当前位置:首页 > 示波器
  • 如何通过脉宽变化趋势分析SPWM波形?

    如何通过脉宽变化趋势分析SPWM波形?

    ▌SPWM介绍 SPWM是一种脉冲宽度按正弦规律变化的一种PWM波形,是PWM技术的一种延伸,是一种可以等效正弦波效果的PWM技术。广泛用于电机驱动、逆变电源等领域。其调制原理是利用三角波和正弦波进行调制,利用其交点来确定了脉宽宽度序列。调制方式如下图所示: 图1 ▌常规测试方法 用示波器测量SPWM的常规方法是利用其内部的软件低通滤波功能,将SPWM的载波滤出掉,最后剩下的波形就是所要等效出的基波。如下图所示: 图2 可以看出,经过滤波后,我们可以看到过滤后的波形是一个正弦波,用户可以通过观察这个正弦波的畸变情况来判断自己的SPWM是否正确。但是这种观察比较粗糙的,很多细节错误并不能被发现。 ▌滤波器+脉宽趋势的方法 由SPWM原理可以知道,SPWM正确与否,关键就是脉宽分布的规律。如果我们可以将脉宽的趋势进行统计,就可以更加直观的反馈SPWM的性能。下图为一个标准SPWM测试出的脉宽趋势分析图。可以看出,利用脉宽趋势分析,同样可以还原出完整的基波。 图3 但是当实际测试时,这却无法顺利实现。这是因为真实测量回来的波形是有很多高频大信号干扰噪声的,如果对这种波形进行脉宽趋势分析,无法得到真确的结果。对真实波形进行脉宽趋势分析结果如下图所示: 图4 而ZDS4000示波器拥有强大的FIR功能,通过数字滤波,可以先将这些高频的噪声滤出掉,然后将这些没有噪声的信号再次进行分析。而大多数示波器的软件滤波器由于处理能力不足,是无法将滤波与脉宽趋势的分析功能串联使用的。我们将图 2中的信号,利用滤波器+脉宽趋势的方法再次进行分析,就可得到如下图结果。 图5 可以看出,该SPWM波形,是有相位突变的情况的,而这个突变,在原有的分析方法中是看不出来的。得益于ZDS4000具有强大的深存储性能,我们可以将细节展开来分析。展开后的细节如下图所示: 图6 一些对于SPWM不熟悉的用户可能无法判断出问题的地方发生了什么错误,我们这时候可以使用FIR进一步进行滤波。滤波后的效果如下图所示: 图7 可以明显看出,脉冲趋势发生突变的地方,SPWM波形是出现了相位突变,这是由于脉宽周期不完整导致的。 ▌总结 ZDS4000既拥有强大的FIR功能,又具备512M存储深度和波形脉宽趋势分析功能。面向电机驱动、逆变电源等领域的SPWM测试需求,ZDS4000利用趋势图为其提供一种区别于传统滤波测试法的精确分析方法,可以更加直观和准确的对SPWM进行测试和分析,是一种全新的调试体验。 免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

    时间:2020-05-28 关键词: 示波器 调制技术

  • 【ZDS示波器高级分析功能】电源分析(上)

    【ZDS示波器高级分析功能】电源分析(上)

    ▌测试内容 ZDS3000/4000系列示波器电源分析插件即使用示波器来对开关电源进行相关测试,可以提高电源 开发人员的工作效率,方便对电源模块进行测试。电源分析插件涉及效率分析、开关元件分析、磁性元件分析、输入分析、输出分析、调制分析六个部分,今天我们主要对前三项进行介绍。 ◆ 效率分析 效率分析主要计算输入端和输出端的功率,以此来估算电源模块的转换效率。 ◆ 开关元件分析 开关电源(SMPS)技术依托电源半导体开关设备,如金属氧化物场效应晶体管(MOSFET)和绝缘门双极晶体管(IGBT)。开关设备在极大程度上决定着开关电源的整体性能。开关设备的关键测量项目包括开关损耗、SOA安全工作区等。 ◆ 磁性分析 磁性元件分析具体分为磁性分析与电感测试,可对磁损耗、电感值、有功功率值等进行测试。 ▌测试步骤 1、测前准备 为了保证测试的准确性,我们必须保证使用正确的测试系统,才能准确的捕获波形进行分析和调试,所以测试前需进行如下准备: (1)设置示波器的采集模式。需根据测试项从四种采集模式中选择合适的一种; (2)电流探头进行消磁调零,以便去掉变压器核心中残余的DC通量,防止数据产生偏差; (3)电压探头和电流探头的偏移校正。需搭配偏移校正夹具。过调整示波器的通道偏移时间参数,从而校正电压探头 和电流钳的传输延迟时间差,如下图所示。 2、接线 注:开关元件分析包括开关损耗、SOA、动态开点电阻、dv/dt和di/dt。 3、参数设置 确认接线无误后即可点击“参数配置”进行测量参数的设定。我们以SOA为例进行演示,在参数配置菜单中,可对坐标系参数、电压电流限定参数等进行设定,测试项意义如图所示。 ▌测试常见问题 1、进行电源分析测试时如何设置示波器的采集模式呢? 示波器提供了四种采集模式:标准模式、峰值模式、平均模式、高分辨率模式。示波器的采集模式就是信号的采集、处理和显示过程。不同的采集模式会产生不同的效果,选择的采集模式可能会影响电源测量的精度。不同采集模式的使用条件和使用测量项举例如下图所示。  2、开关损耗测试前需要了解什么呢? 需要了解开关管的状态。由于开关管是非理想型器件,其工作过程可划分为四种状态,如下图所示。一般来说,主要的能量损耗体现在“导通过程”和“关闭过程”,小部分能量体现在“导通状态”,而“关闭状态”的损耗很小几乎为0,可以忽略不计。 3、为什么开关损耗导通计算公式推荐使用Rds(on)? 导通状态下,开关管通常会流过很大的电流,但开关管的导通电阻很小,通常是毫欧级别,所以导通状态下损耗能量相对来说是比较少的,但亦不能忽略。由于导通时的微小电压,无法准确测量,使用电压乘电流的积分的方法计算的能量损耗误差会很大。相反,导通时电流很大,可以准确测量,因此可以使用电流与导通电阻来计算损耗。导通计算具体公式解释和举例如下图。 4、SOA安全工作区的4条边界代表着什么? 上边界为最大单次脉冲电流; 右边界为最高耐压值; 右上边界为热阻相关损耗限制; 左上为导通电阻制约电流。 免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

    时间:2020-05-27 关键词: 示波器 开关电源

  • 打破市场空白,是德科技首推内置

    打破市场空白,是德科技首推内置"故障猎人"的示波器

    示波器是工程师离不开的案头工具,查看波形、查找异常、分析调试是最主要的功能。 每一次示波器技术上的突破,都会为工程师的测试体验带来质的提升。 最近,示波器领导厂商是德科技推出了一款具有8个模拟输入通道的8合1多功能集成示波器Infiniium MXR系列,特别创新的一点是该系列示波器首次引入故障猎人功能,让工程师查找异常信号的工作变得非常简单。 据介绍,Infiniium MXR系列示波器具有8个模拟通道和16个数字通道,当24个通道同时使用时,仍能保证每个模拟通道带宽同时达到6GHz,每个模拟通道采样率同时达到16GSa/s,每个模拟通道后面的ADC都是10比特。在一台仪器中,实现精确、可重复的、多通道高性能测量,帮助客户降低测试流程的复杂性。虽然是一台示波器,但它内置了8种仪器功能:实时频谱分析仪(RTSA)、示波器、数字电压表(DVM)、波形发生器、频响分析仪(波特图)、频率计数器、协议分析仪和逻辑分析仪。 首款带宽超过2GHz且支持8通道的示波器 市场上的示波器种类繁多,是德科技为什么还要推出一款新系列示波器?是德科技大中华区汽车与新能源测试方案市场经理杜吉伟解释说,目前市场上,USB2.0接口的流行,使得主流的示波器带宽已经变为2GHz带宽,比USB2.0速度更快的总线和接口,比如MIPI等也越来越常见,同时,嵌入式电路设计中,会同时存在多种电源轨,例如: 5V 、3.3V 、2.0V、1.8V 、1.2V 、1.1V 等,他们的上电顺序和掉电顺序有严格要求,传统的四通道示波器已无法同时观察它们的时序,因此业界需要8通道示波器,而且考虑到周边高速数字总线甚至无线和射频信号的干扰,这些8通道示波器的带宽需要超过2GHz,Wi-Fi 6 、物联网、工业物联网所使用的频段已跨入2GHz~6GHz频段。因此,正是顺应市场的新测试需求,是德科技推出了这款带宽最高达到6GHz的8通道Infiniium MXR系列示波器。 杜吉伟特别指出,在目前市场上,超过2GHz带宽且支持8通道的示波器,Infiniium MXR系列是第一款。 首款内置实时频谱分析仪的示波器 另外,随着电路板中的无线射频信号的增加,例如:WiFi、Bluotooth等,工程师使用示波器不仅要能够在时域里观察波形,还需要能够从频域进行实时的调试和分析。对于之前的示波器,无法同时满足时域和频域都可实时完成测试这一新需求的。为此,Infiniium MXR系列示波器创新地内置了实时频谱分析仪功能,使得工程师能够同时从频域和时域的角度对被测信号进行实时分析。 首款引入故障猎人的示波器 Infiniium MXR系列的另一个创新之处是首次引入了故障猎人,通过机器学习被测信号的特征,不断对它们进行比较分析,从而发现异常信号,而且可以把异常信号的特征拷贝到触发设置中,以便进一步分析和调试。 杜吉伟指出,有了故障猎人的帮助,工程师即便不是示波器专家,也可以通过按下两个按钮即可轻松寻找到异常信号。以往需要几个小时甚至几天才能解决的问题,在故障猎人的帮助,工程师只需几分钟就可快速搞定。 示波器创新背后的黑科技 作为是德科技推出的一款新系列示波器,Infiniium MXR系列既继承了高端示波器Infiniium UXR系列的部分专用芯片性能,又具有InfiniiVisionX系列的多合一和快响应的优势,同时还继承了InfiniiumS系列在信号完整性方面的世界级表现,并且兼顾了带宽、功能可升级的经济性,可以说作为新的中端示波器,Infiniium MXR系列实现了极高的性价比。是德科技是如何实现这种产品创新的? 据是德科技 (中国)有限公司大中华区市场总经理郑纪峰介绍,是德科技能在市场上持续保持领先的技术优势,与自身的创新引擎分不开。 是德科技将其创新的核心动力归于三层研发架构,第一层是是德科技中央实验室(Keysight Labs Central Teams),它专注超前技术的研究,担负着是德科技的核心软件与硬件产品(例如:半导体工艺和专用芯片等)的研发工作;第二层是产品创新中心,担负着面向各行业领域的创新产品的推出,例如:示波器、频谱仪等;第三层是解决方案集团(Solutions Groups),为用户提供真正交钥匙的解决方案。 正是由于是德科技完善的三层研发架构,使得其在示波器领域既能推出超高性能的高端产品,也能推出填补市场空白的创新产品。郑纪峰透露,目前是德科技最高端的InfiniiumUXR系列示波器,一台仪器4个通道,每个通道可同时达到110GHz的实时带宽, 256GSa/s的采样率,这背后都离不开是德实验室所具有的芯片研发和磷化铟半导体工艺:3D 内存存储和管理、10bit A/D转换器、新型大数据处理专用ASIC等。这些先进的工艺和设计是示波器性能的有力保障。 Infiniium MXR系列示波器的推出,为工程师开启了一个全新的测试工作环境:从时域分析到频域等其他领域延伸的测试工作,都可以在一台仪器中进行,同时强大完善的测试性能和功能使工程师能更专注于自己的设计工作,更快的将产品推向市场。

    时间:2020-05-25 关键词: 示波器 是德科技 技术专访

  • 值得你了解的示波器内部原理和结构

    值得你了解的示波器内部原理和结构

    什么是示波器?你真的了解示波器吗?示波器是一种使用非常广泛,且使用相对复杂的仪器。本章从使用的角度介绍一下示波器的原理和使用方法。 01 示波器工作原理 示波器是利用电子示波管的特性,将人眼无法直接观测的交变电信号转换成图像,显示在荧光屏上以便测量的电子测量仪器。它是观察数字电路实验现象、分析实验中的问题、测量实验结果必不可少的重要仪器。示波器由示波管和电源系统、同步系统、X 轴偏转系统、Y 轴偏转系统、延迟扫描系统、标准信号源组成。 1、示波管 阴极射线管(CRT)简称示波管,是示波器的核心。它将电信号转换为光信号。正如图 1 所示,电子枪、偏转系统和荧光屏三部分密封在一个真空玻璃壳内,构成了一个完整的示波管。 图 1 示波管的内部结构和供电图示 (1)荧光屏 现在的示波管屏面通常是矩形平面,内表面沉积一层磷光材料构成荧光膜。在荧光膜上常又增加一层蒸发铝膜。高速电子穿过铝膜,撞击荧光粉而发光形成亮点。铝膜具有内反射作用,有利于提高亮点的辉度。铝膜还有散热等其他作用。 当电子停止轰击后,亮点不能立即消失而要保留一段时间。亮点辉度下降到原始值的 10%所经过的时间叫做“余辉时间”。余辉时间短于 10μs 为极短余辉,10μs—1ms 为短余辉,1ms—0.1s 为中余辉,0.1s-1s 为长余辉,大于 1s 为极长余辉。一般的示波器配备中余辉示波管,高频示波器选用短余辉,低频示波器选用长余辉。 由于所用磷光材料不同,荧光屏上能发出不同颜色的光。一般示波器多采用发绿光的示波管,以保护人的眼睛。 (2)电子枪及聚焦 电子枪由灯丝(F)、阴极(K)、栅极(G1)、前加速极(G2)(或称第二栅极)、第一阳极(A1)和第二阳极(A2)组成。它的作用是发射电子并形成很细的高速电子束。灯丝通电加热阴极,阴极受热发射电子。 栅极是一个顶部有小孔的金属园筒,套在阴极外面。由于栅极电位比阴极低,对阴极发射的电子起控制作用,一般只有运动初速度大的少量电子,在阳极电压的作用下能穿过栅极小孔,奔向荧光屏。初速度小的电子仍返回阴极。 如果栅极电位过低,则全部电子返回阴极,即管子截止。调节电路中的 W1 电位器,可以改变栅极电位,控制射向荧光屏的电子流密度,从而达到调节亮点的辉度。第一阳极、第二阳极和前加速极都是与阴极在同一条轴线上的三个金属圆筒。前加速极 G2 与 A2 相连,所加电位比 A1 高。G2 的正电位对阴极电子奔向荧光屏起加速作用。 电子束从阴极奔向荧光屏的过程中,经过两次聚焦过程。第一次聚焦由 K、G1、G2 完成,K、K、G1、G2 叫做示波管的第一电子透镜。第二次聚焦发生在 G2、A1、A2 区域,调节第二阳极 A2 的电位,能使电子束正好会聚于荧光屏上的一点,这是第二次聚焦。A1 上的电压叫做聚焦电压,A1 又被叫做聚焦极。有时调节 A1 电压仍不能满足良好聚焦,需微调第二阳极 A2 的电压,A2 又叫做辅助聚焦极。 (3)偏转系统 偏转系统控制电子射线方向,使荧光屏上的光点随外加信号的变化描绘出被测信号的波形。图 8.1 中,Y1、Y2 和 Xl、X2 两对互相垂直的偏转板组成偏转系统。Y 轴偏转板在前,X 轴偏转板在后,因此 Y 轴灵敏度高(被测信号经处理后加到 Y 轴)。两对偏转板分别加上电压,使两对偏转板间各自形成电场,分别控制电子束在垂直方向和水平方向偏转。 (4)示波管的电源 为使示波管正常工作,对电源供给有一定要求。规定第二阳极与偏转板之间电位相近,偏转板的平均电位为零或接近为零。阴极必须工作在负电位上。栅极 G1 相对阴极为负电位(—30V~—100V),而且可调,以实现辉度调节。第一阳极为正电位(约+100V~+600V),也应可调,用作聚焦调节。 第二阳极与前加速极相连,对阴极为正高压(约+1000V),相对于地电位的可调范围为±50V。由于示波管各电极电流很小,可以用公共高压经电阻分压器供电。 02 示波器的基本组成 从上一小节可以看出,只要控制 X 轴偏转板和 Y 轴偏转板上的电压,就能控制示波管显示的图形形状。我们知道,一个电子信号是时间的函数 f(t),它随时间的变化而变化。因此,只要在示波管的 X 轴偏转板上加一个与时间变量成正比的电压,在 y 轴加上被测信号(经过比例放大或者缩小),示波管屏幕上就会显示出被测信 号随时间变化的图形。电信号中,在一段时间内与时间变量成正比的信号是锯齿波。 示波器的基本组成框图如图 2 所示。它由示波管、Y 轴系统、X 轴系统、Z 轴系统和电源等五部分组成。 图 2 示波器基本组成框图 被测信号①接到“Y\"输入端,经 Y 轴衰减器适当衰减后送至 Y1 放大器(前置放大),推挽输出信号②和③。经延迟级延迟Г1 时间,到 Y2 放大器。放大后产生足够大的信号④和⑤,加到示波管的 Y 轴偏转板上。为了在屏幕上显示出完整的稳定波形,将 Y 轴的被测信号③引入 X 轴系统的触发电路,在引入信号的正(或者负)极性的某一电平值产生触发脉冲⑥,启动锯齿波扫描电路(时基发生器),产生扫描电压⑦。 由于从触发到启动扫描有一时间延迟Г2,为保证 Y 轴信号到达荧光屏之前 X 轴开始扫描,Y 轴的延迟时间Г1 应稍大于 X 轴的延迟时间Г2。扫描电压⑦经 X 轴放大器放大,产生推挽输出⑨和⑩,加到示波管的 X 轴偏转板上。z 轴系统用于放大扫描电压正程,并且变成正向矩形波,送到示波管栅极。这使得在扫描正程显示的波形有某一固定辉度,而在扫描回程进行抹迹。 以上是示波器的基本工作原理。双踪显示则是利用电子开关将 Y 轴输入的两个不同的被测信号分别显示在荧光屏上。由于人眼的视觉暂留作用,当转换频率高到一定程度后,看到的是两个稳定的、清晰的信号波形。 示波器中往往有一个精确稳定的方波信号发生器,供校验示波器用。 03 示波器使用 本节介绍示波器的使用方法。示波器种类、型号很多,功能也不同。数字电路实验中使用较多的是 20MHz 或者 40MHz 的双踪示波器。这些示波器用法大同小异。本节不针对某一型号的示波器,只是从概念上介绍示波器在数字电路实验中的常用功能。 1、荧光屏 荧光屏是示波管的显示部分。屏上水平方向和垂直方向各有多条刻度线,指示出信号波形的电压和时间之间的关系。水平方向指示时间,垂直方向指示电压。水平方向分为 10 格,垂直方向分为 8 格,每格又分为 5 份。垂直方向标有 0%,10%,90%,100%等标志,水平方向标有 10%,90%标志,供测直流电平、交流信号幅度、延迟时间等参数使用。根据被测信号在屏幕上占的格数乘以适当的比例常数(V/DIV,TIME/DIV)能得出电压值与时间值。 2、示波管和电源系统 (1)电源(Power) 示波器主电源开关。当此开关按下时,电源指示灯亮,表示电源接通。 (2)辉度(Intensity) 旋转此旋钮能改变光点和扫描线的亮度。观察低频信号时可小些,高频信号时大些。 一般不应太亮,以保护荧光屏。 (3)聚焦(Focus) 聚焦旋钮调节电子束截面大小,将扫描线聚焦成最清晰状态。 (4)标尺亮度(Illuminance) 此旋钮调节荧光屏后面的照明灯亮度。正常室内光线下,照明灯暗一些好。室内光线不足的环境中,可适当调亮照明灯。 3、垂直偏转因数和水平偏转因数 (1)垂直偏转因数选择(VOLTS/DIV)和微调 在单位输入信号作用下,光点在屏幕上偏移的距离称为偏移灵敏度,这一定义对 X 轴和 Y 轴都适用。灵敏度的倒数称为偏转因数。垂直灵敏度的单位是为 cm/V,cm/mV 或者 DIV/mV,DIV/V,垂直偏转因数的单位是 V/cm,mV/cm 或者 V/DIV,mV/DIV。实际上因习惯用法和测量电压读数的方便,有时也把偏转因数当灵敏度。 踪示波器中每个通道各有一个垂直偏转因数选择波段开关。一般按 1,2,5 方式从 5mV/DIV 到 5V/DIV 分为 10 档。波段开关指示的值代表荧光屏上垂直方向一格的电压值。例如波段开关置于 1V/DIV 档时,如果屏幕上信号光点移动一格,则代表输入信号电压变化 1V。 每个波段开关上往往还有一个小旋钮,微调每档垂直偏转因数。将它沿顺时针方向旋到底,处于“校准”位置,此时垂直偏转因数值与波段开关所指示的值一致。逆时针旋转此旋钮,能够微调垂直偏转因数。垂直偏转因数微调后,会造成与波段开关的指示值不一致,这点应引起注意。许多示波器具有垂直扩展功能,当微调旋钮被拉出时,垂直灵敏度扩大若干倍(偏转因数缩小若干倍)。例如,如果波段开关指示的偏转因数是 1V/DIV,采用×5 扩展状态时,垂直偏转因数是 0.2V/DIV。 在做数字电路实验时,在屏幕上被测信号的垂直移动距离与+5V 信号的垂直移动距离之比常被用于判断被测信号的电压值。 (2)时基选择(TIME/DIV)和微调 时基选择和微调的使用方法与垂直偏转因数选择和微调类似。时基选择也通过一个波段开关实现,按 1、2、5 方式把时基分为若干档。波段开关的指示值代表光点在水平方向移动一个格的时间值。例如在 1μS/DIV 档,光点在屏上移动一格代表时间值 1μS。 “微调”旋钮用于时基校准和微调。沿顺时针方向旋到底处于校准位置时,屏幕上显示的时基值与波段开关所示的标称值一致。逆时针旋转旋钮,则对时基微调。旋钮拔出后处于扫描扩展状态。通常为×10 扩展,即水平灵敏度扩大 10 倍,时基缩小到 1/10。例如在 2μS/DIV 档,扫描扩展状态下荧光屏上水平一格代表的时间值等于 2μS×(1/10)=0.2μS TDS 实验台上有 10MHz、1MHz、500kHz、100kHz 的时钟信号,由石英晶体振荡器和分频器产生,准确度很高,可用来校准示波器的时基。 示波器的标准信号源 CAL,专门用于校准示波器的时基和垂直偏转因数。例如 COS5041 型示波器标准信号源提供一个 VP-P=2V,f=1kHz 的方波信号。 示波器前面板上的位移(Position)旋钮调节信号波形在荧光屏上的位置。旋转水平位移旋钮(标有水平双向箭头)左右移动信号波形,旋转垂直位移旋钮(标有垂直双向箭头)上下移动信号波形。 4、输入通道和输入耦合选择 (1)输入通道选择 输入通道至少有三种选择方式:通道 1(CH1)、通道 2(CH2)、双通道(DUAL)。选择通道 1 时,示波器仅显示通道 1 的信号。选择通道 2 时,示波器仅显示通道 2 的信号。选择双通道时,示波器同时显示通道 1 信号和通道 2 信号。测试信号时,首先要将示波器的地与被测电路的地连接在一起。 根据输入通道的选择,将示波器探头插到相应通道插座上,示波器探头上的地与被测电路的地连接在一起,示波器探头接触被测点。示波器探头上有一双位开关。此开关拨到“×1”位置时,被测信号无衰减送到示波器,从荧光屏上读出的电压值是信号的实际电压值。此开关拨到“×10\"位置时,被测信号衰减为 1/10,然后送往示波器,从荧光屏上读出的电压值乘以 10 才是信号的实际电压值。 (2)输入耦合方式 输入耦合方式有三种选择:交流(AC)、地(GND)、直流(DC)。当选择“地”时,扫描线显示出“示波器地”在荧光屏上的位置。直流耦合用于测定信号直流绝对值和观测极低频信号。交流耦合用于观测交流和含有直流成分的交流信号。在数字电路实验中,一般选择“直流”方式,以便观测信号的绝对电压值。 5、触发 第一节指出,被测信号从 Y 轴输入后,一部分送到示波管的 Y 轴偏转板上,驱动光点在荧光屏上按比例沿垂直方向移动;另一部分分流到 x 轴偏转系统产生触发脉冲,触发扫描发生器,产生重复的锯齿波电压加到示波管的 X 偏转板上,使光点沿水平方向移动,两者合一,光点在荧光屏上描绘出的图形就是被测信号图形。 由此可知,正确的触发方式直接影响到示波器的有效操作。为了在荧光屏上得到稳定的、清晰的信号波形,掌握基本的触发功能及其操作方法是十分重要的。 (1)触发源(Source)选择 要使屏幕上显示稳定的波形,则需将被测信号本身或者与被测信号有一定时间关系的触发信号加到触发电路。触发源选择确定触发信号由何处供给。通常有三种触发源:内触发(INT)、电源触发(LINE)、外触发 EXT)。 内触发使用被测信号作为触发信号,是经常使用的一种触发方式。由于触发信号本身是被测信号的一部分,在屏幕上可以显示出非常稳定的波形。双踪示波器中通道 1 或者通道 2 都可以选作触发信号。 电源触发使用交流电源频率信号作为触发信号。这种方法在测量与交流电源频率有关的信号时是有效的。特别在测量音频电路、闸流管的低电平交流噪音时更为有效。 外触发使用外加信号作为触发信号,外加信号从外触发输入端输入。外触发信号与被测信号间应具有周期性的关系。由于被测信号没有用作触发信号,所以何时开始扫描与被测信号无关。 正确选择触发信号对波形显示的稳定、清晰有很大关系。例如在数字电路的测量中,对一个简单的周期信号而言,选择内触发可能好一些,而对于一个具有复杂周期的信号,且存在一个与它有周期关系的信号时,选用外触发可能更好。 (2)触发耦合(Coupling)方式选择 触发信号到触发电路的耦合方式有多种,目的是为了触发信号的稳定、可靠。这里介绍常用的几种。 AC 耦合又称电容耦合。它只允许用触发信号的交流分量触发,触发信号的直流分量被隔断。通常在不考虑 DC 分量时使用这种耦合方式,以形成稳定触发。但是如果触发信号的频率小于 10Hz,会造成触发困难。 直流耦合(DC)不隔断触发信号的直流分量。当触发信号的频率较低或者触发信号的占空比很大时,使用直流耦合较好。 低频抑制(LFR)触发时触发信号经过高通滤波器加到触发电路,触发信号的低频成分被抑制;高频抑制(HFR)触发时,触发信号通过低通滤波器加到触发电路,触发信号的高频成分被抑制。此外还有用于电视维修的电视同步(TV)触发。这些触发耦合方式各有自己的适用范围,需在使用中去体会。 (3)触发电平(Level)和触发极性(Slope) 触发电平调节又叫同步调节,它使得扫描与被测信号同步。电平调节旋钮调节触发信号的触发电平。一旦触发信号超过由旋钮设定的触发电平时,扫描即被触发。顺时针旋转旋钮,触发电平上升;逆时针旋转旋钮,触发电平下降。当电平旋钮调到电平锁定位置时,触发电平自动保持在触发信号的幅度之内,不需要电平调节就能产生一个稳定的触发。当信号波形复杂,用电平旋钮不能稳定触发时,用释抑(HoldOff)旋钮调节波形的释抑时间(扫描暂停时间),能使扫描与波形稳定同步。 极性开关用来选择触发信号的极性。拨在“+”位置上时,在信号增加的方向上,当触发信号超过触发电平时就产生触发。拨在“-”位置上时,在信号减少的方向上,当触发信号超过触发电平时就产生触发。触发极性和触发电平共同决定触发信号的触发点。 6、扫描方式(SweepMode) 扫描有自动(Auto)、常态(Norm)和单次(Single)三种扫描方式。 自动:当无触发信号输入,或者触发信号频率低于 50Hz 时,扫描为自激方式。 常态:当无触发信号输入时,扫描处于准备状态,没有扫描线。触发信号到来后,触发扫描。 单次:单次按钮类似复位开关。单次扫描方式下,按单次按钮时扫描电路复位,此时准备好(Ready)灯亮。触发信号到来后产生一次扫描。单次扫描结束后,准备灯灭。单次扫描用于观测非周期信号或者单次瞬变信号,往往需要对波形拍照。 上面扼要介绍了示波器的基本功能及操作。示波器还有一些更复杂的功能,如延迟扫描、触发延迟、X-Y 工作方式等,这里就不介绍了。示波器入门操作是容易的,真正熟练则要在应用中掌握。值得指出的是,示波器虽然功能较多,但许多情况下用其他仪器、仪表更好。例如,在数字电路实验中,判断一个脉宽较窄的单脉冲是 否发生时,用逻辑笔就简单的多;测量单脉冲脉宽时,用逻辑分析仪更好一些。 04 数字示波器使用必须注意问题 1、前言 数字示波器因具有波形触发、存储、显示、测量、波形数据分析处理等独特优点,其使用日益普及。由于数字示波器与模拟示波器之间存在较大的性能差异,如果使用不当,会产生较大的测量误差,从而影响测试任务。 2、区分模拟带宽和数字实时带宽 带宽是示波器最重要的指标之一。模拟示波器的带宽是一个固定的值,而数字示波器的带宽有模拟带宽和数字实时带宽两种。数字示波器对重复信号采用顺序采样或随机采样技术所能达到的最高带宽为示波器的数字实时带宽,数字实时带宽与最高数字化频率和波形重建技术因子 K 相关(数字实时带宽=最高数字化速率 /K),一 般并不作为一项指标直接给出。 从两种带宽的定义可以看出,模拟带宽只适合重复周期信号的测量,而数字实时带宽则同时适合重复信号和单次信号的测量。厂家声称示波器的带宽能达到多少兆,实际上指的是模拟带宽,数字实时带宽是要低于这个值的。例如说 TEK 公司的 TES520B 的带宽为 500MHz,实际上是指其模拟带宽为 500MHz,而最高数字实时带宽只能达到 400MHz 远低于模拟带宽。所以在测量单次信号时,一定要参考数字示波器的数字实时带宽,否则会给测量带来意想不到的误差。 3、有关采样速率 采样速率也称为数字化速率,是指单位时间内,对模拟输入信号的采样次数,常以 MS/s 表示。采样速率是数字示波器的一项重要指标。 (1)如果采样速率不够,容易出现混迭现象 如果示波器的输人信号为一个 100KHz 的正弦信号,示波器显示的信号频率却是 50KHz,这是怎么回事呢?这是因为示波器的采样速率太慢,产生了混迭现象。混迭就是屏幕上显示的波形频率低于信号的实际频率,或者即使示波器上的触发指示灯已经亮了,而显示的波形仍不稳定。混迭的产生如图 1 所示。 那么,对于一个未知频率的波形,如何判断所显示的波形是否已经产生混迭呢?可以通过慢慢改变扫速 t/div 到较快的时基档,看波形的频率参数是否急剧改变,如果是,说明波形混迭已经发生;或者晃动的波形在某个较快的时基档稳定下来,也说明波形混迭已经发生。根据奈奎斯特定理,采样速率至少高于信号高频成分的 2 倍才不会发生混迭,如一个 500MHz 的信号,至少需要 1GS/s 的采样速率。有如下几种方法可以简单地防止混迭发生: a. 调整扫速; b. 采用自动设置(Autoset); c. 试着将收集方式切换到包络方式或峰值检测方式,因为包络方式是在多个收集记录中寻找极值,而峰值检测方式则是在单个收集记录中寻找最大最小值,这两种方法都能检测到较快的信号变化。 如果示波器有 InstaVu 采集方式,可以选用,因为这种方式采集波形速度快,用这种方法显示的波形类似于用模拟示波器显示的波形。 (2)采样速率与 t/div 的关系 每台数字示波器的最大采样速率是一个定值。但是,在任意一个扫描时间 t/div,采样速率 fs 由下式给出: fs=N/(t/div)N 为每格采样点 当采样点数 N 为一定值时,fs 与 t/div 成反比,扫速越大,采样速率越低。综上所述,使用数字示波器时,为了避免混迭,扫速档最好置于扫速较快的位置。如果想要捕捉到瞬息即逝的毛刺,扫速档则最好置于主扫速较慢的位置。以上就是示波器的解析,希望能给大家帮助。

    时间:2020-05-24 关键词: 示波器 电源 电子测量仪器

  • 如何选择示波器触发耦合方式,你知道吗?

    如何选择示波器触发耦合方式,你知道吗?

    你知道示波器触发耦合方式的选择方法吗?示波器的输入耦合方式的意思是输入信号的传输方式。 耦合是指两个或两个以上的电路元件或电网络等的输入与输出之间存在紧密配合与相互影响,并通过相互作用从一侧向另一侧传输能量的现象;示波器的输入耦合属于信号直接耦合,一般有两种方式,分别是直流模式和交流模式,档位选择上一般还有接地。 输入通道选择 输入通道至少有三种选择方式:通道1(CH1)、通道2(CH2)、双通道(DUAL)。 1)选择通道1时,示波器仅显示通道1的信号。 2)选择通道2时,示波器仅显示通道2的信号。 3)选择双通道时,示波器同时显示通道1信号和通道2信号。 测试信号时,首先要将示波器的地与被测电路的地连接在一起。根据输入通道的选择,将示波器探头插到相应通道插座上,示波器探头上的地与被测电路的地连接在一起,示波器探头接触被测点。示波器探头上有一双位开关。此开关拨到“&mes;1”位置时,被测信号无衰减送到示波器,从荧光屏上读出的电压值是信号的实际电压值。此开关拨到“&mes;10“位置时,被测信号衰减为1/10,然后送往示波器,从荧光屏上读出的电压值乘以10才是信号的实际电压值。 示波器触发耦合方式的选择 触发信号到触发电路的耦合方式有多种,目的是为了触发信号的稳定、可靠。这里介绍常用的几种。 AC耦合又称电容耦合。它只允许用触发信号的交流分量触发,触发信号的直流分量被隔断。通常在不考虑DC分量时使用这种耦合方式,以形成稳定触发。但是如果触发信号的频率小于10 Hz,会造成触发困难。 直流耦合(DC)不隔断触发信号的直流分量。当触发信号的频率较低或者触发信号的占空比很大时,使用直流耦合较好。 低频抑制(LFR)触发时触发信号经过高通滤波器加到触发电路,触发信号的低频成分被抑制;高频抑制(HFR)触发时,触发信号通过低通滤波器加到触发电路,触发信号的高频成分被抑制。此外还有用于电视维修的电视同步(TV)触发。这些触发耦合方式各有自己的适用范围,需在使用中去体会。以上就是示波器触发耦合方式的选择方法解析,希望能给大家帮助。

    时间:2020-05-23 关键词: 触发 示波器 耦合

  • 示波器探头自校准方法,你会吗?

    示波器探头自校准方法,你会吗?

    你知道示波器探头自校准方法有哪些吗?相信对于电源工程师,示波器的功劳是不可替代的,一旦产品有问题就需要抓波形,抓时序,测试准确数值,以帮助工程师分析,处理,一切看波形说话。如何使测试的数据准确和可靠是非常重要的,准确的数字能够帮助我们,而失真的波形和数值只能误导我们。 在从事电源行业这么多年中,示波器就相当于工程师的左右手。由于常常看到很多小公司用的示波器过于低端,带宽低,采样率低,认为示波器操作简单,能抓到波形就行,根本没有必要买好的示波器。 甚至在使用示波器之前,并没有做测试准备。其实往往就是这个操作不正确导致测试结果失真,影响分析。 很多工程师直接拿起探头就测试,根本不去检查探头是否需要补偿,示波器是否需要校验。 示波器使用前需要自校准和需要探头补偿调节,执行这种调节是使探头匹配输入通道。首次操作仪器时以及同时显示多个输入通道的数据时,可能需要在垂直和水平方向上校准数据,以使时基、幅度和位置同步。例如,发生明显温度变化(> 5°)时就需要进行校准。 探头自校准的操作步骤如下: 1.从通道输入连接器上断开任何探头或电缆。确保仪器运行并预热一段时间。R File(文件)菜单中,选择Selfalignment(自校准)。 2.在Control(控制)选项卡上,点击Start Alignment(开始校准)。 3.Ralignment state(整体校准状态)字段中。每个输入通道各个校准步骤的结果会显示在Results(结果)选项卡中。 探头补偿调节的操作步骤如下: 1.将示波器探头连接到通道,按前面板上的PRESET(预设)按键(左侧面板设置区域中) 图一 探头补偿调节 2.检查所显示波形的形状 图二 补偿过度,不足和正确补偿 3.如果波形不正确,请调整探头 图三 补偿探头方法 以上两点看似简单,但往往是工程师忽略的。为了使测量更精确,请一定要注意检验。这两个校准功能在任何示波器都应该有。 下面给大家介绍下在电源线测量检定电源与其使用环境之间的交互情况。 要注意的是,电源可以采用任何规格,从个人电脑中的小型风扇盒,到工厂内大小适中为设备提供动力的发动机,到为电话群和服务器群提供支持的大规模电源。 每种电源都对馈电的输入电源(一般是市政电源)有一定影响。 为确定插入电源的影响,必须直接在输入电源线上测量电源电压和电流参数。 电源质量测量基础知识 电源质量并不单纯依赖发电厂,还依赖于电源设计和制造及最终用户的负载。电源的电源质量特点决定着电源的“健康状况”。 实际环境中的电源线永远不会提供理想的正弦波,而是在线路上总有一定的失真和不理想特点。 开关电源给电源带来了非线性负载。因此,电压波形和电流波形并不是完全相同。 输入周期的某个部分会吸收电流,在输入电流波形上产生谐波。确定这些失真的影响是电源工程设计中的重要组成部分。 为确定电源线上的功耗和失真,必需在输入阶段测量电源质量。 电源质量指标包括: 1.真实功率 2.视在功率或无功功率 3.功率因数 4.波峰因数 5.根据EN61000-3-2标准进行电流谐波测量 6.总谐波失真(THD),以上就是示波器探头自校准方法的解析,希望能给大家帮助。

    时间:2020-05-23 关键词: 示波器 波形 波峰

  • 示波器和频谱仪的分析性能指标,值得你学习

    示波器和频谱仪的分析性能指标,值得你学习

    你知道示波器和频谱仪的分析性能指标吗?分不清示波器和频谱仪的区别的人常闹笑话,为避免尴尬,本文简单总结以下四点——用实时带宽、动态范围、灵敏度、功率测量准确度,比较示波器和频谱仪的分析性能指标,来区分两者。 1 实时带宽 对于示波器来说,带宽通常是其测量频率范围。而频谱仪则有中频带宽、分辨带宽等带宽定义。这里,我们以能对信号进行实时分析的实时带宽作为讨论对象。 对于频谱仪来说,末级模拟中频的带宽通常可以作为其信号分析的实时带宽,大多数的频谱分析的实时带宽只有几兆赫兹,通常较宽的实时带宽通常为几十兆赫兹,当然目前带宽最宽的FSW频谱仪可以达到500兆赫兹。而示波器的实时带宽为其实时取样的有效模拟带宽,一般为数百兆赫兹,高的可达数千兆赫兹。 这里需要指出的是,大多数的示波器在垂直刻度设置不同时,其实时带宽可能并不一致,在垂直刻度设置到最灵敏时,其实时带宽通常会下降。从实时带宽来说,示波器普遍优于频谱仪,这对于某些超宽带信号分析尤其有好处,特别是在调制分析上有着无可比拟的优势。 2 动态范围 动态范围指标因其定义不同而有所不同,很多情况下,动态范围被描述为仪器测量最大信号和最小信号的电平差值。当改变测量设置时,仪器测量大信号和小信号的能力是不一样的,例如频谱分析仪在衰减设置不一样的情况下,其测量大信号所带来的失真是不一样的。在这里,我们讨论仪器能够同时测量大小信号的能力,即在不改变任何测量设置的情况下,示波器和频谱仪在合适设置情况下的最佳动态范围。 对于频谱仪来说,在不考虑相位噪声等近端噪声和杂散情况下,平均噪声电平、二阶失真、三阶失真是制约动态范围的最主要因素,以主流频谱仪的技术指标计算,其理想动态范围约为90dB(受二阶失真限制)。大多数的示波器由于受其AD有效取样位数和噪声底的限制,传统示波器的理想动态范围通常不超过50dB。(对于R&S RTO示波器,在100KHz RBW时,其动态范围可高达86dB) 从动态范围来看,频谱仪要优于示波器。但这里要指出的是,这对于常在信号的频谱分析来说确实如此,然而示波器的频谱是同一帧数据,频谱仪的频谱大多数情况下都不是同一帧数据,因而对于瞬变信号来说,频谱仪可能无法测量到。而示波器发现瞬变信号(信号满足动态范围的情况下)的概率要大得多。 3 灵敏度 这里讨论的灵敏度,是指示波器和频谱仪所能测试到最小信号的水平。这个指标与仪器设置紧密相关。对于示波器而言,示波器在Y轴设置至最灵敏档时,通常为1mV/div时示波器所能测试到最小信号,抛开端口不匹配等因素来看,示波器的信号通道产生的噪声以及轨迹不稳定带来的噪声是制约示波器灵敏度的最重要因素。 从图一中我们可以看出,因为采样点数的增加,频谱噪声底可以下降到比较理想的程度。然而,当在时域已经无法清晰准确的再现信号时,在频域就产生了非常多的杂波,这就限制了我们观测小信号的能力。 图1 受噪声影响的的灵敏度限制 大多数示波器与图一所示一样,能够稳定测量0.2mV的信号,对应到频域,这相当于-60dBm的水平。事实上,示波器能否准确的测量小信号,不仅与垂直系统的灵敏度有关,还与X轴的抖动、触发灵敏度等性能有关。为了对比文中所分析的技术指标,特地到R&S公司成都的开放实验室(感谢成都分部提供的帮助)进行了指标对比,让人惊讶的是,RTO示波器在灵敏度指标上非常优秀,如下图所示: 图2 RTO示波器的全频段频谱图 从图二可以看出,RTO能够准确测量-60dBm的信号,其噪声底在-80dBm左右。而最让人感到高兴的是,在整个频段(DC-4GHz),没有发现能够影响灵敏度的大的杂波,从而大幅提高了测量灵敏度。 在没有杂波的情况下,通过增加取样点数可以得到更低的噪声。例如图3所示,将Span和RBW设置得更小的情况下,RTO示波器的底噪声可以降低至-100dBm以下。 图3 RTO示波器的窄带频谱图 从这点来说,RTO绝对能够让测量人员改变“示波器是频域分析鸡肋”的感受。 对于频谱仪来说,同样抛开端口不匹配等因素来讨论,频谱仪的在增益最大、衰减器设置最小情况下,平均噪声电平可以看作频谱仪测量小信号的极限。在不涉及前置放大器的情况下,大多数性能良好的频谱仪可以达到-150dBm。 4 功率测量准确度 对于频域分析来说,功率测量准确度是非常重要的技术指标。无论是示波器还是频谱仪,对功率测量准确度的影响量都是非常多的,下面分别列出其主要的影响量: 对于示波器来说,功率测量准确度的影响量有:端口不匹配引起的反射、垂直系统误差、频率响应、AD量化误差、校准信号误差等。对于频谱仪来说,功率测量准确度的影响量有:端口不匹配引起的反射、参考电平误差、衰减器误差、带宽转换误差、频率响应、校准信号误差等。 此处我们不对影响量进行逐一分析比较,我们通过对1GHz频率信号的进行功率测量来对比,通过RTO示波器和FSW频谱仪的测量对比可以看出,在1GHz处,示波器与频谱仪的功率测量值仅相差0.2dB左右,这是非常好的测量准确度指标。因为频谱仪在1GHz处的测量准确度是非常好的。 另外,在频率范围内,示波器的频率响应指标也是很好的,4GHz范围内不超过0.5dB,从这点来说,示波器甚至优于频谱仪的性能。 总的来说,示波器与频谱仪在频域分析性能上各有所长,频谱仪在灵敏度等技术指标上更胜一筹,示波器在实时带宽上较频谱仪更为出色。在测量不同类型的信号时,可根据测试需求和仪器的不同技术特点进行选择。以上就是示波器和频谱仪的分析性能指标解析,希望能给大家帮助。

    时间:2020-05-23 关键词: 指标 频谱仪 示波器

  • 示波器解码,你真的了解吗?

    示波器解码,你真的了解吗?

    什么是协议解码?它有什么作用?协议解码是示波器非常实用的功能,很多工程师因为不熟悉操作,或者参数设置不正确,最终没有得到理想的结果。本文对解码设置方面的几个细节做一个介绍,帮助您快速上手示波器的协议解码。 一、解码 解码是一种用特定的计算方法,将电脉冲信号、光信号、无线电波等转换成它所代表的信息、数据等的过程。解码是受传者将接受到的符号或代码还原为信息的过程,与编码过程相对应,不同的解码方法就是不同的协议,而示波器,示波器经过多年的发展,早已可以直接将波形数据解码后以十六进制,十进制或者字符的形式呈现出来,而且可以兼容非常多种类的协议。 二、采样率 第一个需要关注的要点就是采样率,示波器是根据采集来的波形数据进行解码。如果波形采集的实时采样率不足,则可能对解码结果造成影响。ZDS4054Plus示波器标配512M存储深度,可以充分保证长时间捕获波形的高采样率。毕竟只有捕获了正确的波形,才能得到正确的解码。 三、协议参数设置 协议参数设置是解码成功中最重要的一环,不同的设置可能解码结果不一样,或者导致无法解码,实际应用时,有一半情况是因为忽略了一些设置而导致解码出错。 首先是要选择正确的协议类型,并将“触发使能”选择“ON”,信号将按照协议的开始位、数据位或地址位等进行触发。 其次是参数的设定,可以通过点击“协议参数”进入相应的参数设置,根据不同的需要设置相应的参数,同时注意查看下方“触发设置”是否与预先设定的方式一致。 四、阈值设置 阈值设置是平时解码中最容易忽略的一点,示波器对波形进行解码时,需要有参考的基准线,示波器对比波形数据相对于基准线的值来判断高低电平,一般示波器默认阈值是自动阈值,即最大值和最小值之间的中间值来自动确认的,比如,CAN-H电平是3.5V,CAN-L电平是1.5V,如果屏幕内只有CAN-H和CAN-L,那么阈值就是2.5V,此时可以很好的识别出高低电平,如果屏幕内的波形是从-3.5V开始,然后触发出CAN信号,那么阈值就是OV,此时候CAN-L也会被识别为高电平,从而导致解码错误。所以当屏幕内高低电平有一个偏离特别大时,可能需要手动设置阈值。 帧的完整性 有的时候,屏幕内抓到的波形可能不是一个完整的帧,所以导致示波器无法完成解码,可以尝试将时基放大,在一个屏幕内抓多个帧进行解码,保证屏幕中有至少一个完整的帧。以上就是示波器的几个知识点,希望能给大家帮助。

    时间:2020-05-22 关键词: 解码 示波器 波形

  • 中国示波器寻源录:仪器行业前浪访谈

    测试测量行业奋进前行四十余载的前浪为我们倾情讲述中国示波器发展的根与源请听 作为一个在测试/测量行业辛勤耕耘四十余载的老兵,我们从进入这个行业开始之际,就被教育和牢记我们所从事的这个光荣行业的使命感和责任感,有两位著名科学家的话,一直是我辈的座右铭:俄罗斯科学家门捷列夫说:“没有测量,就沒有科学”;中国的王大珩院士更精确地说:“仪器仪表是科学研究的“先行者”,工业生产的“倍增器”,军事上的“战斗力”,国民活动中的“物化法官”,可见我们这个行业在国民经济和国防科学中的崇高地位和不可缺失的重要性。而示波器作为测试测量仪器中占比最重要和最通用的产品和技术,是每一位电子工程师在研发,制造,维护和服务等广泛场合中经常会应用的工具和系统,几乎可以作为测试/测量中最有代表性的产品被大家熟知。下面我将根据我的阅历和体验,向朋友们分享和介绍示波器在中国的演变经历。 电子管示波器时代 新中国成立之初,中国处在一穷二白,百废待兴的阶段,由当时苏联援建中国“一五”期间的156个项目,帮助我们建立了一个比较完整的工业体系。但是在这些重大项目中,只有少数与电子基础产业有关,我查阅过往的一些资料中,仅发现如下这11个项目相关电子基础产业: —-北京大华无线电仪器厂(768厂) —-北京有线电厂(738厂) —-北京电子管厂(774厂) —-成都红光电子管厂(773厂) —-成都新兴仪器厂(715厂) —-太原无线电厂(785厂) —-陕西长岭电子厂(782厂) —-成都锦江雷达所(785厂) —-四川无线电厂(今长虹集团前身) —-成都宏明无线电器材厂 —-哈尔滨电表仪器厂 当时苏联的仪器水平不高,但是电子管产业世界一流,援建中国的这些电子管厂,显示管(示波管)厂,至少对后来的中国示波器产业起了重要的配套作用,中国示波器行业也是在50年代后期开始逐步建立起来的。 从全球范围看,1946年二战胜利后,在美国俄勒冈州波特兰市附近的Beaverton,由俩位年轻发明家Howard Vollum与Jack Murdock,在其居家的地下室,成功研制出全世界第一台商用示波器511,并由此建立了一个伟大的科技电子公司Tektronix。 Tek511示波器带宽10MHz,由阴极射线示波管及电子管为主要显示和驱动,具有触发扫描电路,帮助使用者能获取高速电子脉冲的显示,建立了近代示波器的基础。1947年511开始量产并推向市场,当时Tek511售价$795美元,市场反应热烈,极为抢手,物以稀为贵!Tektronix并沒停止脚步,从1950年开始,每年投产一系列新产品,随着Tek512,513,514,515等一系列电子管示波器推出,Tektronix站稳了脚跟,从1950年营运收入1.2M美元,扩展到1959年营收31M美元。进入60年代后,继续推出了Tek503,545A,533A,547,564等带有插件模块的升级产品,直至70年代初,作为全球霸主地位的Tektronix引领了电子管示波器产品在全球,特别是欧美地区的应用,开创了电子管示波器的全盛时代。 1939年,在美国加州硅谷,两位年轻的工程师Bill Hewlett 和Dave Packard 合伙创业,用其老师帮助借到的538美元,在一个旧的汽车库,建立了以双方名字并以抽签方式决定排名前后的Hewlett-Packard公司,简称HP公司。他们共同研制成功了第一台可用于测试音响设备的声频振荡器,开始了传奇式的发展。图示可见当年创业的车库,后被加州政府命名为“硅谷诞生地”以及两位伟大的创始人Bill 和Dave。 由于二战期间美国政府的需要,HP公司在微波测试及信号发生器等方面开发了好些领先的产品,同时也在更宽的仪器领域快速发展。HP涉足示波器产品始于1956年,首先推出的电子管示波器为HP130A/300KHz, HP150A/10MHz,在60年代初,HP相继推出了HP185A/500MHz和HP185B/1000MHz取样示波器,开创了一个新的门类,下列图示分别为HP130A,HP185B系列产品。 同时你也可以看到   在五十年代中期,HP150A生产的现场以及创始人Dave Packard 1956年在芝加哥展示会上介绍HP150A产品的情景。 中国对电子管示波器的研制,生产和使用,自五十年代末开始,直至八十年代初,整整沿续了20多年。毫不讳言地说,在很多年以来,我们的示波器技术和发展与囯外先进水平,始终存在约20年的差距。在中国电子管示波器市场中,SBT-5示波器可谓是一款经典的名星产品,带宽10MHz,重量48Kg,基本是仿照当年Tektronix同类产品而推出的,60年代初期,中国的SBT-5出口到很多第三世界国家,成为一个主流产品。 由此开始,中国市场推出的一系列电子管示波器包含有SBE-7,SBE-20,SB-10,SB-14,1045型脉冲示波器,GM5655示波器等。最有趣的是在文革期间生产的SBE-20示波器面板还印上了“敬祝毛主席万寿无疆”,这是一个时代的烙印,是绝无仅有的。 在70年代期间,全国约有130多家生产示波器的仪器厂,如同今日一哄而上的产业一样,重复,分散,力量薄弱,大家在58年大跃进打了鸡血后,敢想敢干,有条件的上,没条件的也上,全国很多地方都有示波器厂,所以政府主管部门电子部一直在忙于整顿,归口,核心部件示波管按计划调配,不在国家计划内的,你拿不到示波管,就无法生产示波器,所以期间听闻发生了一些奇特的故事,某小型仪器厂,居然用一头生猪换一个示波管。当时中国总会出现“上有政策,下有对策”,那个年代的人大家都懂的。更让现在人看不懂的是,一个示波器的型号名称,各个厂家都在同样命名,大家沒有专利,版权概念,互相抄袭是常见现象! 就电子管示波器而言,虽然我们与囯外相比,迟缓了十多年才拥有这类产品,但在技术及性能指标等方面与国外初期先进水平差距不大,这是因为这类示波器在国外创新突破后,后来者很容易仿制跟进;同时我们当时在苏联老大哥帮助下建立的基础产业配套能力还能适应,这类产品的核心零部件,如示波管(CRT),主要元器件,如各种类型的电子管,电解电容器,波段开关,电阻,电容器,瓷壁架等配套可以满足,机架和面板主要是金属钢板冲压件,电源变压器也是以冲压件加漆包线绕制,浸润工艺,当初旋钮大量使用胶木材料,当时的模具水平也能跟上,综上所述,电子管示波器在我国应用时间特别长,国外公司比我们提前10多年进入了晶体管及集成电路示波器的制造,应用,所以就事论事,我国的电子管示波器同比水平不落后,是我国50年代未至70年未最主要的应用产品。 在这个期间,以SBT-5示波器为例,广泛应用在研究所的研制开发,高校电子实验室和电工实验室,工厂制造及计量等测试领域等,为国民经济发展和人才培育作出了重要的贡献!当时中国的示波器产品标准,测试,计量和试验标准,几乎是把苏联标准全盘接受而转化为中国标准,虽然苏联和我们当时的仪器有“笨大粗”比喻,但是仪器主要应用在军工领域,苏联对产品的可靠性设计,可靠性试验要求特别严格,我们早期的工程师都对可靠性指标MTBF(Mean Time Between Failure)平均故障间隙时间印象深刻,这个严格的培训和考核应用直至八十年代期间的研发工程师也人所皆知,运用自如,这是那一代工程师至今值得骄傲的! 关于高校实验室的另一趣事是,类似SBT-5 示波器,体积大,重量将近100斤(48Kg), 所以每次必须要配备坚固的仪器车方能使用,这就免不了要搬上搬下,不要说是女教师,就是一个身強力壮的男教师,一个人也搬不动,所以每次实验使用,总会有两个大男生负责搬运,好在那时大家能吃苦,完全不在乎,但是在八十年代初期,作为一个研发工程师,看到国外Tektronix, HP,日本等国家的台式,便携式晶体管示波器大量拥现时,我们不甘落后,加快了示波器产品的更新换代,开始进入了一个晶体管,集成电路混合式示波器的时代。 晶体管及集成电路示波器时代 进入60年代后,由于晶体管兴起及广泛应用,促进并带来“固态革命”效应,以美国HP和Tektronix为代表的仪器公司,对示波器提出了新的要求,示波器产品的带宽不断提升,60年代未模拟示波器己达到100MHz以上,至70年代末涌现了很多新的便携式示波器,带宽达到了350MHz—500MHz。一些高端客户对示波器产品提出了更多更高的要求:高带宽,高精度,高可靠性,显示要聚焦更精细,亮度更明亮,数码显示和数据存储也被强烈要求,与机算机接口形成自动化测量的概念也出现了(HP在60年代中期发布了HP-IB总线,Tektronix等仪器公司先后响应,70年代中期HP-IB上升为IEEE488标准,简称为GPIB)。另一方面,印刷电路板(PCB)的应用也开始逐渐普遍,从早期的单层单面,到单层双面,直至多层印刷电路板的应用,代表了当时的科技水平。 基尔比(Jack Kilby )于1959年把晶体管,电阻,电容等元器件用热焊方式让它们集成在微电子平板上,用细线互连的集成电路在60年代中期进入商业实用阶段。按照摩尔定律,示波器用的集成电路的集成度越来越高,体积,功耗越来越小,从而对示波器更新换代起到了巨大的推进作用。HP, Tektronix当时都拥有自己的印刷电路板装联工厂,自我配套的仪器专用集成电路工厂,这也是这些伟大公司能执示波器牛耳的一个重要因素!为了能让读者看清并留下清晰的印象,特地挑选了在60年代Tektronix推出的几个经典产品Tek503, Tek547 及Tek564供大家了解。 进入70年代后期,模拟示波器达到了顶盛时期,HP公司前后推出了一系列各具特色的示波器。1972年推出的HP1200A系列示波器,虽然带宽只有500KHz,但是这款产品力求操作简便,使用可靠;另一款1700系列,带宽从35MHz-75MHz,配有电池,达到了交直流两用;1982年,HP1980A系列,更新换代的100MHz 通用示波器,也得到用户的认可;HP1727A系列存贮示波篱,带宽达到了275MHz,表现出了很高的水准;最为精彩的是,1982年,HP1745A/1746A成了HP发布的最后一款模拟示波器,并且在全行业内,率先跨入教字示波器时代。下列展现左边是HP1200A,中间是HP1745A,右边是HP1707B,可供各位认识。 HP最经典的1740系列产品是当时模拟示波器的主流产品,如下图所示,这个产品系列中包含了1715A, 1740A, 1722B, 1744A,1743A等。中间是HP在1969年推出的HP1980A,带宽为500KHz, 是一台改进型的全晶体管的示波器,右边是1741A/100MHz, 这是最后一代HP的模拟示波器。 Tektronix也在70年代推出了Tek7000系列插件式多功能示波器,用一个主机配置多种不同的插件模块,可以有选择地形成一个独立的測试系统,开创了实验室研发,校准及计量领域的综合应用,直至80年代,中囯科学院计算所,中国计量科学院等单位还在应用这些产品和选件,最具代表性的几个系列:Tek7904/500MHz, Tek7854/400MHz, Tek7704/200MHz, Tek7603/100MHz。由于当时“巴黎统筹委员会”的限制,中国科学家及工程师能用上这款产品极为珍贵,所以有专人保管,研究所内研究人员的借用手续严格的超乎想象!图示所展示的TEK 7000系列中4插件和3插件的典型产品。另一款Tektronix获专利最多,最受全球科技人员和工程师欢迎的Tek485/350MHz, Tek475/200MHz, Tek465/100MHz便携式产品,一直到模拟示波器在80年代初被数字示波器取代后,仍然被很多客户延用到了90年代初,成了模拟示波器的绝版。中国仪器行业从事示波器研发和制造的公司,在这个转型期也前后推出了一系列晶体管及集成电路的示波器产品。台式及插件式较著名的有ST-16,7MHz, SBM14, 双踪100MHz, SR8, 双踪15MHz等,如前所述,不同工厂(那时国内还不流行称公司)都可以用这个名称和这个规格在生产,销售这些产品。最关键的示波器核心部件示波管(CRT), 国内主要供应商为南京华东电子管厂(741厂),以及后来的成都红光电子营厂(773厂)。示波管也由圆形管发展了矩型管,与国外相比,示波管最大的缺陷是当初没有内刻度,需要制造厂自己加滤色片时,同时要有亚克力刻线屏,可以想像,用户使用时必须正对着屏幕读取数值,即使这样,读数误差也在所难免!中国市场对CRT模拟示波器的研发,制造和应用,一直延续到90年代初。当时示波器制造工厂的运行状态,无论装配和调试,按照工序流程,以纵向或横向流水作业为主要形式,产线调试人员必须要有一定的基础和经验,模拟示波器调试通过率在很大程度上会因人而异,人的因素比流程更重要。中国改革开放的80年代初期,大量中,低档示波器涌入中国,很多中国示波器厂用技贸合作,SKD散件引入,以美国,日本为主体的示波器几乎占据了中国市场。当时的机电部仪器处和中国电子学会测试/测量学会组织了专家学者,对这些进口示波器开展了“引进,消化,吸收,创新”分析研究活动,我选取了当时的几个代表性示波器产品让大家有个基本了解:Tek2200系列日本岩崎SS5700系列日本菊水COS6000/5000系列日本松下VP-5512A/VP-5520系列日本日立V-1050F/V-222系列日本利达LBO-524/522系列日本天乐CS-1040/1020系列荷兰飞利浦PM3300系列等如同过去军阀割据时代,国内示波器厂各找对象,代工制造,销售,大家还争的你死我活,确实不可思议!在所有这些产品中,Tektronix的2235示波器水平最高,这款便携式100MHz示波器釆用大板结构,与常规同类产品相比,节约70%内部结构件,整机散热不用风扇,大胆科学地用机架,盖板等传导方式散热,可靠性大幅提高。下列图示的不同公司的示波器是我们当年进行国产化技术分析和消化吸收的样品,从而开始了国产示波器升级换代和快速发展。中国示波器企业在当时面临进口示波器严重冲击,同时关键元器配套缺乏,确实困难重重:基础产业落后,元器件配套能力差,技术壁垒……但是搞示波器产业的人,大都有一种难分难舍,不忘初心,全心投入的情节,相关仪器厂和研究所共同努力,期间也推出了很多更新换代的新产品,模拟示波器最高带宽也做到了300MHz。当时机电部和海关总署加重对300MHz以下的示波器的进口关税,以鼓励国内示波器的发展。示波器行业虽然圈子不大,专业特殊,却影响很大,我们肩负着高科技领域对我们的期盼。“沒有测量,就没有科学”,在那个年代过来的人都明白,我们在做的事情,是我们不能放弃的事业!作为经历过这一段历史的老兵,我们难以忘记那些艰难奋斗,屡战屡败,屡败屡战,最终获胜的时光!最后我分享如下与我相关的,当年典型的几款国产模拟示波器产品,以记念我们曾经奋斗过的年代,并让年轻一代对示波器起源和发展有更多的了解。致敬前浪前浪专家本着工匠精神,砥砺前行中浪需要前事不忘,后事之师后浪更要中流击水,浪遏飞舟!在此RIGOL致敬测试测量仪器前辈匠心风骨“光阴不语流年负,韶华尽逝壮志酬“

    时间:2020-05-19 关键词: 示波器 rigol

  • 是德科技全新Infiniium MXR系列8合1示波器震撼登场

    是德科技全新Infiniium MXR系列8合1示波器震撼登场

    2020年 5月19日,北京 —— 是德科技推出首款具有8个模拟通道和16个数字通道的示波器,24个通道同时使用,仍能保证每个模拟通道带宽同时达6GHz,每个模拟通道采样率同时达16GSa/s,在一台仪器中,实现精确、可重复的、多通道高性能测量,帮助客户降低测试流程的复杂性。是德科技是一家领先的技术公司,致力于帮助企业、服务提供商和政府客户加速创新,创造一个安全互联的世界。 随着新兴技术的发展,现有的测试测量设备无法满足日益增长的行业需求。当USB2.0接口流行起来的时候,工程师发现主流的示波器带宽已经变为2GHz带宽了,如今越来越多的电路已经引入了Type C、MIPI、DDR 2、DDR3、以太网等高速总线设计,主流示波器带宽需求呈现持续上升的趋势,超过了2GHz,甚至需要6GHz。一个嵌入式电路的设计里面有多种直流电源轨,5V 、3.3V 、1.8V 、1.2V 、1.1V 、1.0V 等,每一种电源轨都有多个存在,他们的上电顺序和掉电顺序往往是有严格要求的,传统的四通道示波器无法同时观察他们的时序,因此业界已经有8通道示波器推出,但考虑到周边高速数字总线甚至无线和射频信号的干扰,工程师需要的8通道带宽示波器带宽也要超过2GHz。Wi-Fi 6 、物联网、工业物联网所使用的频段也已跨入2GHz~6GHz频段。 全新的Infiniium MXR系列8合1示波器,包含实时频谱分析仪(RTSA)、示波器、数字电压表(DVM)、波形发生器、频响分析仪(波特图)、频率计数器、协议分析仪和逻辑分析仪,内部采用先进的ASIC硬件处理大数据。搭配是德科技全方位的软件解决方案,可进一步提供电源完整性、信号完整性、高速总线和接口的一致性测试和验证。内置故障猎人,可加速找出错误根源,包括那些罕见或随机发生的错误。 Frost & Sullivan 集团工业部美洲地区副总裁Kiran Unni 表示: “当今的工程师要面对现实中的新困境,他们需要一款价位适中、准确、可重复测量的多通道测量仪器,提供可从时域分析向其它领域延伸的工作环境。 作为测试和测量领域的领导者,是德科技运用独家的专业知识衔接不同领域的技术,让工程师可以在一台仪器中进行他们所需的测量,快速、高质量地完成产品的调试和验证,加速推向市场。” 是德科技Infiniium MXR系列示波器具有以下特点: · 强大的8合1仪器,减少了测试台占用的空间、缩短了配置和测试时间,同时最大限度降低串扰。内置实时频谱分析仪,可完成异常信号的频域捕获,无论信号是同步的还是异步的。 · 内置故障猎人,深度学习正常信号,随着时间的推移,不断对它们进行比较分析,以发现异常信号,并捕捉伴随异常信号发生的事件。使用者可快速解决问题,排除不正常、偶发或杂波信号。 · 8个模拟通道和16个数字通道可同时使用且不牺牲其性能,使复杂信号相互作用的监测和分析成为可能。并将8通道示波器带宽提升到6GHz,为测试工程师的设计开发开辟了更广阔的天地。 · 如搭配使用强大的PathWave Infiniium离线分析软件,设计团队在测试台完成测量后,可进一步执行各种分析和数据操作,甚至和不同城市和国家的团队远程协作,提升效率。 是德科技首席技术官Jay Alexander 表示:“Infiniium MXR系列示波器完美融合了是德科技的底层专业技术和上层方案知识。此系列示波器的问世能够满足广泛的应用需求,进一步壮大了是德科技的示波器家族,从低频到特高频,从经济型到极高端,从基本测量到先进复杂的分析等,满足全方位、多维度的市场需求。”

    时间:2020-05-19 关键词: 示波器 测试测量 infiniium

  • 延长示波器电流探头使用寿命的方法

    延长示波器电流探头使用寿命的方法

    你知道如何延长示波器电流探头使用寿命吗?本文将介绍示波器电流探头的使用方法及注意事项,纹波电流测试示波器调试方法,及预防损坏的方法。希望能对您有所帮助。 示波器电流探头的使用方法 A. 电容测试时使用的导线应选用横截面面积0.5mm²(AWG20)以上的导线 B. 将待测电容连接上导线时要将电容移动至基板的锡面侧,利用A和B方法测定,此外,尽可能的将导线缩短。 纹波电流测试示波器调试方法 A. 调试 1. 将对应的测试通道探头设置为电流,选择测是耦合直流档位。 2. 将宽带选为20MHZ。 3. 调试示波器屏幕显示测量值均方根最大值峰峰值频率四个测量项目。 B. 纹波电流测试前需对电流探头进行消磁调试。 示波器电流探头注意事项 通过对损坏电流探头的故障分析,发现容易损坏的探头部位大致有: 与电流放大器连接的电路板; 电流探头的磁环坏; 电流探头的磁环线圈; 电流探头的滑动夹子的外观损坏; 电缆线断路。 预防损坏的方法 电流探头损坏的原因,预防损坏的方法及使用说明,及上述五个部分损坏的原因可归纳如下: 1. 切记不要带电插拔电流探头 电流放大器开电后,插拔电流探头而引起的电路板损坏。 2. 使用时避免掉地或用力过猛 磁环是易碎的材料,掉地或使用时用力过猛都容易使它破损。有损伤/损坏的磁环会造成测试不准或不能再测出电流。 3. 使用时避免负载过流 磁环线圈比较细,过流会导致线圈烧毁。 4. 使用时电流夹子要对齐。注意,并在推动夹子过程时要小心 电流夹子不对齐,裂痕都会使测试不准或无法测出电流。注意,推动夹子过程要小心。 5.使用时电缆线不要太使劲拉、扭等 电缆线被太使劲拉、扭等会容易损坏。以上就是示波器电流探头的使用注意事项,希望能给大家帮助。

    时间:2020-05-17 关键词: 示波器 电流 探头

  • 因波特率漂移导致的通讯故障检测

    因波特率漂移导致的通讯故障检测

    你知道如何排查因波特率漂移导致的通讯异常问题吗?示波器的协议解码功能大家都不生疏,你是否有过波形看起来正常,协议参数、解码设置都正确,却无法正常解码的经历呢?本文以UART协议为例,分享由于波特率漂移导致通信异常的故障排查过程。 什么是波特率漂移呢?可以理解为被测部件晶振有偏差,导致实际波特率和正常的波特率不一致。为什么波特率漂移会导致通信异常呢?本文从波形出发,带你自检解码结果。 一、波特率漂移导致通信异常的故障排查 引出这样一个真实的例子,PC端发送串口数据为“0xEE 0x61 0x32 0xFF 0xFC 0xFF 0xFF”,示波器解码结果为“0xEE 0x98 0xF6 0xFC 0xFF”初步判定通信故障。但协议参数设置和解码设置都正确,为什么会出现收发不一致的现象呢?下文将解码时协议参数设置中的波特率都设置为9600 bps,实际为9600 bps,10126 bps的波形图解码结果对比(如图1所示)分析为例,分享波特率漂移后导致波形有偏差,从而出现通信异常的原因排查过程。 图1 同一解码波特率下的不同波形解码结果图 首先讲讲UART的解码原理。当示波器解码UART信号时,将空闲电平之后的下降沿作为开始位,然后从波形中等间隔采样,以等间隔时间段内的采样点中的多数状态作为该位的解码数值。不同波特率的波形,最小数据位宽不一致,时间T=1/采样率,实际采样率大的波形对应的时间就小,所以从图1中可看出波特率为10126bps的波形像往左偏移了。当解码时设置的波特率同为9600时,采样点的位置是根据9600的波特率来确定的,当实际采样率和9600bps有偏差时,误差会逐渐累积,从而导致解码有偏差。设置的数据位宽越大,越容易叠加误差。 二、自检波特率方法 从波形出发,根据波形最小位宽估算波特率,此法适用于波特率偏差较大或不确定波特率该设置多少时。这是工程师们较习惯的自检方法。估算波特率需要看波形中的最小位宽,从来图 2看,时基档位为100us,最小位宽刚好占一格,则最小位宽为100us左右,换算之后等于10000bps。想要得到更精确的波特率数值,可以使用示波器的测量功能。打开示波器面板中的【measure】,选择波特率测量项,观察波特率测量结果对比,如下图 2红框内的测量结果。 开头中引出的例子,正是因为波特率产生了漂移,实际为10000 bps,而解码时按照正常部件的9600bps来设置,这么一算,波特率误差大于4%,因此会导致解码结果不正确。换个晶振再解码,通讯果然正常了。 图 2 从波形最小位宽估算波特率图 总结 在解码中波特率虽然只是一个参数,但因其漂移产生的影响不容忽视,它可能就是导致通信故障的因素。解码前注意检验波特率,这么一个小细节也许可以省去日后排查故障的时间。从波形出发,重新审视示波器价值,它用来观察波形和分析数据就是为了检测被测部件是否正常的。以上就是因波特率漂移导致的通讯异常问题的排查方法,希望能给大家帮助。

    时间:2020-05-17 关键词: 示波器 故障 zlg致远电子

  • 示波器探头校准方法,你知道几个?

    示波器探头校准方法,你知道几个?

    关于示波器探头校准方法,你知道吗?在示波器的应用场景中,除了有些RF或高速数字的场合用电缆直接测量外,很多板上的调试工作都是借助探头完成的。探头是示波器测量系统的一部分,很多高带宽的探头都必须是有源探头,有源探头内部的有源放大器的的增益和偏置随着温度或者时间老化可能会有漂移,为了补偿这种漂移,需要定期对探头进行校准。 目前示波器探头的校准方法通常有三种: 1、DC增益与偏置校准 DC校准是示波器最常用的校准方式,比较校准信号输出(标准的直流电压)与示波器实际测试到的校准信号电压,用于修正探头测试直流电压的增益以及偏置的偏差。DC校准过程是确定线性方程y=mx+b系数m,b的值。探头的DC校准至少需要1年进行1次,更频繁时会几个月甚至每天进行一次。 2、AC校准 测试高速信号的高性能示波器,由于带宽非常宽,很难保证带内幅频和相频响应绝对平坦。为了提高测量精度,需要校准带内的频率响应,使示波器和探头测试系统在全部带宽内,不同频点具有一致的幅度和频率响应。DC校准不能修正频率响应。探头AC校准方法,是使用网络分析仪测试有源探头放大器的S参数,通过测试每个频点的损耗,修正探头频率响应。示波器厂商在出厂时会测试每只探头放大器的S参数并存储在探头内部的存储器中,用户使用探头时,示波器读取探头S参数做AC校准。 3、用户现场AC校准 上述探头AC校准过程,使用厂商出厂提供的固定S参数做校准,无法充分考虑到探头连接附件在不同实际情况下的损耗。实际上,用户的使用环境差异很大,如不同的探头连接前端长度。对于几十GHz带宽示波器与探头,根据用户使用环境和测试附件进行AC校准非常必要。 使用网络分析仪测试S参数的过程非常复杂,不适用于现场环境使用。目前Agilent基于磷化铟材料的示波器自身可以提供小于15ps上升沿的信号做为校准源,由于快速的上升沿包含了足够的高频成份,所以以快沿信号做校准源是合理和可行的。(传统的高速示波器虽然也有快沿输出,但其上升沿通常在几十ps甚至更缓,所以主要用于时延校准,而不足以进行精确的频响校准。) 如图所示,示波器cal out输出快沿信号,由示波器的两个通道测试校准信号cal out在探头输入前端信号Vin和探头测量输出信号Vout,通过对Vout/Vin的修正校准带内的频率响应。 用户现场AC校准后可以得到更平坦的频响,提高高速电路实际测试条件下的测试准确度。以上就是三个常用的示波器探头校准方法,希望能给大家帮助。

    时间:2020-05-17 关键词: 校准 示波器 探头

  • 你需要掌握的那些示波器的常用知识

    你需要掌握的那些示波器的常用知识

    你真的了解示波器吗?你知道怎么用吗?示波器一般是做测试测量的工程师们会用到,我们看看工程师们天天是怎么进行测试测量的。 示波器的概念: 示波器是一种用途十分广泛的电子测量仪器。它能把肉眼看不见的电信号变换成看得见的图像,便于人们研究各种电现象的变化过程。示波器利用狭窄的、由高速电子组成的电子束,打在涂有荧光物质的屏面上,就可产生细小的光点(这是传统的模拟示波器的工作原理)。在被测信号的作用下,电子束就好像一支笔的笔尖,可以在屏面上描绘出被测信号的瞬时值的变化曲线。利用示波器能观察各种不同信号幅度随时间变化的波形曲线,还可以用它测试各种不同的电量,如电压、电流、频率、相位差、调幅度等等。 示波器的简介: 示波器是一种用来测量交流电或脉冲电流波的形状的仪器,由电子管放大器、扫描振荡器、阴极射线管等组成。除观测电流的波形外,还可以测定频率、电压强度等。凡可以变为电效应的周期性物理过程都可以用示波器进行观测。 示波器的分类: 按照结构和性能不同分类: ①普通示波器。电路结构简单,频带较窄,扫描线性差,仅用于观察波形。 ②多用示波器。频带较宽,扫描线性好,能对直流、低频、高频、超高频信号和脉冲信号进行定量测试。借助幅度校准器和时间校准器,测量的准确度可达±5%。 ③多线示波器。采用多束示波管,能在荧光屏上同时显示两个以上同频信号的波形,没有时差,时序关系准确。 ④多踪示波器。具有电子开关和门控电路的结构,可在单束示波管的荧光屏上同时显示两个以上同频信号的波形。但存在时差,时序关系不准确。 ⑤取样示波器。采用取样技术将高频信号转换成模拟低频信号进行显示,有效频带可达GHz级。 ⑥记忆示波器。采用存储示波管或数字存储技术,将单次电信号瞬变过程、非周期现象和超低频信号长时间保留在示波管的荧光屏上或存储在电路中,以供重复测试。 ⑦数字示波器。内部带有微处理器,外部装有数字显示器,有的产品在示波管荧光屏上既可显示波形,又可显示字符。被测信号经模一数变换器(A/D变换器)送入数据存储器,通过键盘操作,可对捕获的波形参数的数据,进行加、减、乘、除、求平均值、求平方根值、求均方根值等的运算,并显示出答案数字。 示波器的工作原理: 由示波管的原理可知,一个直流电压加到一对偏转板上时,将使光点在荧光屏上产生一个固定位移,该位移的大小与所加直流电压成正比。如果分别将两个直流电压同时加到垂直和水平两对偏转板上,则荧光屏上的光点位置就由两个方向的位移所共同决定。 如果将一个正弦交流电压加到一对偏转板上时,光点在荧光屏上将随电压的变化而移动。当垂直偏转板上加一个正弦交流电压时,在时间t=0的瞬间,电压为Vo(零值),荧光屏上的光点位置在坐标原点0上,在时间t=1的瞬间,电压为V1(正值),荧光屏上光点在坐标原点0点上方的1上,位移的大小正比于电压V1;在时间t=2的瞬间,电压为V2(最大正值),荧光屏上的光点在坐标原点0点上方的2点上,位移的距离正比于电压V2;以此类推,在时间t=3,t=4,…,t=8的各个瞬间,荧光屏上光点位置分别为3、4、…、8点。 在交流电压的第二个周期、第三个周期……都将重复第一个周期的情况。如果此时加在垂直偏转板上的正弦交流电压之频率很低,仅为lHz~2Hz,那么,在荧光屏上便会看见一个上下移动着的光点。这光点距离坐标原点的瞬时偏转值将与加在垂直偏转板上的电压瞬时值成正比。如果加在垂直偏转板上的交流电压频率在10Hz~20Hz以上,则由于荧光屏的余辉现象和人眼的视觉暂留现象,在荧光屏上看到的就不是一个上下移动的点,而是一根垂直的亮线了。该亮线的长短在示波器的垂直放大增益一定的情况下决定于正弦交流电压峰一峰值的大小。 如果在水平偏转板上加一个正弦交流电压,则会产生相类似的情况,只是光点在水平轴上移动罢了。以上就是示波器的常用知识,希望能给大家帮助。

    时间:2020-05-17 关键词: 示波器 测试测量 电子测量仪器

  • 数字示波器的基础知识,你知道吗?

    数字示波器的基础知识,你知道吗?

    什么是数字示波器?你知道吗?如果你有条件(有示波器)并方便(工作台足够大)的话,那你就可随时用示波器代替万用表进行测量,因这不只看的到你所想看的电压值,并还直观的看的到波形。那才真把电这无形的东西直观的显示在你的眼前了。我们开始一场数字示波器的奇幻旅行~ 话题1:数字示波器是什么? 数字示波器是数据采集,A/D转换,软件编程等一系列的技术制造出来的高性能示波器。数字示波器一般支持多级菜单,能提供给用户多种选择,多种分析功能。还有一些示波器可以提供存储,实现对波形的保存和处理。 目前高端数字示波器主要依靠美国技术,对于300MHz带宽之内的示波器,目前国内品牌的示波器在性能上已经可以和国外品牌抗衡,且具有明显的性价比优势。 话题2:数字示波器的简介 数字示波器是设计、制造和维修电子设备不可或缺的工具。随着科技及市场需求的快速发展,工程师们需要最好的工具,迅速准确地解决面临的测量挑战。作为工程师的眼睛,数字示波器在迎接当前棘手的测量挑战中至关重要。数字示波器因具有波形触发、存储、显示、测量、波形数据分析处理等独特优点,其使用日益普及。由于数字示波器与模拟示波器之间存在较大的性能差异,如果使用不当,会产生较大的测量误差,从而影响测试任务。 话题3:数字示波器的分类 数字存储示波器DSO:将信号数字化后再建波形,具有记忆、存储被观测信号的功能,可以用来观测和比较单次过程和非周期现象、低频和慢速信号,以及不同时间不同地点观测到的信号 数字荧光示波器DPO:通过多层次辉度或彩色可显示长时间内信号的变化情况 混合信号示波器MSO:把数字示波器对信号细节的分析能力和逻辑分析仪多通道定时测量能力组合在一起,可用于分析数模混合信号交互影响 话题3:数字示波器的优缺点 优点: 1.体积小、重量轻,便于携带,液晶显示器 2.可以长期贮存波形,并可以对存储的波形进行放大等多种操作和分析 3.特别适合测量单次和低频信号,测量低频信号时没有模拟示波器的闪烁现象 4.更多的触发方式,除了模拟示波器不具备的预触发,还有逻辑触发、脉冲宽度触发等 5.可以通过GPIB、RS232、USB接口同计算机、打印机、绘图仪连接,可以打印、存档、分析文件 6.有强大的波形处理能力,能自动测量频率、上升时间、脉冲宽度等很多参数 缺点: 1.失真比较大,由于数字示波器是通过对波形采样来显示,采样点数越少失真越大,通常在水平方向有512个采样点,受到最大采样速率的限制,在最快扫描速度及其附近采样点更少,因此高速时失真更大。 2.测量复杂信号能力差,由于数字示波器的采样点数有限以及没有亮度的变化,使得很多波形细节信息无法显示出来,虽然有些可能具有两个或多个亮度层次,但这只是相对意义上的区别,再加上示波器有限的显示分辨率,使它仍然不能重现模拟显示的效果。 3.可能出现假象和混淆波形,当采样时钟频率低于信号频率时,显示出的波形可能不是实际的频率和幅值。数字示波器的带宽与取样率密切相关,取样率不高时需借助内插计算,容易出现混淆波形。 通过学习能进一步了解数字示波器的职责所在,以及适应范围,这样效果是最佳的。以上就是数字示波器的解析,希望能给大家帮助。

    时间:2020-05-17 关键词: 数据采集 示波器 测试测量

  • 大存储深度示波器的波形记录仪

    大存储深度示波器的波形记录仪

    你知道为什么有了大存储深度示波器为什么还要用波形记录仪??如今大存储示波器层出不穷,如ZDS4000系列示波器,已经可以持续采集近7个小时的波形。与之相比,以采集时间见长的波形记录仪还有什么优势呢? 数字示波器与波形记录仪都是比较常见的电子测量仪器,被广泛应用于各行各业,我们先来了解一下两种仪器的主要区别。 一、绝缘隔离 绝缘隔离算是数字示波器与波形记录仪之间最大的一个区别了。示波器的各输入GND是内部相连的,非常适合观测共地信号,如:电路板上的电信号。而波形记录仪各输入通道都是绝缘隔离的,更适合应用于回路中有GND电位差,或有强、弱电混合的机电一体化控制回路的测量场景。上述场景如果使用示波器测量,需要借助隔离放大器或绝缘放大器来输入,否则很可能会引起回路之间的短路、接地故障甚至烧毁被测回路等事故。如图1所示。 图 1 绝缘输入示意图 二、分辨率 分辨率是指对输入信号进行模拟/数字转换时的粒度。示波器的设计更看重高采样率,往往用分辨率换速度。市面上的示波器以8比特(256点)分辨率居多,打个比方在±10V的量程下,最小可以读到的刻度值为满量程的20V除以256个点得到的0.078V。 波形记录仪的主流分辨率为12比特,而致远ZDL6000示波记录仪分辨率为14比特,在同样的条件下,可以读到的刻度值为0.0012V。分辨率越高,采集精度越大,更容易精准测量信号的最大值、有效值等数据,还可以根据这些数值进行高精度的运算(如:瞬时功率,能量积分等)。 三、通道数量 数字示波器一般都是4通道的,而波形记录仪根据机型不同,支持通道数一般在8通道以上。通道越多,可同时观察的信号也就越多,可比较性就越好。除此以外,记录仪一般允许替换输入单元,不仅可以采集模拟电压,还可以采集温度、湿度,CAN/LIN报文等等。提供更丰富的采集、测量、分析功能。 图 2 ZDL6000示波记录仪 综上所述,示波记录仪在强弱电混合系统、多种物理信号同时观测的复杂系统中发挥着重大作用,如:观测工频电源的AC波形同时进行DC控制系统的测量,变频器、逆变器的输入输出之间的波形记录等等。也常应用于长期正常(稳定)工作环境中突发异常问题的监视、定位与诊断工作。 ZLG立功科技·致远电子ZDL6000示波记录仪提供了最大20G存储深度,可持续采集20余天的数据,彻底解决用户数据监测问题。基于“实时运算+触发+搜索”功能,用户可精准捕获突发异常。配合“动作/Go-NoGo”功能,在异常出现时,用户可第一时间通过警报、邮件等方式获得通知,设备可自动以图片或数据文件方式保存异常现场,极大的提升问题定位与解决效率。 除此之外ZDL6000示波记录仪延续了ZDS系列示波器优秀的用户体验,在满足大数据记录与异常定位需求的同时,保证了灵活的示波分析功能,同时将示波分析与大数据记录做到了完美的用户体验。以上就是大存储深度示波器为什么还要用波形记录仪的原因解析,希望能给大家帮助。

    时间:2020-05-16 关键词: 示波器 绝缘隔离 zdl6000示波记录仪

  • 示波器的触发知识,你知道吗?

    示波器的触发知识,你知道吗?

    什么是示波器触发?你知道吗?关于示波器触发的问题不懂的人很头疼,但是有高人指点很轻松。下面跟着小编的脚步,学习下示波器触发的相关知识。道底是怎么一回事,各位可以带着自己心中的谜团,一起学习! 任何示波器的存储器都是有限的,因此所有示波器都必须使用触发。触发是示波器应该发现的用户感兴趣的事件。换句话说,它是用户想要在波形中寻找的东西。触发可以是一个事件(即波形中的问题),但不是所有的触发都是事件。触发实例包括边沿触发、毛刺信号触发和数字码型触发。 示波器必须使用触发的原因在于其存储器的容量有限。例如,Agilent90000系列示波器具有20亿采样的存储器深度。但是,即便拥有如此大容量的存储器,示波器仍需要一些事件来区分哪20亿个采样需要显示给用户。尽管20亿的采样听起来似乎非常庞大,但这仍不足以确保示波器存储器能够捕获到感兴趣的事件。 示波器的存储器可视为一个传送带。无论什么时候进行新的采样,采样都会存储到存储器中。存储器存满时,最旧的采样就会被删除,以便保存最新采样。当触发事件发生时,示波器就会捕获足够的采样,以将触发事件存储在存储器要求的位置(通常是在中间),然后将这些数据显示给用户。以上就是示波器触发解析,希望能给大家帮助。

    时间:2020-05-16 关键词: 存储器 示波器 示波器的触发

  • 使用示波器需要知道的一些基础知识,你知道吗?

    使用示波器需要知道的一些基础知识,你知道吗?

    你知道使用示波器需要知道的一些基础知识吗?作为测试工程师,示波器是不可避免使用的测试工作之一。对于示波器你又有多少了解,本文主要针对初学者,讲解示波器的原理以及使用方法。 示波器工作原理 示波器是利用电子示波管的特性,将人眼无法直接观测的交变电信号转换成图像,显示在荧光屏上以便测量的电子测量仪器。它是观察数字电路实验现象、分析实验中的问题、测量实验结果必不可少的重要仪器。示波器由示波管和电源系统、同步系统、X轴偏转系统、Y轴偏转系统、延迟扫描系统、标准信号源组成。 1、示波管 阴极射线管(CRT)简称示波管,是示波器的核心。它将电信号转换为光信号。正如图1所示,电子枪、偏转系统和荧光屏三部分密封在一个真空玻璃壳内,构成了一个完整的示波管。 图1 示波管的内部结构和供电图示 (1)荧光屏 现在的示波管屏面通常是矩形平面,内表面沉积一层磷光材料构成荧光膜。在荧光膜上常又增加一层蒸发铝膜。高速电子穿过铝膜,撞击荧光粉而发光形成亮点。铝膜具有内反射作用,有利于提高亮点的辉度。铝膜还有散热等其他作用。 当电子停止轰击后,亮点不能立即消失而要保留一段时间。亮点辉度下降到原始值的10%所经过的时间叫做“余辉时间”。余辉时间短于10μs为极短余辉,10μs—1ms为短余辉,1ms—0.1s为中余辉,0.1s-1s为长余辉,大于1s为极长余辉。一般的示波器配备中余辉示波管,高频示波器选用短余辉,低频示波器选用长余辉。 由于所用磷光材料不同,荧光屏上能发出不同颜色的光。一般示波器多采用发绿光的示波管,以保护人的眼睛。 (2)电子枪及聚焦 电子枪由灯丝(F)、阴极(K)、栅极(G1)、前加速极(G2)(或称第二栅极)、第一阳极(A1)和第二阳极(A2)组成。它的作用是发射电子并形成很细的高速电子束。灯丝通电加热阴极,阴极受热发射电子。 栅极是一个顶部有小孔的金属园筒,套在阴极外面。由于栅极电位比阴极低,对阴极发射的电子起控制作用,一般只有运动初速度大的少量电子,在阳极电压的作用下能穿过栅极小孔,奔向荧光屏。初速度小的电子仍返回阴极。 如果栅极电位过低,则全部电子返回阴极,即管子截止。调节电路中的W1电位器,可以改变栅极电位,控制射向荧光屏的电子流密度,从而达到调节亮点的辉度。第一阳极、第二阳极和前加速极都是与阴极在同一条轴线上的三个金属圆筒。前加速极G2与A2相连,所加电位比A1高。G2的正电位对阴极电子奔向荧光屏起加速作用。 电子束从阴极奔向荧光屏的过程中,经过两次聚焦过程。第一次聚焦由K、G1、G2完成,K、K、G1、G2叫做示波管的第一电子透镜。第二次聚焦发生在G2、A1、A2区域,调节第二阳极A2的电位,能使电子束正好会聚于荧光屏上的一点,这是第二次聚焦。A1上的电压叫做聚焦电压,A1又被叫做聚焦极。有时调节A1电压仍不能满足良好聚焦,需微调第二阳极A2的电压,A2又叫做辅助聚焦极。 (3)偏转系统 偏转系统控制电子射线方向,使荧光屏上的光点随外加信号的变化描绘出被测信号的波形。图8.1中,Y1、Y2和Xl、X2两对互相垂直的偏转板组成偏转系统。Y轴偏转板在前,X轴偏转板在后,因此Y轴灵敏度高(被测信号经处理后加到Y轴)。两对偏转板分别加上电压,使两对偏转板间各自形成电场,分别控制电子束在垂直方向和水平方向偏转。 (4)示波管的电源 为使示波管正常工作,对电源供给有一定要求。规定第二阳极与偏转板之间电位相近,偏转板的平均电位为零或接近为零。阴极必须工作在负电位上。栅极G1相对阴极为负电位(—30V~—100V),而且可调,以实现辉度调节。第一阳极为正电位(约+100V~+600V),也应可调,用作聚焦调节。 第二阳极与前加速极相连,对阴极为正高压(约+1000V),相对于地电位的可调范围为±50V。由于示波管各电极电流很小,可以用公共高压经电阻分压器供电。 示波器的基本组成 从上一小节可以看出,只要控制X轴偏转板和Y轴偏转板上的电压,就能控制示波管显示的图形形状。我们知道,一个电子信号是时间的函数f(t),它随时间的变化而变化。因此,只要在示波管的X轴偏转板上加一个与时间变量成正比的电压,在y轴加上被测信号(经过比例放大或者缩小),示波管屏幕上就会显示出被测信 号随时间变化的图形。电信号中,在一段时间内与时间变量成正比的信号是锯齿波。 示波器的基本组成框图如图2所示。它由示波管、Y轴系统、X轴系统、Z轴系统和电源等五部分组成。 图2示波器基本组成框图 被测信号①接到“Y"输入端,经Y轴衰减器适当衰减后送至Y1放大器(前置放大),推挽输出信号②和③。经延迟级延迟Г1时间,到Y2放大器。放大后产生足够大的信号④和⑤,加到示波管的Y轴偏转板上。为了在屏幕上显示出完整的稳定波形,将Y轴的被测信号③引入X轴系统的触发电路,在引入信号的正(或者负)极性的某一电平值产生触发脉冲⑥,启动锯齿波扫描电路(时基发生器),产生扫描电压⑦。 由于从触发到启动扫描有一时间延迟Г2,为保证Y轴信号到达荧光屏之前X轴开始扫描,Y轴的延迟时间Г1应稍大于X轴的延迟时间Г2。扫描电压⑦经X轴放大器放大,产生推挽输出⑨和⑩,加到示波管的X轴偏转板上。z轴系统用于放大扫描电压正程,并且变成正向矩形波,送到示波管栅极。这使得在扫描正程显示的波形有某一固定辉度,而在扫描回程进行抹迹。 以上是示波器的基本工作原理。双踪显示则是利用电子开关将Y轴输入的两个不同的被测信号分别显示在荧光屏上。由于人眼的视觉暂留作用,当转换频率高到一定程度后,看到的是两个稳定的、清晰的信号波形。 示波器中往往有一个精确稳定的方波信号发生器,供校验示波器用。 示波器使用 本节介绍示波器的使用方法。示波器种类、型号很多,功能也不同。数字电路实验中使用较多的是20MHz或者40MHz的双踪示波器。这些示波器用法大同小异。本节不针对某一型号的示波器,只是从概念上介绍示波器在数字电路实验中的常用功能。 1、荧光屏 荧光屏是示波管的显示部分。屏上水平方向和垂直方向各有多条刻度线,指示出信号波形的电压和时间之间的关系。水平方向指示时间,垂直方向指示电压。水平方向分为10格,垂直方向分为8格,每格又分为5份。垂直方向标有0%,10%,90%,100%等标志,水平方向标有10%,90%标志,供测直流电平、交流信号幅度、延迟时间等参数使用。根据被测信号在屏幕上占的格数乘以适当的比例常数(V/DIV,TIME/DIV)能得出电压值与时间值。 2、示波管和电源系统 (1)电源(Power) 示波器主电源开关。当此开关按下时,电源指示灯亮,表示电源接通。 (2)辉度(Intensity) 旋转此旋钮能改变光点和扫描线的亮度。观察低频信号时可小些,高频信号时大些。 一般不应太亮,以保护荧光屏。 (3)聚焦(Focus) 聚焦旋钮调节电子束截面大小,将扫描线聚焦成最清晰状态。 (4)标尺亮度(Illuminance) 此旋钮调节荧光屏后面的照明灯亮度。正常室内光线下,照明灯暗一些好。室内光线不足的环境中,可适当调亮照明灯。 3、垂直偏转因数和水平偏转因数 (1)垂直偏转因数选择(VOLTS/DIV)和微调 在单位输入信号作用下,光点在屏幕上偏移的距离称为偏移灵敏度,这一定义对X轴和Y轴都适用。灵敏度的倒数称为偏转因数。垂直灵敏度的单位是为cm/V,cm/mV或者DIV/mV,DIV/V,垂直偏转因数的单位是V/cm,mV/cm或者V/DIV,mV/DIV。实际上因习惯用法和测量电压读数的方便,有时也把偏转因数当灵敏度。 踪示波器中每个通道各有一个垂直偏转因数选择波段开关。一般按1,2,5方式从5mV/DIV到5V/DIV分为10档。波段开关指示的值代表荧光屏上垂直方向一格的电压值。例如波段开关置于1V/DIV档时,如果屏幕上信号光点移动一格,则代表输入信号电压变化1V。 每个波段开关上往往还有一个小旋钮,微调每档垂直偏转因数。将它沿顺时针方向旋到底,处于“校准”位置,此时垂直偏转因数值与波段开关所指示的值一致。逆时针旋转此旋钮,能够微调垂直偏转因数。垂直偏转因数微调后,会造成与波段开关的指示值不一致,这点应引起注意。许多示波器具有垂直扩展功能,当微调旋钮被拉出时,垂直灵敏度扩大若干倍(偏转因数缩小若干倍)。例如,如果波段开关指示的偏转因数是1V/DIV,采用×5扩展状态时,垂直偏转因数是0.2V/DIV。 在做数字电路实验时,在屏幕上被测信号的垂直移动距离与+5V信号的垂直移动距离之比常被用于判断被测信号的电压值。 (2)时基选择(TIME/DIV)和微调 时基选择和微调的使用方法与垂直偏转因数选择和微调类似。时基选择也通过一个波段开关实现,按1、2、5方式把时基分为若干档。波段开关的指示值代表光点在水平方向移动一个格的时间值。例如在1μS/DIV档,光点在屏上移动一格代表时间值1μS。 “微调”旋钮用于时基校准和微调。沿顺时针方向旋到底处于校准位置时,屏幕上显示的时基值与波段开关所示的标称值一致。逆时针旋转旋钮,则对时基微调。旋钮拔出后处于扫描扩展状态。通常为×10扩展,即水平灵敏度扩大10倍,时基缩小到1/10。例如在2μS/DIV档,扫描扩展状态下荧光屏上水平一格代表的时间值等于 2μS×(1/10)=0.2μS TDS实验台上有10MHz、1MHz、500kHz、100kHz的时钟信号,由石英晶体振荡器和分频器产生,准确度很高,可用来校准示波器的时基。 示波器的标准信号源CAL,专门用于校准示波器的时基和垂直偏转因数。例如COS5041型示波器标准信号源提供一个VP-P=2V,f=1kHz的方波信号。 示波器前面板上的位移(Position)旋钮调节信号波形在荧光屏上的位置。旋转水平位移旋钮(标有水平双向箭头)左右移动信号波形,旋转垂直位移旋钮(标有垂直双向箭头)上下移动信号波形。 4、输入通道和输入耦合选择 (1)输入通道选择 输入通道至少有三种选择方式:通道1(CH1)、通道2(CH2)、双通道(DUAL)。选择通道1时,示波器仅显示通道1的信号。选择通道2时,示波器仅显示通道2的信号。选择双通道时,示波器同时显示通道1信号和通道2信号。测试信号时,首先要将示波器的地与被测电路的地连接在一起。 根据输入通道的选择,将示波器探头插到相应通道插座上,示波器探头上的地与被测电路的地连接在一起,示波器探头接触被测点。示波器探头上有一双位开关。此开关拨到“×1”位置时,被测信号无衰减送到示波器,从荧光屏上读出的电压值是信号的实际电压值。此开关拨到“×10"位置时,被测信号衰减为1/10,然后送往示波器,从荧光屏上读出的电压值乘以10才是信号的实际电压值。 (2)输入耦合方式 输入耦合方式有三种选择:交流(AC)、地(GND)、直流(DC)。当选择“地”时,扫描线显示出“示波器地”在荧光屏上的位置。直流耦合用于测定信号直流绝对值和观测极低频信号。交流耦合用于观测交流和含有直流成分的交流信号。在数字电路实验中,一般选择“直流”方式,以便观测信号的绝对电压值。 5、触发 第一节指出,被测信号从Y轴输入后,一部分送到示波管的Y轴偏转板上,驱动光点在荧光屏上按比例沿垂直方向移动;另一部分分流到x轴偏转系统产生触发脉冲,触发扫描发生器,产生重复的锯齿波电压加到示波管的X偏转板上,使光点沿水平方向移动,两者合一,光点在荧光屏上描绘出的图形就是被测信号图形。 由此可知,正确的触发方式直接影响到示波器的有效操作。为了在荧光屏上得到稳定的、清晰的信号波形,掌握基本的触发功能及其操作方法是十分重要的。 (1)触发源(Source)选择 要使屏幕上显示稳定的波形,则需将被测信号本身或者与被测信号有一定时间关系的触发信号加到触发电路。触发源选择确定触发信号由何处供给。通常有三种触发源:内触发(INT)、电源触发(LINE)、外触发EXT)。 内触发使用被测信号作为触发信号,是经常使用的一种触发方式。由于触发信号本身是被测信号的一部分,在屏幕上可以显示出非常稳定的波形。双踪示波器中通道1或者通道2都可以选作触发信号。 电源触发使用交流电源频率信号作为触发信号。这种方法在测量与交流电源频率有关的信号时是有效的。特别在测量音频电路、闸流管的低电平交流噪音时更为有效。 外触发使用外加信号作为触发信号,外加信号从外触发输入端输入。外触发信号与被测信号间应具有周期性的关系。由于被测信号没有用作触发信号,所以何时开始扫描与被测信号无关。 正确选择触发信号对波形显示的稳定、清晰有很大关系。例如在数字电路的测量中,对一个简单的周期信号而言,选择内触发可能好一些,而对于一个具有复杂周期的信号,且存在一个与它有周期关系的信号时,选用外触发可能更好。 (2)触发耦合(Coupling)方式选择 触发信号到触发电路的耦合方式有多种,目的是为了触发信号的稳定、可靠。这里介绍常用的几种。 AC耦合又称电容耦合。它只允许用触发信号的交流分量触发,触发信号的直流分量被隔断。通常在不考虑DC分量时使用这种耦合方式,以形成稳定触发。但是如果触发信号的频率小于10Hz,会造成触发困难。 直流耦合(DC)不隔断触发信号的直流分量。当触发信号的频率较低或者触发信号的占空比很大时,使用直流耦合较好。 低频抑制(LFR)触发时触发信号经过高通滤波器加到触发电路,触发信号的低频成分被抑制;高频抑制(HFR)触发时,触发信号通过低通滤波器加到触发电路,触发信号的高频成分被抑制。此外还有用于电视维修的电视同步(TV)触发。这些触发耦合方式各有自己的适用范围,需在使用中去体会。 (3)触发电平(Level)和触发极性(Slope) 触发电平调节又叫同步调节,它使得扫描与被测信号同步。电平调节旋钮调节触发信号的触发电平。一旦触发信号超过由旋钮设定的触发电平时,扫描即被触发。顺时针旋转旋钮,触发电平上升;逆时针旋转旋钮,触发电平下降。当电平旋钮调到电平锁定位置时,触发电平自动保持在触发信号的幅度之内,不需要电平调节就能产生一个稳定的触发。当信号波形复杂,用电平旋钮不能稳定触发时,用释抑(HoldOff)旋钮调节波形的释抑时间(扫描暂停时间),能使扫描与波形稳定同步。 极性开关用来选择触发信号的极性。拨在“+”位置上时,在信号增加的方向上,当触发信号超过触发电平时就产生触发。拨在“-”位置上时,在信号减少的方向上,当触发信号超过触发电平时就产生触发。触发极性和触发电平共同决定触发信号的触发点。 6、扫描方式(SweepMode) 扫描有自动(Auto)、常态(Norm)和单次(Single)三种扫描方式。 自动:当无触发信号输入,或者触发信号频率低于50Hz时,扫描为自激方式。 常态:当无触发信号输入时,扫描处于准备状态,没有扫描线。触发信号到来后,触发扫描。 单次:单次按钮类似复位开关。单次扫描方式下,按单次按钮时扫描电路复位,此时准备好(Ready)灯亮。触发信号到来后产生一次扫描。单次扫描结束后,准备灯灭。单次扫描用于观测非周期信号或者单次瞬变信号,往往需要对波形拍照。 上面扼要介绍了示波器的基本功能及操作。示波器还有一些更复杂的功能,如延迟扫描、触发延迟、X-Y工作方式等,这里就不介绍了。示波器入门操作是容易的,真正熟练则要在应用中掌握。值得指出的是,示波器虽然功能较多,但许多情况下用其他仪器、仪表更好。例如,在数字电路实验中,判断一个脉宽较窄的单脉冲是 否发生时,用逻辑笔就简单的多;测量单脉冲脉宽时,用逻辑分析仪更好一些。 数字示波器使用必须注意问题 1、前言 数字示波器因具有波形触发、存储、显示、测量、波形数据分析处理等独特优点,其使用日益普及。由于数字示波器与模拟示波器之间存在较大的性能差异,如果使用不当,会产生较大的测量误差,从而影响测试任务。 2、区分模拟带宽和数字实时带宽 带宽是示波器最重要的指标之一。模拟示波器的带宽是一个固定的值,而数字示波器的带宽有模拟带宽和数字实时带宽两种。数字示波器对重复信号采用顺序采样或随机采样技术所能达到的最高带宽为示波器的数字实时带宽,数字实时带宽与最高数字化频率和波形重建技术因子K相关(数字实时带宽=最高数字化速率/K),一 般并不作为一项指标直接给出。 从两种带宽的定义可以看出,模拟带宽只适合重复周期信号的测量,而数字实时带宽则同时适合重复信号和单次信号的测量。厂家声称示波器的带宽能达到多少兆,实际上指的是模拟带宽,数字实时带宽是要低于这个值的。例如说TEK公司的TES520B的带宽为500MHz,实际上是指其模拟带宽为500MHz,而最高数字实时带宽只能达到400MHz远低于模拟带宽。所以在测量单次信号时,一定要参考数字示波器的数字实时带宽,否则会给测量带来意想不到的误差。 3、有关采样速率 采样速率也称为数字化速率,是指单位时间内,对模拟输入信号的采样次数,常以MS/s表示。采样速率是数字示波器的一项重要指标。 (1)如果采样速率不够,容易出现混迭现象 如果示波器的输人信号为一个100KHz的正弦信号,示波器显示的信号频率却是50KHz,这是怎么回事呢?这是因为示波器的采样速率太慢,产生了混迭现象。混迭就是屏幕上显示的波形频率低于信号的实际频率,或者即使示波器上的触发指示灯已经亮了,而显示的波形仍不稳定。混迭的产生如图1所示。 那么,对于一个未知频率的波形,如何判断所显示的波形是否已经产生混迭呢?可以通过慢慢改变扫速t/div到较快的时基档,看波形的频率参数是否急剧改变,如果是,说明波形混迭已经发生;或者晃动的波形在某个较快的时基档稳定下来,也说明波形混迭已经发生。根据奈奎斯特定理,采样速率至少高于信号高频成分的2倍才不会发生混迭,如一个500MHz的信号,至少需要1GS/s的采样速率。有如下几种方法可以简单地防止混迭发生: a.调整扫速; b.采用自动设置(Autoset); c.试着将收集方式切换到包络方式或峰值检测方式,因为包络方式是在多个收集记录中寻找极值,而峰值检测方式则是在单个收集记录中寻找最大最小值,这两种方法都能检测到较快的信号变化。 如果示波器有InstaVu采集方式,可以选用,因为这种方式采集波形速度快,用这种方法显示的波形类似于用模拟示波器显示的波形。 (2)采样速率与t/div的关系 每台数字示波器的最大采样速率是一个定值。但是,在任意一个扫描时间t/div,采样速率fs由下式给出: fs=N/(t/div)N为每格采样点 当采样点数N为一定值时,fs与t/div成反比,扫速越大,采样速率越低。 综上所述,使用数字示波器时,为了避免混迭,扫速档最好置于扫速较快的位置。如果想要捕捉到瞬息即逝的毛刺,扫速档则最好置于主扫速较慢的位置。以上就是使用示波器需要知道的一些基础知识,希望能给大家帮助。

    时间:2020-05-16 关键词: 示波器 探头 示波管

  • 示波器的带宽和采样率,你知道吗?

    示波器的带宽和采样率,你知道吗?

    什么是示波器的带宽和采样率?本文主要介绍示波器最重要的两个参数之示波器带宽和采样率详解。 1、示波器带宽 示波器测得正弦波的幅度不低于真实正弦波信号3dB(功率为原来的一半)的幅度时的最高频率。如果输入一个固定振幅的波形,增加信号频率,-3dB的位置即是示波器的电压幅值为实际幅值的0.707倍。 当被测正弦波的频率等于示波器的带宽(示波器的放大器的响应是一阶高斯型)时,幅度测量误差大约为30%。如果想测量正弦波的幅度误差只有3%,被测正弦波的频率要比示波器的带宽要低很多(大约是示波器的带宽的0.3倍)。实际应用中我们很可能需要测量的是方波(例如数字系统)或者是比正弦波复杂的多的信号,使用示波器测量信号的通用经验法则是:示波器的带宽是被测信号的频率的5倍。例如,一个66MHz的时钟信号需要一个330MHz带宽的示波器。 5倍频率是怎样得出的?信号带宽和速率无关,只和沿有关。当信号沿是周期的7%时信号能有效还原,而此时示波器的带宽必须≥0.35/Tedge,因此有示波器带宽≥5*F。 2、采样率 通过测量等时间间隔波形的电压幅值,并把该电压转化为用8位二进制代码表示的数字信息,这就是数字示波器的采样。每两次采样之间的时间间隔越小,那么重建出来的波形就越接近原始信号。采样率(Sampling Rate)就是采样时间间隔的倒数。例如,如果示波器的采样率是每秒10G次(10GSa/s),则意味着每100ps进行一次采样。 根据Nyquist采样定理,对于正弦波,每个周期至少需要两次以上的采样才能保证数字化后的脉冲序列能较为准确的还原原始波形。如果采样率低于Nyquist采样率则会导致混叠(Aliasing)现象。 采样率的单位是MS/s(MegaSamples per second)或GS/s(GigaSamples per second)。一般情况下,各个示波器公布的采样率参数都是指单通道最高采样率。如果一台两通道的示波器,公布的采样率参数为1GS/s,两个通道同时使用时,每通道的最高采样率为500MS/s。 有一个比较采样速率和信号带宽时的经验法则:如果示波器有内插(通过筛选以便在采样点间重新生成),则(采样速率/信号带宽)的比值至少应为 4:1 ;如果无正弦内插时,则应采取 10:1 的比值。以上就是示波器的带宽和采样率解析,希望能给大家帮助。

    时间:2020-05-16 关键词: 示波器 采样率 示波器带宽

  • 模拟示波器与数字示波器的不同点,你知道吗?

    模拟示波器与数字示波器的不同点,你知道吗?

    你知道模拟示波器与数字示波器的不同点吗?归根结底说到示波器与数字示波器无非是测量时使用的仪器而已,说到模拟示波器与数字示波器有何不同之处?可能有人还能说出一二,下面一起了解下相关内容!示波器是观察波形的窗口,它让设计人员或维修人员详细看见电子波形,达到眼见为实的效果。因为人眼是最灵敏的视觉器官,可以明察秋毫之末,极为迅速地反映物体至大脑,作出比较和判断。 按照信号的不同分类,示波器可分为模拟示波器和数字示波器。 模拟示波器采用的是模拟电路(示波管,其基础是电子枪)电子枪向屏幕发射电子,发射的电子经聚焦形成电子束,并打到屏幕上。屏幕的内表面涂有荧光物质,这样电子束打中的点就会发出光来。 数字示波器则是数据采集,A/D转换,软件编程等一系列的技术制造出来的高性能示波器。它的工作方式是通过模拟转换器(ADC)把被测电压转换为数字信息,它捕获的是波形的一系列样值,并对样值进行存储,存储限度是判断累计的样值是否能描绘出波形为止,随后,数字示波器重构波形。 模拟示波器和数字示波器的区别体现: 带宽不同:受电子偏移速度影响,模拟示波器的带宽最高只能到几百兆HZ,而数字示波带宽目前已经超过100GHz; 功能差异:数字示波器除了可以稳定观测一些连续周期信号外,因为已经将波形数字化,可以实现波形的自动测量、波形存储、波形分析、多种波形触发及远程控制等多种功能; 稳定性差异:模拟示波器由于全是模拟器件,指标离散型与温漂影响更严重; 其他,其他如模拟示波器体积相对更大些;模拟示波器可实现实时捕获波形,数字示波器因处理会导致部分波形漏失,但随着ADC速度与处理算法的提升,数字示波器的波形捕获速率已可满足使用需求。 工作方式不同:模拟示波器的工作方式是直接测量信号电压,并且通过从左到右穿过示波器屏幕的电子束在垂直方向描绘电压;数字示波器的工作方式是通过模拟转换器(ADC)把被测电压转换为数字信息,捕获的是波形的一系列样值,并对样值进行存储,存储限度是判断累计的样值是否能描绘出波形为止,随后,数字示波器重构波形。 原理不同:模拟示波器采用的是模拟电路,电子枪向屏幕发射电子,发射的电子经聚焦形成电子束,并打到屏幕上,屏幕的内表面涂有荧光物质,这样电子束打中的点就会发出光来;而数字示波器一般支持多级菜单,能提供给用户多种选择,多种分析功能,还有一些示波器可以提供存储,实现对波形的保存和处 体积和重量的不同:模拟示波器的体积都比数字示波器大,显得笨重一点,携带不方便,而数字示波器重量轻,携带十分方便。 显示的不同:模拟示波器显示的波形是连续的,是信号真实的波形,而且反应速度特快;数字示波器显示的波形是经过数字电路采样得来的点组成的,是个不连续的波形,采样率越高的示波器,越与真实波形接近,但显示速度没有模拟机快。 反应速度的不同:这是模拟示波器最大的优点之一,是数字示波器很难取代的,比如,在测试某一信号时,模拟示波器能在瞬间显示波形,几乎没有延时,而数字示波器还需要将测试的信号进过数字电路处理后,再显示出模拟的波形,在显示时间上落后模拟示波器。以上就是模拟示波器与数字示波器的不同点,希望能给大家帮助。

    时间:2020-05-16 关键词: 数字 模拟 示波器

首页  上一页  1 2 3 4 5 6 7 8 9 10 下一页 尾页
发布文章

技术子站

更多

项目外包