的元件。 绘制PLD原理图时,必须放置输入/输出端口(输入:IPAD、输出:OPAD、输入/输出:IOPAD)元件,这些元件所指定的引脚代表着目标器件的引脚。 在输入/输出端口元件放置好后,必须对其进行编号,还要指定该端口元件所对应连接的目标器件的引脚号。 完成PLD原理图后,选择[PLD]/[Compile]进行编译,生成各种格式的文件: 图2编译生成的各种文件打开生成的。jed文件,点击右键,在弹出的窗口中选择[Export…]项,选择。jed文件的输出目标地址。 至此就完成了PLD文件的设计。 3 Proteus对PLD的仿真 启动Proteus,绘制好电路图。 图3 Proteus仿真电路图电路中LED显示采用低电平时LED点亮的显示方式。电路中I1-I3为GAL16V8输入端口,端口为高电平时为1,低电平时为0,IO0-IO7为输出端口,输出端口为:LED灯亮时端口输出低电平0,熄灭时为高电平1.为了使PLD元件能仿真,还必须在电路中将编译的。jed文件加入PLD元件中:将鼠标移到U1(16V8)中,右击,选择元件,然后左击,调出“元件的属性”对话框,在属性对话框中,在窗口中的“JEDEC Fuse Map File:”中加入。jed文件: 图4 16V8元件属性由前面PLD的设计可得3-8译码器的真值表:输入信号输出信号I3 I2 I1 IO7 IO6 IO5 IO4 IO3 IO2 IO1 IO0 0 0 0 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 0 1 0 1 0 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 0 1 1 1 1 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1表1 3-8译码器真值表为了观察16V8的输入与输出的对应关系,我们在AT89C52的程序(程序见附录)中将与I3、I2、I1相连的P2_2、P2_1、P2_0三个端口按真值表中的顺序依次改变,观察LED灯是否由IO0至IO7依附点亮。 将单片机的程序加入AT89C52后,在Proteus中点击Play键观看电路仿真结果:当输入端的I1、I2、I3值按程序设定按真值表中的000—111依附改变时,输出端对应LED灯按真值表中的对应关系由IO0至IO7依次点亮,如下图。说明PLD器件16V8设计的三八译码器译码正确。 图5译码电路对应输入/输出截图 4.结语 单片机与PLD的结合是当前嵌入式设计经常采用一的种方式。但如果要进行硬件电路测试和系统调试则比较麻烦,因为要进行这两个过程必须在电路板制作完成、元器件焊接完毕之后进行。而电路板的制作、元器件的安装、焊接是费时费力的,如果采用作为单片机系统的仿真工具PROTEUS进行单片机和PLD的仿真,则不用制作具体的电路板也能够完成以上工作。在使用PROTEUS运行系统虚拟开发成功之后再进行实际制作,可以直观得观察电路的运行情况,提前发现设计的错误,可以极大的提高开发效率、降低开发成本、提高开发速度。 程序附录: #include sbit P2_0=P2^0;sbit P2_1=P2^1;sbit P2_2=P2^2; void delaytime(int count);void main(void) { while(1) { P2_2=0;P2_1=0;P2_0=0;delaytime(500);P2_2=0;P2_1=0;P2_0=1;delaytime(500);P2_2=0;P2_1=1;P2_0=0;delaytime(500);P2_2=0;P2_1=1;P2_0=1;delaytime(500);P2_2=1;P2_1=0;P2_0=0;delaytime(500);P2_2=1;P2_1=0;P2_0=1;delaytime(500);P2_2=1;P2_1=1;P2_0=0;delaytime(500);P2_2=1;P2_1=1;P2_0=1;delaytime(500); }  void delaytime(int count)  {    int j,k;    while(count-- !=0)    {      for(j=0;j<10;j++)         for(k=0;k<72;k++)         ;        }  }

    时间:2013-09-04 关键词: pld 电路仿真 proteus

  • 以FPGA为基础的SoC验证平台 自动化电路仿真侦错功能

    随着系统芯片(SoC)设计的体积与复杂度持续升高,验证作业变成了瓶颈:占了整个SoC研发过程中70% 的时间。因此,任何能够降低验证成本并能更早实现验证sign-off的方法都是众人的注目焦点。 台湾工业技术研究院 (工研院, ITRI) 在今年的设计自动化大会(2011 DAC)提出的案例研究,提出一种能够显著提升客制化FPGA原型板验证效率的创新方法,自动化现有的电路仿真(in-circuit emulation)侦错功能,并提供更高的FPGA能见度。这个以FPGA为基础的SoC验证平台对工研院而言是前景看好的崭新领域,对其支持台湾IC设计产业新技术领域的研发工作助益良多。 案例研究:高效能的多媒体SoC平台  这款SoC设计是高效能的Android兼容多媒体SoC平台。配置了AXI、AHB与APB总线,供通讯使用;由工研院(PACDSPs、EMDMA 与 DDR2控制器)设计的高效能客制化IP组件连结至AXI 总线,加速H.264视讯编译码器(video codec)等多媒体应用软件的执行。包括ARM、SDRAM、DMA、SRAM、Ethernet与LCD在内的标准IP组件连结至AHB总线,适合于一般应用。最后,UART、Timer、I2S、I2C与Watchdog等低频率的IP区块(block)则连结至APB总线。 下列案例研究说明了工研院与思源科技工程师如何合作,使用思源科技ProtoLink Probe Visualizer,克服工研院SoC设计中出现的验证挑战。这个与音效功能相关的问题是:在 FPGA原型板未激活OS的状况下,功能正常运作 (可录音与播放);但如果在原型板上启用Linux,功能就无法正常运作。在FPGA原型环境中,要使用传统的侦错方法排除这类问题是相当困难的。FPGA的能见度仅局限在少数的讯号与时脉周期内,无法提供足够的信息找出错误所在。而因为激活OS(例如 Linux)耗费的时间相当长,想透过缓存器转换阶层(RTL) 仿真来解决问题也行不通。由于问题的成因可能在于软件、硬件或驱动程序,因此要确实找出问题的根本原因是一项考验。    与众不同的作法     要简化侦错作业,就需要更高效率的验证方法。ProtoLink Probe Visualizer是新的原型验证环境,采用以软件为基础的方法,可以从RTL设计阶段开始到最终的设计实现阶段,都提供高水平的设计能见度,可全面加速侦错作业的进行。    工研院起初担心其客制化原型板可能无法符合思源科技ProtoLink Probe Visualizer的接口需求,而思源科技工程师在进行几项快速测试之后,证明工研院客制化原型板上的标准 J连接器可顺利地与执行Probe Visualizer软件的工作站连结。只需在原型板上新增锁相回路(PLL),提供所需的取样时脉(sampling clock)即可。FPGA的设置流程相当简单,可轻松整合至现有的程序(script) 中,自动选取大约100个探测讯号(probed signal),就能见度来说,已比过去的方法提升6倍之多。此外,所有的探测资料都可储存在外接的2GB探测讯号内存中而不占用FPGA资源,真正额外需要的探测逻辑(probe logic)也仅占用FPGA的2%,可说相当的少。外接内存的资料容量可储存充足长度的时脉周期,让工程师能够确实掌握软件、硬件与驱动程序间的关系。  工研院团队透过思源科技Verdi自动侦错系统的进阶观察、追踪与分析功能,来使用储存的探测资料进行侦错作业。在经过多次重复侦错之后,发现了两个问题:1) USB中断 (USB interrupt)长时间锁住ARM,因此I2S内的FIFO是空的,因而造成问题; 2)定时中断(Timer interrupt)的优先级高于DMA中断,因此再一次造成I2S内的FIFO是空的。工研院工程师使用思源科技软件的侦错功能,进一步分析设计行为,仅管表现出来是共通的错误征兆,工程师还是能够迅速发现这些错误的根本成因是源于两种不同的情况。 此外,观察额外的关键讯号是侦错时必需的,但这些讯号多半不在原始探测清单中。工研院工程师透过Probe Visualizer迅速的探测ECO流程,在10分钟内就可新增10个新讯号,而且不用重新编译整个设计。相对传统的侦错方法需要在RTL拖曳新讯号,并且针对这个特定的设计重新执行合成(synthesis )以及布局与绕线作业,约需花上2至3个小时,因此这方面的革新省下了大量的时间。    工程师能够轻松地将 所需额外的RTL探测讯号由Verdi侦错环境拖曳至Probe Visualizer。这套系统会自动建立RTL至逻辑闸层(RTL-to-gate level)的讯号对应关系,所以可直接在 FPGA 布局与绕线档案上迅速执行部份绕线作业来看到新增的探测讯号,大幅缩短侦错作业时间,所以能在短时间内处理多重侦错工作阶段 (debug session)。而对设计中使用的“黑盒子”IP区块,也只需EDIF名称,就可以进行探测ECO流程。 评估结果  工研院工程师在修正问题并成功试产设计之后,检讨了项目实际耗费的时间,并评估了这个新的FPGA SoC原型验证方法的成果。   进行RTL设计、仿真、通讯协议验证与FPGA设计实现的时间约为2个月。在驱动程序移植(driver porting )上所花费的时间则短了许多,大约只有2个星期。工程师随后又花了2个月的时间进行验证作业,试图透过硬件逻辑分析器检查 FPGA 内部讯号解决音效问题,同时也在音效驱动程序中增加观察点,以连结并企图找出问题。这种传统的FPGA侦错方法,需要的时间和设计研发的时间一样长,然而对工研院团队而言,相当令人沮丧的是结果仍然一无所获。不过,在经过思源科技提供的应用软件教育训练/支持课程及一星期的实作经验后,工研院工程师使用ProtoLink Probe Visualizer,在短短一星期的时间内就厘清了两大问题! 对工研院而言,ProtoLink Probe Visualizer是一种相当有效的FPGA原型板侦错方法。工程师再也不必局限在传统的侦错方法,而且在实时应用软件中增加观察点也可能会造成其它问题。透过维持原有软件并监测更多FPGA讯号在数百万时脉周期内的实时RTL行为,使用者可以获得所需的能见度,更完美的掌握、更轻松地侦错设计的问题。 总合来说,思源科技Probe Visualizer透过以软件为基础的创新方法,改变了原型板验证的方法,实现丰富、实时的设计能见度,并且让原型板能使用Verdi的侦错威力,使原型板侦错时间比传统的方法大幅缩短一半。这种侦错作业生产力与整体验证效率的提升,不仅能协助工研院在更早期的SoC研发流程中配置FPGA原型,并且能迅速移转至搭载最新FPGA技术的新一代原型板上,充分运用最新FPGA技术的优势。  

    时间:2011-08-18 关键词: 基础 FPGA SoC 电路仿真

  • 概伦电子将展出基于DFY的纳米级电路仿真与验证方案

    21ic讯 概伦电子科技有限公司(ProPlus Electronics Co., Ltd. 下称概伦电子)日前宣布将参加于6月5-10日在美国San Diego Convention Center举办的第48届设计自动化大会(Design Automation Conference,DAC 2011)。针对近阶段IC设计和制造领域内的热点话题,概伦电子将在此次展会上通过开放展区和DEMO演示区,展示其在先进SPICE模型开发与验证、和基于良率导向设计(DFY)的纳米级电路仿真和验证等解决方案。概伦电子的展位为#2025展台。 DAC设计自动化大会是全球Electronic Design Automation (EDA) 领域中最负盛名的技术会议和展览会,它为IC设计、EDA系统、技术网络和商业环境等各领域提供交流与展示机会,并展示EDA行业最新的技术研究成果。DAC覆盖了复杂芯片系统设计领域涉及的所有话题,从嵌入式系统设计验证乃至物理层验证及测试的全部应用。第48届DAC会议汇集了超过两百家顶尖IC设计供应商共同参与。    

    时间:2011-04-26 关键词: 概伦电子 dfy 电路仿真 纳米级

  • Protel 99 SE在某装备随动系统电路仿真中的应用

        某高炮由于采用双读数电路的随动系统,实现了该炮的全自动快速跟踪和瞄准,有效提高了其作战性能,大大提高了射击精度,但同时也存在问题:该随动系统由多种集成电路和多块印制电路板组成,电路复杂,结构多样化,因此故障检测和诊断难度大。本文基于Protel 99 SE对该随动系统电路板进行仿真,为分析电路板故障原因提供重要依据,较好地提高了装备的维修保障能力。1 电路仿真软件Protel 99 SE介绍及仿真流程    Protel是众人熟悉的电子CAD软件,而Protel 99SE提供了模拟电子线路和数字电路的电路仿真能力,仿真的结果和数据精确。该软件提供多种仿真激励源(信号源),接近6 000个仿真元器件和大量的数学模型元件,可以对电工基础电路、低频电子线路、高频电子线路、脉冲数字电路以及其他的电路在一定数值范围内进行仿真和分析。同时提供了多种电路分析方法,如:静态工作点分析、瞬态特性和博里叶分析(时域分析和频谱分析)、交流小信号分析(幅频和相频特性)等。既可单项分析,亦可复项分析。仿真流程如图1所示。2 电路板仿真分析    本文以该随动系统中位置调节器板A01的信号选择与综合电路为例进行仿真。电路图如图2所示。信号选择电路的作用是在信号电压不太大时阻断概略信号电压Uc,只让精确信号电压Uf通过。当信号电压大到一定值时让概略信号电压Uc通过,阻断精确信号电压Uf。信号综合电路的作用是将经过信号选择电路选择后的信号,按一定比例叠加在一起,放大后形成控制信号。    首先分析信号选择电路。电路由R1~R19和V1~V8等元件组成。概略信号Uc的选择开关由V3完成,V4用来提高选择的灵敏度和重复性。精确信号电压Uf的选择开关由V7完成。概略信号Uc先经R1,R3和V1限幅,再经R2,R3分压后,送到V3发射极。当概略信号电压Uc的有效值电压小于3.5 V时,V3,V4全截止,则Ve3=0,即概略信号电压Uc被阻断。这时随动系统由精确信号电压Uf控制工作。只要概略信号电压有效值小于5 V,V7处于夹断状态,精确信号电压Uf一直通过,并可以在R15上获得一个精确信号电压Uf的分量,再由RP1送到下一级。当概略信号电压Uc有效值大于5V后,概略信号电压通过R33,R42和C10和V8的整流滤波成正电压,经V6,R16加到V7,使V7导通,精确信号电压Uf由V7旁路到地,即阻断了精确信号电压向下级传送。    信号综合电路由R20~R23、RP1和U1等元件组成。R20,R21分别为概略信号电压和精确信号电压的输入电阻,R23为反馈电阻,R22为正向输入端接地电阻,为放大器提供信号参考点。RP1和RP2分别为精确、概略信号比例调节电位器。    信号传输关系为:        其中:kf,kc分别为RP1,RP2所取的精确、概略信号比例系数(仿真过程中取0.5),UA为U1的输出电压,α为失调角。    下面是仿真的结果:    激励信号为概略信号(见图3)和精确信号(见图4)。当概略信号电压小于5 V时,V7截止,精确信号一直通过,如图5所示,由RP1送到下一级。当概略信号大于5 V时,V3,V4导通,概略信号能够输出;而V7导通,精确信号电压Uf,由V7旁路到地,即阻断了它向下级传送。其输出波形如图6所示。    概略信号和精确信号输入到信号综合电路,经叠加放大后输出控制信号。其输出波形如图7所示。3 故障分析中的应用    在A01板中,运算放大器为集成元件性能比较稳定,一般不容易出现故障。影响A01板性能的主要是二极管、三极管和电阻。在正常使用过程中二极管、三极管可能因为静电击穿和过流造成损坏,也可能因为焊脚的脱落,导致二极管、三极管和电阻短路。下面以三极管V3为例,通过仿真判断故障点。首先将V3断开,对输出结果进行仿真,如图8所示。    结果与V3断开相似,下限幅值(-68.600 V)比正常信号的下限值高。因此在对A01电路板进行的检测过程中,如果出现幅值偏低的情况,基本可以判断故障为V3,V4出现短路。4 结 语    选择电路仿真软件Protel 99 SE对随动系统主要的部件(A01~A09)进行电路仿真,建立电路板故障数据库,极大地提高了电路板故障诊断速度。同时也可以将仿真用于该装备随动系统的教学中,实现教学手段的创新,提高教学训练的效率和效果。通过该设计得出结论:利用电路仿真软件Protel 99 SE进行某随动系统主要工作单元电路的仿真研究,为随动系统检测和故障诊断提供重要依据。

    时间:2009-11-06 关键词: 电路仿真 Protel 99 随动系统

  • 电子元器件在电路仿真中的建模

    1 引言    计算机仿真具有效率高、精度高、可靠性高和成本低等特点,已被广泛应用于电力电子电路(或系统)的分析和设计。计算机仿真不仅可以取代系统许多繁琐的人工分析,减轻劳动强度,提高分析和设计能力,还可以对电路进行优化和改进,最大限度地降低设计成本,缩短系统研发周期。但这些优点都是基于元器件模型,电路的数学化主要是元器件的模型化,可以说没有模型化就没有电路的仿真分析。简单的元器件,比如,电阻、电容和电感等,只需要一个或几个参数就可以描述其电学性能。而各类半导体和集成器件,则需用很多参数来描述较复杂的建模过程。目前各种仿真工具中都自带很多常用的元器件模型,但是自带模型库永远跟不上电子元器件的更新速度。这里针对建模的重要性和必要性,研究当前流行的电子电路仿真工具的电子元器件模型,提出两种建模方法:参数建模法和子电路建模法。2 参数建模法    参数建模法主要是针对加工工艺相同的一类半导体器件提出的,其工作过程是先利用物理法或黑箱法构建出不同复杂程度的等效电路,然后通过公式演算,得出这类半导体器件的参数。在使用过程中,若遇到该类器件,就可以通过直接设置参数值实现不同型号元器件的建模,从而省去重复构建等效电路和繁琐的方程式推导过程。    下面以N沟道MOS(metal-oxide semiconductor)晶体管为例说明等效电路与参数之间的关系。典型的N沟道MOS晶体管组成示意图如图1所示。    设置栅极宽度为W,有效栅极长度为L,栅极下氧化层的厚度为tOX。MOS管的特性方程为:   式中,COX是每单位面积的栅极电容。Vth为栅极-源极间的阈值电压。    当VDS增加时,ID上升,直到沟道的漏极末端夹断,ID不再上升。这种夹断发生在VDS=VGS-Vth时。因此工作区MOS管的特性方程可简化为:       通过式(2)得到如图2所示的MOS晶体管等效电路,其中压控电流源gmVgs是模型中最重要的部分,晶体管的跨导gm定义为:   将式(2)代入式(3),可得出:       图2中,gsVs表示第2个压控电流源,模拟漏极电流id上的体效应。当源极与地相连时,或其电压不变化时,此电流源可忽略。当体效应不能忽略时,则有:   式中,γ是体效应参数,|2φF|为表面反转电势。    图2中,电阻rds表示有限输出阻抗,模拟沟道长度调节和漏极电流因Vds改变而引起的效应,由式(1)可得:       图2中,电容的求解过程参见参考文献[1],以下给出结果:    Cgs是最大电容,需要较高精确度时可表示为:其中LD是重叠区的距离。    第2大电容Csb表示为:式中,As是源极的结面积,Ps是源极的结周长,不包括与沟道相邻的一边,Cj-sw表示0 V偏置下的侧壁电容。(Cj0偏置下的耗尽结电容)。    Cgd称为密勒电容,其值为:Cgd=WCoxLD。    源极主体电容Cdb表示为:Cdb=C'db+Cd-sw=AdCjd+PdCj-sw,其中,Ad是漏极的结面积,Pd是不包括与栅极相邻部分的结周长,    在仿真工具中建模,可指定如表1所示参数,系统自动根据上述计算式确定等效电路参数,从而完成该器件的建模。    在pspice中仿真得到预期结果,如图4所示。    可见参数建模法省去了构建等效电路的过程,只需通过厂商提供的器件特性参数就可以直接建模。但该方法只适用于固定结构的半导体器件。3 子电路建模法    随着电子器件的不断更新,单纯依靠修改参数值进行建模已经远远不能满足现在电子电路仿真的需求。针对常用电路单元和集成电路新产品,本文提出一种为新产品建立一个子电路模型的方法,并将该模型作为一个器件添加到仿真软件的模型库,在仿真电路时用户可以像调用自带库一样直接使用该模型。    子电路可利用原理图软件绘制,通过软件直接生成电路连接网表,也可以直接以文本的形式输入子电路的电路连接网表。当子电路中遇到参数建模的器件,仍采用参数值设置形式定义该器件。下面是运放AD648C的内部电路连接网表。    将此种的文本文件存为.lib的后缀名后,通过Model Editor工具将该文件与器件符号联系在一起,就可以使用在电路仿真中。图5为AD648C的简单运用电路,从图6瞬态分析结果可知建模正确。    对于前面所述的器件内部全部子电路建模法,很多时候并不能如此具体的了解一个器件内部的所有结构,这种情况下只能通过模拟器件行为建模。直接在子电路中用运算函数代替电路本身。    对高压开关稳压器MC33363进行以下的子电路连接网格表:    语句GSUPP 3 4 VALUE={IF(V(33)<3.5,250U,3.5M)},表示节点33和节点3、4之间连接的模块实现当输入端33节点的电压小于3.5 V时,输出端节点3和节点4之间的电压为250μF,否则为3.5 mV。该网格表使用到的EVALUE和GVALUE器件是将输出量和输入量之间运算函数关系用语句表示。EVALUE和GVALUE称为模拟行为模型 (ABM)器件,除了这两个外还有:*SUM、*MULT、*TABLE、ABS、LOG等,带有“*”符号的元器件,有E、G两种类型。使用ABM器件可省去实现这些换算的电路,简化子电路建模的工作量。4 结论    电路原理图仿真的最大瓶颈在于电子器件的建模,针对这一难点给出两种方法:一种是对于已经参数化的典型半导体器件,可以直接通过研究器件资料得到所需参数的数值,生成库文件:另一种是针对一些单元电路和集成电路新产品,由用户自己创建子电路的网格表,再转化为库文件。实验证明这两种方法都是行之有效的。

    时间:2009-09-24 关键词: 建模 电子元器件 电路仿真

  • 无锁相环电压全周期过零检测电路仿真与设计

    无锁相环电压全周期过零检测电路仿真与设计

    1序言随着电力电子技术的迅猛发展,作为电网净化器之一的静止型无功功率补偿器(简称SVC)的应用无论在国外还是国内都得到了长足的进步[1]。而作为静止型无功功率发生器的中央处理器的检测信号之一,交流电网电压过零点的准确检测变得异常关键,因为其值的确定直接决定着系统计算的电网电压频率的跟踪效果和补偿电流注入电网的时间,进而直接影响到静止型无功功率补偿器对电网补偿的准确性和实时性,即同步性。 本文充分利用现代电子电路设计软件的方便条件,在Protel 99SE仿真分析的基础之上,设计了一种无锁相环的交流电压全周期过零检测电路,不仅设计简单,而且其准确性也得到了实验的验证,有一定的实用价值。同时,以 Protel 99SE为电路仿真的手段有一定实际意义。 2无锁相环电压全周期过零检测电路原理 为了达到与电源电压同步的目的,除了可以使用锁相同步电路外,还可以实时检测电源电压的过零点和频率,根据过零点和频率就可以跟踪输入的电源电压的相位,实现同步输入。以三相交流低压电网的A相电压为例,当电源电压经电压互感器处理后,由负到正经过的正过零点(或由正到负经过的负过零点)时,向CPU传送电压过零点检测的信号,即分别为电压正半周期和负半周期产生的2个正方波以及正过零点与负过零点时产生的2个正脉冲指令信号,提供给CPU计算,以达到跟踪电网电压频率的同步目的。对于静止型无功功率补偿器,就可以发出同步补偿指令,达到补偿电网无功功率、抑制电网谐波电流的目的。 交流电压全周期过零检测电路框图如图1所示。 在检测电路中,采用电压运算放大器设计电路,实时检测电压过零点,分别在电压正、负半周及正、负过零点发出正方波和正脉冲信号,提供给CPU作为电源电压同步基准信号,使系统实时跟踪电源电压频率的变化。 3检测主电路设计 根据无锁相环电压全周期过零检测电路原理,利用Protel 99SE电子电路设计[2]软件,添加系统仿真库sim.ddb,调用仿真库中的器件,包括电压运算放大器LM324、电阻、1N4148系列二极管、电容、交直流电源和参考地信号等元器件,经过电路运算放大器、比较器等参数的设计计算[3]后,设计出交流电压全周期过零检测电路仿真原理图,如图2所示。 其中,Source为模拟交流电源的A相输入相电压,幅值设为3.889 V,频率为50 Hz,初相角为0。,电源电压经过RC电路处理后,设置网络标号PTA作为模拟电压互感器处理后的参考交流正弦过零检测电压(实际设计中电压互感器变比为80:1)。直流电压VCC和VEE分别为+15 V和-15 v,作为运算放大器LM324.的工作电压。其余的电阻和电容元件参数如图2中所标注值。 4仿真与实验结果 应用Protel 99SE,在Simulate菜单下的Setup中设置系统仿真参数: 在General选项中,从被选信号Available Signals中选择PTA,Pul_P,Pul_N,Squ_P,Squ_N等作为待观测信号Active Signals,在Sim View Setup中选择待观测信号作为要显示的仿真结果输出波形。 在Transient/Fourier选项下,选中暂态分析Transi-ent Ana设置仿真起止时间,分别为0和100 ms,设置步长为400μs,仿真结果显示5个周期的波形,每个周期波形取50点显示。 系统其他参数设置采用默认值。运行仿真命令RunAnalyses后,仿真结果如图3所示。 其中,pul_n和:pul_p分别为参考电压负过零点和正过零点输出的正脉冲信号,幅值为4.355 V,Squ_P和Squ_N分别为参考电压正半周期和负半周期输出的正脉冲信号,幅值为3.889 V。 图4为实际系统中A相参考电压过零检测输出的方波和脉冲波形图幅值与仿真结果相同。其中,图(A)为参考电压正半周期输出的正方波的波形,图(B)为参考电压负半周期输出的正方波的波形,图(C)为参考电压正过零点检测输出的正脉冲波形,图(D)为参考电压负过零点检测输出的正脉冲波形。 经过图3与图4波形的对比,可以看出,实做电路的过零检测效果比较理想。 以上分析、设计是以单相电压电路检测为例的,只需要将电路重复画出3组就构成了三相交流电源电压的过零检测电路。 图5为静止型无功功率补偿器采用全周期电压过零检测电路作为系统电压同步参考信号后的系统参考电压和无功补偿后系统的电流波形。实验中,装置所带模拟负载为晶闸管整流器,由文献[1]可以知道系统负载电流为非线性周期脉动的方波,系统电流波形畸变比较严重,而图5所示的电流补偿效果较好,基本为正弦波。 5结语 本文提出了一种无锁相环实现的电压全周期过零检测电路,利用Protel 99SE强大的电路仿真功能,设计、计算和调整了电路及参数,通过实做电路和仿真结果对比,验证了所设计电路的正确性,通过系统的无功功率补偿效果图,验证了所设计电路的可行性。

    时间:2007-07-16 关键词: 锁相环 电路仿真 电压 过零检测

  • Zarlink分组网络电路仿真处理器

        卓联半导体公司 (Zarlink) 近日推出三款低密度 CES-over-Packet(分组网络电路仿真业务)处理器,使得网络运营商可以通过扩展城域以太网和无线网络以有效的成本提供 TDM(时分复用)语音、视频和数据业务。     此三器件 ZL50117 系列利用分组网络电路仿真业务 (CES-over-Packet) 技术,可在以太网、IP(互联网协议)和 MPLS(多协议标签交换)网络上按照相关的时钟和信号要求,无缝搭建起一、二或四路 TDM 通信“隧道”。作为对卓联 ZL50120 系列全功能低密度分组处理器的补充,这些新型器件可以使服务提供商轻松实现为其客户提供 TDM 传统业务的需求。      面对日益增长的通信量和不断加剧的竞争,服务提供商正在积极扩展灵活的城域以太网,使其更加接近客户需求。除了以太网获得的运营收益外,服务提供商还不能忽视来自家庭和企业客户的传统业务所产生的收益。          采用卓联的新型低密度 CES-over-Packet 器件,经营基于以太网网络的网络运营商们将可以轻松实现 TDM 业务。分组网络电路仿真业务 (CES-over-Packet) 无需对基础设施进行“剥离更换”(rip and replace) 式的大检修,即可保护最终客户对传统网络设备的投资,并使其享受分组网络所具有的低成本优势。      传统上,无线网络运营商依赖于昂贵的 T1/E1 线路来实现通信从基站到基站控制器的回程。为了降低运营费用和满足 3GPP(3rd Generation Partnership Program,第三代合作伙伴计划)及其他组织的标准,他们正在使用较为便宜的基于千兆以太网的分组连接来取代 T1/E1 接入链路。      卓联的 CES-over-Packet 技术可轻松设计到基站和基站控制器中的线路卡中,从而在以太网连接上实现 TDM 通信的无缝传输。TDM 通信时钟信息在分组网络上进行端到端传输,以确保业务仍然满足相关的 T1/E1 标准。       与此类似,随着 WiFi(无线保真)和 WiMAX(微波接入全球互通)技术渐渐深入人心,CES-over-Packet 允许以比微波链路更低的成本,在基于以太网的局域网上实现 T1/E1 中继的无线回程。     卓联在系统级和芯片级均拥有向客户提供基于 TDM 的业务的成熟经验。通过这些新型 CES-over-Packet 器件,卓联已将这种技术成功扩展至分组网络。这些处理器可在广泛的分组网络上提供超越 G.823/G.824 和 T1.403 通信接口要求的关键同步性能。           ZL50117 分组处理器系列包括三种器件。ZL50115 芯片支持单个 T1/E1 流,ZL50116 器件支持两个 T1/E1 流,ZL50117 芯片则支持四个 T1/E1 流。  卓联完整的 CES-over-Packet 处理器系列包括可处理 1 至 32 路 TDM 通信流的简化功能器件和全功能器件的完整范围。     ZL50117 分组处理器现已批量生产。芯片提供完整参考设计、评估电路板和软件 API(应用程序编程接口)。所有三款器件均采用 23 mm x 23 mm  324 引脚 PBGA(塑料球栅阵列)封装。批量为 5,000 片时,ZL50115 单价为 32.19 美元,ZL50116 单价为 42.63 美元,ZL50117 单价为 59.16 美元。     

    时间:2005-02-03 关键词: 处理器 zarlink 电路仿真 分组网络

  • Zarlink电路仿真业务处理器

     卓联半导体公司 (Zarlink) 近日推出了基于分组的电路仿真业务 (CES) 处理器全线产品,完全符合业界通过 MPLS(多协议标签交换)和城域以太网进行 TDM(时分复用)电路传输的最新建议。     MPLS 与帧中继联盟 (MFA) 最近发布了实现协议 MFA 8.0.0,规定了通过 MPLS 网络承载 TDM 电路仿真的封装格式、连接的建立与拆除等。MFA 的新协议简化了通过 MPLS 承载 TDM 传输的问题,允许运营商向同时提供语音、视频和数据业务的单一、融合的网络转移。     城域以太网论坛 (MEF) 还批准了新的电信级以太网技术规范。MEF 8 规范规定了基于城域以太网 的PDH(准同步数据系列)电路仿真的实现方法,并概述了MEF 3 技术规范中规定的基于城域以太网承载 CES 的要求。MEF 8 将和针对以太网测试步骤与网络管理的新规范一起,促使城域以太网发展成为一种电信级传输技术。     卓联基于分组的电路仿真业务处理器,ZL50111 高密度系列和ZL50120 低密度系列各有三款,可在 MPLS、以太网和 IP(互联网协议)网络上按照相关的时钟和信号要求,实现 1 到 32 路 TDM 语音、视频和数据业务数据流的传输。所有六种器件已全面投产。     ZL50111 和 ZL50120 系列完全符合 MFA 和 MEF 所提出的性能规范。为了能够在通过可变比特速率的分组网络上传输恒定比特速率的语音业务时获得精确的网络定时,卓联的 CES-over-Packet 器件采用了可获得高精度时钟恢复和同步的硬件和软件处理技术。     先进的片上 QoS(业务质量)机制增强了语音质量,例如加权公平队列和严格优先级,通过在处理队列时给予对时间敏感 TDM 分组比数据分组更高的优先级,降低网络延迟的影响。     

    时间:2004-12-22 关键词: zarlink 电路仿真 业务处理器

发布文章

技术子站

更多

项目外包