当前位置:首页 > 负电压
  • 负电压线性稳压器

    什么是负电压?说到电压,一切都是相对的。不同的电导体之间有不同的电位。这意味着一个电压可以高于另一个电压。这种情况下一般不会使用“负电压”的描述。我们所说的负电压是指一个电压低于系统的地电位。图1是一个3.3V电源电压和0V系统地电位的示例。在这个系统中,需要测量和记录传感器的信号。这些信号可能在+2.5V和–2.5V之间。 为了检测这些信号,我们采用+3.3V的正电源电压和–3.3V的负电源电压的运算放大器。且系统中已经提供+3.3V正电压。对于所需的–3.3V负电压,可以利用系统的–5V来产生。该电压轨可能来自基于变压器的电源,通常该电压是没有经过精确调节的。为了精准生成–3.3V,我们需要使用线性稳压器。 市场上有众多适用于正电压的线性稳压器可供选择。在需要转换负电压的应用中,是否可以使用这种正线性稳压器? 图1显示了用于这种应用中的正线性稳压器。图中的可调电阻代表线性稳压器的调整元件。对于这种线性稳压器IC来说,VIN、VOUT和GND连接器之间的电压关系是完全相同的,就像在正电压应用中一样。然而,在这种环境中使用正线性稳压器有几个缺点。该电路将使用电阻分压器来调节基于–5V电压轨的输出电压,而不是基于0V电压轨、系统地。这会导致–5V电压轨上的干扰和噪声直接耦合到产生的–3.3V轨上。此外,稳压精度也相当差。当–5V电源电压精度只有±10%时,这个不精确度也会耦合到–3.3V产生的输出电压上。 在这种情况下使用正线性稳压器的第二个缺点是线性稳压器设备的I/O引脚(例如使能引脚)将以–5V为参考。如果需要监控不同电压的上电序列,则可能需要电平转换。 图1.产生负电压的正线性稳压器。 图2所示的是相同系统,但是使用了专为降压负电压设计的线性稳压器。 这些IC被称为负线性稳压器。ADI公司的新型ADP7183负线性稳压器专为最低噪声、最高电源抑制比(PSRR)而设计。这使得该器件非常适合对电源噪声敏感节点的滤波应用。 图2.产生负电压的负线性稳压器。 如果使用如图2所示的负线性稳压器,则产生的–3.3V是相对于0V地电压进行稳压。这将产生非常低的噪声和精确的输出电压。此外,I/O引脚以0V的系统地为参考,可以省去电平转换。 这样一来,特殊的负线性稳压器在转换负电压或滤波负电压时就显得尤为重要。市场上的负线性稳压器通常供应有限。ADP7183(300 mA)和ADP7185(500 mA)等新产品为设计人员提供了更多可用的产品系列。 测验: 对了—为什么使用LDO?您仍在使用7805标准件以获得稳定的5V输出吗?但是7805需要7V(最小)输入电压。假定我们需要100毫安的输出电流。 7805与ADP150这种LDO相比,哪种效率更高? 提示:查看ADP150数据手册。

    时间:2021-01-18 关键词: 线性稳压器 负电压 ADI

  • -5V、-3V……这些负电压是怎么产生的?

    负电压的产生电路图原理 在电子电路中我们常常需要使用负的电压,比如说我们在使用运放的时候常常需要给他建立一个负的电压。下面就简单的以正5V电压到负电压5V为例说一下他的电路。 上面的电路是一个最简单的负压产生电路了。他使用的原件是最少的了我们只需要给他提供1kHZ左右的方波就可以了,相当的简单。这里需要注意这个电路的代负载能力是很弱的,同时在加上负载后电压的降落也比较大。 负电压产生电路分析  说白了就是:某个点的电压就是相对于一个参考点的电势之间的差值。V某=E某-E参。一般我们把供电电源负极当作参考点。电源电压就是Vcc=E电源正-E电源负。 当PWM为低电平时,Q2关闭,Q1打开,C1开始放电,放电回路是C1-C2-D1,这实际上也是对C2进行充电的过程。C2充好电后,下正上负,如果VCC的电势为5点几伏,就可以输出-5V的电压了。 产生负电压(-5V)的方案 7660和MAX232输出能力有限,做示波器带高速运放很吃力,所以魏坤也得用4片并联的方式扩流。 用普通的DC/DC芯片都可以产生负电压,且电压精确度同正电压一样,驱动能力也很强,可以达到300mA以上。 整个示波器的设计数字电源的+5V和模拟电源的+5V是分开供电的,但是数字地和模拟地应该怎么处理呢? 数字部分的地返回电流不能流过模拟部分地,两个地应该在稳定的地参考点连在一起。 负电压的意义  2、通讯接口需要。例如RS232接口,就必须用到负电压。-3V~-15V表示1,+3~+15V表示0。这个是当初设计通讯接口时的协议,只能遵守咯。PS:MAX232之类的接口芯片自带电荷泵,可以自己产生负电压。 4、这个比较有中国特色,自毁电路。一般来说芯片内部的保护电路对于负电压是不设防的,所以只要有电流稍大,电压不用很高的负电压加到芯片上,就能成功摧毁芯片。 免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

    时间:2021-01-08 关键词: 原理 电路图 负电压

  • 如何产生负电压

    如何产生负电压?1、电荷泵提供负压TTL电平/232电平转换芯片(如,MAX232,MAX3391等)是最典型的电荷泵器件可以输出较低功率的负压。但有些LCD要求-24V的负偏压,则需要另外想办法。可用一片max232为LCD模块提供负偏压。TTL-in接高电平,RS232-out串一个10K的电位器接到LCM的VEE。这样不但可以显示, 而且对比度也可调。 MAX232是+5V供电的双路RS-232驱动器,芯片的内部还包含了+5V及±10V的两个电荷泵电压转换器。    设计高压电荷泵需要较多的开关,用分离元件实现起来就有点困难了,不如用电感来得简单。一般地,1个三极管或MOSFET,1个比较器或通用运放(做PWM振荡),1个电感,1个肖基特二极管和若干阻容元件就可以搞定。如果你的MCU自身带有PWM接口,且软件允许的话,就更简单了。2、反相器提供负压反相器的输出接一个电容C1,C1的另一端接二极管D1的正极和二极管D2的负极,D1的负极接地,D2的负极接电容C2,C2的另一端接地。C2的容量要大于C1。例如,C1用0.1μF,C2用 0.47μF,当然最佳数值可由试验确定。反相器的输入端加一个方波,其幅值应该能使反相器正常工作,那么在反相器的输出端就出现一个相位相反的方波。电容C2上就会出现一个负电压,理论上比电源电压低0.7V,然后再稳压到-5V。3、负压电源转换器产生负压MAX749是一个专门用来产生负电压的电源转换器。 MAX749为倒相式PFM开关稳压,输入电压 +2V至 +6V,输出电压可达-100V以上,可通过内部的D/A转换器进行调节,或者通过一个PWM信号或电位器进行调节。MAX749采用一种电流控制方法,既减小了静态电流消耗,又提高了转换效率。关断方式下,静态电流仅为15mA。MAX749在关断方式下仍保持DAC的设定值,从而简化了软件控制。使用MAX749产生负压时应注意外围元件的选择,这里特别说明几点:1)      晶体管:可以用PNP晶体管或P沟道MOSFET。前者经济,使用简单,后者能提供更大电流,且转换效率较高,但往往需要较高的输入电压(通常要求 +5V或 +5V以上)。如使用2SC8550三极管,可以提供较大的输出电流。2)      RSENSE:RSENSE是一个微阻值的检测电阻,可以用一小段康铜丝代替,但不能直接用0Ω电阻短路。RSENSE的大小与输出电流成反比关系,因此可根据电流需要确定RSENSE的最大值,但为了保证转换效率,不宜取得过小。一般在输出电压为-24V的情况下,要求输出电流为0.5A左右时, 可取RSENSE =0.25Ω,输出电流为0.8A左右时,可取RSENSE =0.2Ω。3)      RBASE :RBASE应足够小以保证晶体管能处在饱和状态,但RBASE太小又降低了转换效率,通常在160Ω~470Ω之间取值。4)      另外,电感L的感值在22~l00mH之间,通常取47mH,为提高效率,电感的内阻要小,最好在300mΩ以下;二极管可用IN5817 ~ IN5822系列快恢复二极管;CCOMP取决于RFB及电路布局,通常在100pF ~ l0nF之间取值。4、专用DC/DC电压反转器提供负压ME7660是一种DC/DC电荷泵电压反转器,采用AL栅 CMOS工艺设计。该芯片能将输入范围为+1.5V至+10V的电压转换成相应的-1.5V至-10V的输出,并且只需外接两只低损耗电容,无需电感。芯片的振荡器额定频率为10KHZ,应用于低输入电流情况时,可于振荡器与地之间外接一电容,从而以低于10KHZ的振荡频率正常工作。ME7660转换器的特点如下:1)      转换逻辑电源+5V为±5V双相电压;2)      输入工作电压范围广:1.5V~10V;3)      电源转换效率高:98%;4)      低功耗:静态电流为90μA(输入5V时)。ME7660转换器多用于LCD、接口转换器及仪表等场合。除上述方法之外,也可用一些输出正电压的DC/DC转换器产生负压,例如:降压型开关稳压器LM2596等,只需以GND为参考锁住反向调节器,在输出参考等方面稍作改变就可以了。由于GND端不是接地而是接到负输出电压端上,所以需要相应的电平转换装置(如光藕或三极管)。在此不再赘述。可参考相关器件的应用手册

    时间:2019-06-13 关键词: 负电压

  • MC34063扩流负电压输出电路图

    MC34063扩流负电压输出电路图,输入5V,输出14.5V,调整R4,R5可以改变输出电压。

    时间:2018-10-29 关键词: 电源技术解析 负电压

  • 负电压电源设计的种类

    各位工程师在设计电路时,可能会遇到需要负电压供电的系统,例如使用负电压为IGBT提供关断负电压、运放系统中用正负对称的偏置电压供电。那么该如何产生一个稳定可靠的负电压呢?本文将为你介绍不同的解决方案。 负电压设计根据不同的负载电流有很多不同方案,以下是给出几种目前市面比较常见的负电压方案,可以根据不同场合使用合适的方案。 一、工频变压器输出正负电压     图1 工频变压器正负输出电源 各位工程师看到图1的电路是否有很强的亲切感,是否能想起大学时接触电子设计时的情景?此经典电路优点比较明显,电路结构简单、极低干扰噪声、稳定性好;同时此电路也有缺点,输入交流电范围窄(一般是220VAC±5%),体积重量大;虽然此电路缺点明显目前还有一些应用采用此方案设计。此方案主要是利用变压器产生负电压在通过线性稳压器7905进行稳压。 二、电源模块输出负电压 由于电子元件制造工艺技术越来越好,能量损耗越来越低,这样一来越来越有利于电源的模块化发展。而且在设计上也能做到小型化,轻型化设计。 1、非隔离负压输出负电压     图2 非隔离稳压输出模块     图3 非隔离模块的正输出与负输出接法 如图3所示,此电源模块应用与常用的LM7805类似,而且不需要安装散热片。如上图,我们需要正负电压给运放等供电时,只需要两个E78xxOS-500电源即可实现。 2、隔离电源模块输出正负电压     图4 隔离电源模块正负双路输出     图5 E_URADD-6W电源典型应用 在电力、工业、通讯等对抗干扰性能要求较高的场合,一般需要对电源进行隔离处理来隔离从总电源端的干扰。此种应用时如果需要用到负电压,可以直接采用隔离电源模块直接输出正负电压给系统供电。 三、Buck-Boost拓扑设计输出负电压 除了采用隔离模块方案,我们还可以选择芯片自己设计负压电路,此处我们介绍一下较容易设计的非隔离负压输出Buck-Boost电路。如图6此电路只需要主控芯片、电感、电容等芯片,目前MPS的DC-DC电源芯片都支持Buck-Boost的设计结构,可以根据不同输出电流选择合适型号。     图6 Buck-Boost拓扑原理 从图6的拓扑中可以看出输入电压与输出电压极性是相反的,因此Buck-Boost拓扑结构又简称为倒相拓扑。图7是采用MP2359DT设计的-15V电源电路,MP2359DT是采用SOT23-6的封装,整个电路占用PCB面积较小。     图7 MP2359负电压输出电路 四、总结 负电压设计方案多种多样,哪一个方案适合你的设计,还是需要综合考虑不同应用、不同技术要求而定。 致远电子拥有近二十年的研发经验,可以提供多种负压产生方案的选择。隔离1000VDC、1500VDC、3000VDC及6000VDC等多个系列,封装形式多样,兼容国际标准的SIP、DIP等封装。同时致远电子为保证电源产品性能建设了行业内一流的测试实验室,配备最先进、齐全的测试设备,全系列隔离DC-DC电源通过完整的EMC测试,静电抗扰度高达4KV、浪涌抗扰度高达2KV,可应用于绝大部分复杂恶劣的工业现场,为用户提供稳定、可靠的电源隔离解决方案。  

    时间:2018-09-05 关键词: 电源技术解析 电源设计 负电压

  • Linear Regulators with negative Voltages 负电压线性稳压器

    什么是负电压?说到电压,一切都是相对的。不同的电导体之间有不同的电位。这意味着一个电压可以高于另一个电压。这种情况下一般不会使用“负电压”的描述。我们所说的负电压是指一个电压低于系统的地电位。图1是一个3.3V电源电压和0V系统地电位的示例。在这个系统中,需要测量和记录传感器的信号。这些信号可能在+2.5V和–2.5V之间。 为了检测这些信号,我们采用+3.3V的正电源电压和–3.3V的负电源电压的运算放大器。且系统中已经提供+3.3V正电压。对于所需的–3.3V负电压,可以利用系统的–5V来产生。该电压轨可能来自基于变压器的电源,通常该电压是没有经过精确调节的。为了精准生成–3.3V,我们需要使用线性稳压器。 市场上有众多适用于正电压的线性稳压器可供选择。在需要转换负电压的应用中,是否可以使用这种正线性稳压器? 图1显示了用于这种应用中的正线性稳压器。图中的可调电阻代表线性稳压器的调整元件。对于这种线性稳压器IC来说,VIN、VOUT和GND连接器之间的电压关系是完全相同的,就像在正电压应用中一样。然而,在这种环境中使用正线性稳压器有几个缺点。该电路将使用电阻分压器来调节基于–5V电压轨的输出电压,而不是基于0V电压轨、系统地。这会导致–5V电压轨上的干扰和噪声直接耦合到产生的–3.3V轨上。此外,稳压精度也相当差。当–5V电源电压精度只有±10%时,这个不精确度也会耦合到–3.3V产生的输出电压上。 在这种情况下使用正线性稳压器的第二个缺点是线性稳压器设备的I/O引脚(例如使能引脚)将以–5V为参考。如果需要监控不同电压的上电序列,则可能需要电平转换。 图1.产生负电压的正线性稳压器。 图2所示的是相同系统,但是使用了专为降压负电压设计的线性稳压器。 这些IC被称为负线性稳压器。ADI公司的新型ADP7183负线性稳压器专为最低噪声、最高电源抑制比(PSRR)而设计。这使得该器件非常适合对电源噪声敏感节点的滤波应用。 图2.产生负电压的负线性稳压器。 如果使用如图2所示的负线性稳压器,则产生的–3.3V是相对于0V地电压进行稳压。这将产生非常低的噪声和精确的输出电压。此外,I/O引脚以0V的系统地为参考,可以省去电平转换。 这样一来,特殊的负线性稳压器在转换负电压或滤波负电压时就显得尤为重要。市场上的负线性稳压器通常供应有限。ADP7183(300 mA)和ADP7185(500 mA)等新产品为设计人员提供了更多可用的产品系列。

    时间:2018-02-28 关键词: 电源技术解析 线性稳压器 负电压

  • 负电压线性稳压器

    什么是负电压?说到电压,一切都是相对的。不同的电导体之间有不同的电位。这意味着一个电压可以高于另一个电压。这种情况下一般不会使用“负电压”的描述。我们所说的负电压是指一个电压低于系统的地电位。图1是一个3.3V电源电压和0V系统地电位的示例。在这个系统中,需要测量和记录传感器的信号。这些信号可能在+2.5V和–2.5V之间。 为了检测这些信号,我们采用+3.3V的正电源电压和–3.3V的负电源电压的运算放大器。且系统中已经提供+3.3V正电压。对于所需的–3.3V负电压,可以利用系统的–5V来产生。该电压轨可能来自基于变压器的电源,通常该电压是没有经过精确调节的。为了精准生成–3.3V,我们需要使用线性稳压器。 市场上有众多适用于正电压的线性稳压器可供选择。在需要转换负电压的应用中,是否可以使用这种正线性稳压器? 图1显示了用于这种应用中的正线性稳压器。图中的可调电阻代表线性稳压器的调整元件。对于这种线性稳压器IC来说,VIN、VOUT和GND连接器之间的电压关系是完全相同的,就像在正电压应用中一样。然而,在这种环境中使用正线性稳压器有几个缺点。该电路将使用电阻分压器来调节基于–5V电压轨的输出电压,而不是基于0V电压轨、系统地。这会导致–5V电压轨上的干扰和噪声直接耦合到产生的–3.3V轨上。此外,稳压精度也相当差。当–5V电源电压精度只有±10%时,这个不精确度也会耦合到–3.3V产生的输出电压上。 在这种情况下使用正线性稳压器的第二个缺点是线性稳压器设备的I/O引脚(例如使能引脚)将以–5V为参考。如果需要监控不同电压的上电序列,则可能需要电平转换。 图1.产生负电压的正线性稳压器。 图2所示的是相同系统,但是使用了专为降压负电压设计的线性稳压器。 这些IC被称为负线性稳压器。ADI公司的新型ADP7183负线性稳压器专为最低噪声、最高电源抑制比(PSRR)而设计。这使得该器件非常适合对电源噪声敏感节点的滤波应用。 图2.产生负电压的负线性稳压器。 如果使用如图2所示的负线性稳压器,则产生的–3.3V是相对于0V地电压进行稳压。这将产生非常低的噪声和精确的输出电压。此外,I/O引脚以0V的系统地为参考,可以省去电平转换。 这样一来,特殊的负线性稳压器在转换负电压或滤波负电压时就显得尤为重要。市场上的负线性稳压器通常供应有限。ADP7183(300 mA)和ADP7185(500 mA)等新产品为设计人员提供了更多可用的产品系列。

    时间:2018-01-18 关键词: 信号检测 线性稳压器 负电压

  • 两种负电压产生电路图

    正电压的用处不用我说了,在电子电路中我们常常需要使用负的电压,比如说我们在使用运放的时候常常需要给他建立一个负的电压。下面就简单的以正5V电压到负电压5V为例说一下他的电路。 通常我需要使用负电压时一般会选择使用专用的负压产生芯片,但这些芯片都比较贵比如ICL7600,LT1054等等。哦差点忘了MC34063了这个芯片使用的最多了,关于34063的负压产生电路我这里不说了 在datasheet中有的。下面请看我们在单片机电子电路中常用的两种负压产生电路。   现在的单片机有很多都带有了PWM输出,我们在使用单片机的时候PWM很多时候是没有用到的用他辅助产生负压是不错的选择。 上面的电路是一个最简单的负压产生电路了。他使用的原件是最少的了 我们只需要给他提供1kHZ左右的方波就可以了 ,相当的简单。这里需要注意这个电路的代负载能力是很弱的,同时在加上负载后电压的降落也比较大。 由于上面的原因产生了下面的这个电路  

    时间:2017-07-12 关键词: 电池电源 负电压产生电路图 负电压

  • 三种负电压电源设计

     随着电子技术的提高,以及电子产品的发展,一些系统中经常会需要负电压为其供电。例如,在大功率变频器,会使用负电压为IGBT提供关断负电压;另外,在系统的运算放大器中,也会使用正负对称的偏置电压为其供电。如何产生一个稳定可靠的负电压已成为设计人员面临的关键问题。 负电压设计根据不同的负载电流有很多不同方案,以下是给出几种目前市面比较常见的负压方,可以根据不同用于场合使用合适的方案。 一、工频变压器输出正负电压 图1工频变压器正负输出电源 各位看到图1的电路是否有很强的亲切感,是否能想起大学时接触电子设计时的情景?此经典电路优点比较明显,电路结构简单、极低干扰噪声、稳定性好;同时此电路也有缺点,输入交流电范围窄(一般是220VAC±5%),体积重量大;虽然此电路缺点明显目前还有一些应用采用此方案设计。此方案主要是利用变压器产生负电压在通过线性稳压器7905进行稳压。 二、电源模块输出负电压 由于电子元件制造工艺技术越来越好,能量损耗越来越低,这样一来越来越有利于电源的模块化发展。而且在设计上也能做到小型化,轻型化设计。 1、非隔离负压输出负电压 图2非隔离稳压输出模块 图3非隔离模块的正输出与负输出接法 如图3所示,此电源模块应用与常用的LM7805类似,而且不需要安装散热片。如上图,我们需要正负电压给运放等供电时,只需要两个ZY78xxS-500电源即可实现。 2、隔离电源模块输出正负电压 图4隔离电源模块正负双路输出 图5E_URADD-6W电源典型应用 在电力、工业、通讯等对抗干扰性能要求较高的场合,一般需要对电源进行隔离处理来隔离从总电源端的干扰。此种应用时如果需要用到负电压,可以直接采用隔离电源模块直接输出正负电压给系统供电。 三、Buck-Boost拓扑设计输出负电压 除了采用隔离模块方案,我们还可以选择芯片自己设计负压电路,此处我们介绍一下较容易设计的非隔离负压输出Buck-Boost电路。如图6此电路只需要主控芯片、电感、电容等芯片,目前MPS的DC-DC电源芯片都支持Buck-Boost的设计结构,可以根据不同输出电流选择合适型号。 图6Buck-Boost拓扑原理 从图6的拓扑中可以看出输入电压与输出电压极性是相反的,因此Buck-Boost拓扑结构又简称为倒相拓扑。图7是采用MP2359DT设计的-15V电源电路,MP2359DT是采用SOT23-6的封装,整个电路占用PCB面积较小。 图7MP2359负电压输出电路 负电压设计方案多种多样,哪一个方案适合你的设计,还是需要综合考虑不同应用、不同技术要求而定。

    时间:2016-03-10 关键词: 电源技术解析 buck-boost 电源设计 负电压

  • 负电压电源设计的种类

    摘要:随着电子技术的提高,以及电子产品的发展,一些系统中经常会需要负电压为其供电。例如,在大功率变频器,会使用负电压为IGBT提供关断负电压;另外,在系统的运算放大器中,也会使用正负对称的偏置电压为其供电。如何产生一个稳定可靠的负电压已成为设计人员面临的关键问题。 负电压设计根据不同的负载电流有很多不同方案,以下是给出几种目前市面比较常见的负压方,可以根据不同用于场合使用合适的方案。 一、工频变压器输出正负电压 图1 工频变压器正负输出电源 各位看到图1的电路是否有很强的亲切感,是否能想起大学时接触电子设计时的情景?此经典电路优点比较明显,电路结构简单、极低干扰噪声、稳定性好;同时此电路也有缺点,输入交流电范围窄(一般是220VAC±5%),体积重量大;虽然此电路缺点明显目前还有一些应用采用此方案设计。此方案主要是利用变压器产生负电压在通过线性稳压器7905进行稳压。 二、电源模块输出负电压 由于电子元件制造工艺技术越来越好,能量损耗越来越低,这样一来越来越有利于电源的模块化发展。而且在设计上也能做到小型化,轻型化设计。 1、非隔离负压输出负电压 图2 非隔离稳压输出模块 图3 非隔离模块的正输出与负输出接法 如图3所示,此电源模块应用与常用的LM7805类似,而且不需要安装散热片。如上图,我们需要正负电压给运放等供电时,只需要两个ZY78xxS-500电源即可实现。 2、隔离电源模块输出正负电压 图4 隔离电源模块正负双路输出 图5 E_URADD-6W电源典型应用 在电力、工业、通讯等对抗干扰性能要求较高的场合,一般需要对电源进行隔离处理来隔离从总电源端的干扰。此种应用时如果需要用到负电压,可以直接采用隔离电源模块直接输出正负电压给系统供电。 三、Buck-Boost拓扑设计输出负电压 除了采用隔离模块方案,我们还可以选择芯片自己设计负压电路,此处我们介绍一下较容易设计的非隔离负压输出Buck-Boost电路。如图6此电路只需要主控芯片、电感、电容等芯片,目前MPS的DC-DC电源芯片都支持Buck-Boost的设计结构,可以根据不同输出电流选择合适型号。 图6 Buck-Boost拓扑原理 从图6的拓扑中可以看出输入电压与输出电压极性是相反的,因此Buck-Boost拓扑结构又简称为倒相拓扑。图7是采用MP2359DT设计的-15V电源电路,MP2359DT是采用SOT23-6的封装,整个电路占用PCB面积较小。 图7 MP2359负电压输出电路 负电压设计方案多种多样,哪一个方案适合你的设计,还是需要综合考虑不同应用、不同技术要求而定。周立功旗下的致远电子拥有10多年的研发经验,可以提供多种负压产生方案的选择。周立功代理的MPS电源产品线,也有大量的DC-DC芯片可以选择。芯片耐压从5.5VDC覆盖到100VDC,输出电流从0.1A覆盖到25A,给你提供宽泛的选择。

    时间:2016-02-18 关键词: 电源技术解析 电源设计 负电压

  • 负电压DC/DC开关电源的设计

    以往的隔离开关电源技术通过变压器实现负电压的输出,但这会增大负电源的体积以及电路的复杂性。而随着越来越多专用集成DC/DC控制芯片的出现,使得电路简单、体积小的非隔离负电压开关电源在电子测量装置中得到了越来越广泛的应用。因此,对非隔离负电压开关电源的研究具有很高的实用价值。 传统的非隔离负电压开关电源的电路拓扑有以下两种,如图1、图2所示。图3是其滤波输出电容的充电电流波形。由图3可见,采用图2结构的可获得输出纹波更小的负电压电源,并且在相同电感峰值电流的情况下其带负载能力更强。由于图2的开关器件要接在电源的负极,这会使得其控制电路会比图1来得复杂,因此在市场也没有实现图2电路结构(类似于线性稳压电源调节芯片7915功能)的负电压开关电源控制芯片。 为了弥补现有非隔离负电压开关电源技术的不足,以获得一种带负载能力强、输出纹波小的非隔离负电压开关电源,本文提出一种采用Boost开关电源控制芯片LT1935及分立元件实现了图2所示原理的基于峰值电流控制的新型非隔离负电压DC/DC开关电源。   图1 传统的非隔离负电压开关电源电路结构1   图2 传统的非隔离负电压开关电源电路结构2   图3 两种开关电源滤波电容的充电电流波形 1 工作原理分析 本文设计的非隔离负电压DC/DC开关电源如图4所示,负电源工作在连续电流模式。当电源控制器LT1935内部的功率三极管导通时,直流电源给输出电感L1和输出电容C1充电。当电源控制器LT1935内部的功率三极管关断时,输出电感L1中的电流改由通过肖特基二极管VD1提供的低阻抗回路继续给输出电容C1充电直至下一个周期电源控制器LT1935内部的功率三极管再次导通。可见电容C1在输出电感L1储存能量和释放能量的过程中均获得充电,从而减小了输出纹波电压。同时,在CCM条件下,输出电流在LT1935内部功率三极管的导通和关断期间均通过输出电感L1,这很大程度上抑制了输出电流的波动,降低了输出纹波电流的影响,进而大大增加系统的带负载能力和效率。 反馈控制回路采用了峰值电流控制。相比传统的电压控制,峰值电流控制一方面能很好的改善电源的动态响应,另一方面还能实现快速的过电流保护,很大程度上提高了系统的可靠性。由于采用了电源控制器LT1935,其内部集成了峰值电路控制电路和斜坡补偿电路,非隔离负电压DC/DC开关电源反馈回路设计即转换为补偿网络设计,进而大大简化了反馈回路的设计。 为防止过高的直流电源对电源控制器的危害,这里使用稳压管VD2和VD3实现过电压保护。   图4 非隔离负电压DC/DC开关电源硬件电路图 2 补偿网络 2.1 非隔离负电压开关电源小信号建模 从本质上来讲,本文介绍的非隔离负电压DC/DC开关电源为非隔离负电压Buck开关电源,其等效功率级电路原理图如图5所示,这里考虑了输出滤波电容的等效串联电阻Resr对系统的影响。   图5 非隔离负电压Buck开关电源等效功率级电路原理图 图6给出图5利用平均电路法建立的非隔离负电压Buck开关电源CCM大信号模型。设Vi为输入电压的稳态值,Vo为输出电压的稳态值,Vpc为受控电压源两端电压的稳态值,Ii为输入电流的稳态值,IL为输出电感电流的稳态值,D为占空比的稳态值。   图6 非隔离负电压Buck开关电源CCM大信号模型[!--empirenews.page--] 引入上述稳态值对应的小信号扰动。 令: 可以推导出: 若小信号干扰满足D,忽略二次项并化简等式(3)和等式(4)得,的线性化表达式为: 根据等式(5)和等式(6),即可得到图7所示的用理想变压器表示非隔离负电压Buck开关电源的CCM小信号模型。   图7 非隔离负电压Buck开关电源CCM小信号模型 2.2 补偿网络设计 图8为电流连续模式下峰值电流控制(CCMCPM)型非隔离负电压Buck开关电源的系统框图。控制环路包括了电流内环和电压外环两个部分。补偿网络属于电压外环,因此设计补偿网络需要先建立包含电流控制内环的小信号模型。   图8 CCM-CPM型非隔离负电压Buck开关电源系统框图 假设系统稳定,且忽略输出电感纹波电压及人工斜坡补偿的影响,则输出电感电流等于控制电流。

    时间:2015-05-28 关键词: 开关电源 电源技术解析 DC/DC 负电压

  • 用+5V电源得到-5至-15V电压的负电压转换器

    转换器JC (MAX634)的内部组成如电路圈所示.转 换频率与负载无关,大约为如kHz (CI= 47pF时),电感的越 量转换由Pch MOS FET进行,断开时的感应电压由二概 管Di进行负电压整流,因为用1.25的基准电压与反馈端的 P,I    ,所以- voli=1.26 x曰王/R窖,曰1= 300kQ时,输 出电压为- sv,900kQ时输出电压为- isvo

    时间:2013-09-11 关键词: 15 电压 电源 综合电源 负电压

  • 跟踪电源输入的3至7V负电压转换器

    本电路采用彳鲁争^公司的专用转换器IC MAX634,把 +3~+7V电源转换成-3~- 7V,跟踪动作从接在r,罩端 子上的电阻Rj和丑.阻值相等这点上是可以理解的。     考虑到可能在电池驱动的仪器中应用,MAX634内都装 了低电池检测电路,用Rt和Rz进行电压设置。内部基准电压 是i.2sv,如果使用+sv电源,若从LBO输出,根据5/ 11,z5=4,应采用1/4的分压比(Rl=3Rz)o     输出中的纹波与振荡频率(约47kHz)相同,约 10 0mV,

    时间:2013-09-11 关键词: 转换器 输入 跟踪电源 综合电源 负电压

  • 负电压的产生电路图

    时间:2012-12-23 关键词: 开关电源 产生电路 负电压

  • 负电压的产生电路图

    时间:2012-12-19 关键词: 电池电源 产生电路 负电压

  • 正负电压同时输出稳压器应用电路

    正负电压同时输出稳压器应用电路

    时间:2012-12-15 关键词: 应用电路 模拟电路 输出稳压器 负电压

  • 它激式负电压变换器电路

    时间:2012-10-10 关键词: 开关电源 变换器电路 负电压

  • NE555作负电压发生器电路图

    时间:2012-06-27 关键词: ne 555 发生器电路 555电路 负电压

  • 正负电压可同时调的稳压电路图

    为使正负电压调节同步,在该电路中应有R1=R2。实际取4.4~22KΩ(1~0.5%)。R3值取R3=0.5R2。电位器电阻值在10~25KΩ时限流电阻R4取1.8KΩ。当集成稳压电路稳压值为5V时,该电路输出电低电压也为5V。最高输出电压相当于UE-2V,故同集成电路允许的输入电压有关。

    时间:2012-05-07 关键词: 电路图 线性稳压 稳压 负电压

  • 跟踪电源输入的3~7V负电压转换器电路及工作原理

    电路的功能 用+5V电源工作的逻辑系统中,如模拟电路用+5V单极电源,零伏附近的精度就会变差,在这种情况下,采用负极性电源就会收到良好的效果。如消耗功率很小,采用电压转换器则比较方便,典型的产品有ICL7666,不过这种产品的调节性能不太好。 电路工作原理 本电路采用专用转换器IC MAX634,把+3~+7V电源转换成-3~-7V,跟踪动作从接在VPO端子上的电阻R3和R4阻值相等过点上是可以理解的。 考虑到可能在电池驱动的仪器中应用,MAX634内部都装了低电池检测电路,用R1和R2进行电压设置。内部基准电压是1.25V,如果使用+5V电源,若从LBO输出,根据5/1.25=4,应采用1/4的分压比(R1=3R2) 输出中的纹波与振荡频率(约47KHZ)相同,约100MVP-P。

    时间:2012-02-19 关键词: 工作原理 输入 跟踪电源 负电压

首页  上一页  1 2 3 下一页 尾页
发布文章

技术子站