在5G通信、AI芯片等高密度电子系统中,球栅阵列封装(BGA)焊点作为芯片与PCB之间的关键连接,其可靠性直接影响产品寿命。某5G基站因BGA焊点疲劳失效导致通信中断率高达15%,维修成本增加30%。研究表明,电-热-应力多物理场耦合是焊点失效的核心诱因:电流通过焊点产生焦耳热(Joule Heating),导致局部温度升高至150℃以上,引发材料蠕变和电迁移;同时,PCB与封装基板热膨胀系数(CTE)失配(如PCB CTE=16ppm/°C vs. BT基板CTE=12ppm/°C)在热循环中产生剪切应力,加速裂纹扩展。本文通过多物理场联合仿真,揭示电-热-应力耦合对焊点疲劳寿命的影响机制,并提出优化方案。