当前位置:首页 > 模拟 > 模拟技术
[导读]今天,小编将在这篇文章中为大家带来负电压浪涌的有关报道,通过阅读这篇文章,大家可以对它具备清晰的认识,主要内容如下。

今天,小编将在这篇文章中为大家带来负电压浪涌的有关报道,通过阅读这篇文章,大家可以对它具备清晰的认识,主要内容如下。

一、负电压浪涌

负电压浪涌‌是指在电路中由于某些操作引起的电压瞬间下降到低于正常工作电压的现象。这种现象通常发生在电路中的电感元件被突然切断或电容元件突然充电时,导致电势发生瞬间的变化。

1、产生机制

‌电感元件的突然切断‌:当电路中的电感元件被突然切断时,其内部的磁场能量迅速释放,导致电势瞬间变化,从而产生负电压浪涌‌。

‌电容元件的突然充电‌:当电路中的电容元件突然充电时,电容内部的电荷迅速积累,也会导致电势瞬间变化,从而产生负电压浪涌‌。

2、对电路的影响

负电压浪涌会对电路产生以下危害:

‌烧毁电路元件‌:负电压浪涌的高电压和低电压会对电路元件产生巨大的冲击,可能导致电路元件烧毁‌。

‌干扰电子设备‌:负电压浪涌会产生大量的电磁波干扰,对周围的电子设备产生影响‌。

‌降低电路可靠性‌:负电压浪涌会降低电路的可靠性,增加电路的故障率‌。

3、防止措施

为了减少负电压浪涌对电路的危害,可以采取以下措施:

‌加装浪涌电压抑制器‌:安装浪涌电压抑制器可以有效地消除负电压浪涌的危害,保护电路元件不受影响‌。

‌合理设计电路‌:合理设计电路可以减少负电压浪涌的产生,降低电路故障率‌。

二、负电压浪涌的对策及其效果

下图显示了同步升压电路中LS关断时栅极-源极电压的行为,该图在之前的文章中也使用过。要想抑制事件(IV),即HS(非开关侧)的VGS的负浪涌,采用浪涌抑制电路的米勒钳位用MOSFET Q2、或钳位用SBD(肖特基势垒二极管)D3是很有效的方法(参见下面的验证电路)。

下面的电路是上一篇中用来验证正浪涌对策的抑制电路。使用“(a)无抑制电路、(b)仅有米勒钳位用的MOSFET(Q2)、(c)仅有钳位用的肖特基势垒二极管、(d)仅有误导通抑制电容器C1”这四种电路,通过“双脉冲测试”确认了VGS的浪涌电压。

下面是双脉冲测试中关断时的波形、从上到下依次显示了开关侧栅极-源极电压(VGS_HS)、非开关侧栅极-源极电压(VGS_LS)、漏极-源极电压(VDS)和漏极电流(ID)。图中一并列出了前述的抑制电路(a)、(b)、(c)、以及同时具备抑制电路(b)和(c)的电路(e)的波形。

从这个波形图中可以看出,除了没有对策电路的(a)外,其他任何一个抑制电路都可以消除负浪涌。

接下来,请看仅连接了误导通抑制电容器C1的验证电路(d)在双脉冲测试中的关断波形。电路图与上面给出的电路图一样。波形(a)是没有C1的比较用波形,波形(b)、(c)和(d)是有C1、C1分别为2.2nF、3.3nF和4.7nF时的波形。与不加C1的(a)相比,加了C1的波形(b)、(c)、(d)中,VGS_LS的负浪涌略有降低,但效果并不明显。因此,作为对策,需要从抑制电路(b)和(c)中作出选择,但由于(c)不能抑制正浪涌,所以最终选择(b)。如果米勒钳位控制困难且无法选择抑制电路(b),则需要通过结合使用(c)和(d)来测试和优化整个系的效率。

以上便是小编此次想要和大家共同分享的有关负电压浪涌的内容,如果你对本文内容感到满意,不妨持续关注我们网站哟。最后,十分感谢大家的阅读,have a nice day!

声明:该篇文章为本站原创,未经授权不予转载,侵权必究。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭