静电放电即ESD(Electro-Staticdischarge),是指具有不同静电电位的物体互相靠近或直接接触引起的电荷转移。
在当今集成电路设计领域,低功耗设计已成为关键需求,特别是在移动设备、物联网设备等对功耗敏感的应用中。然而,随着芯片设计规模的不断扩大和复杂度的增加,低功耗设计中的漏洞定位变得愈发困难。EnFortius®凝锋®低功耗静态验证工具应运而生,其支持UPF3.1标准,为超大规模设计中的低功耗漏洞定位提供了强大的解决方案。
在集成电路设计领域,电子设计自动化(EDA)工具是不可或缺的。随着芯片设计复杂度的不断提高,对计算资源的需求呈指数级增长。传统的本地计算模式面临着算力瓶颈、成本高昂以及资源利用率低等问题。将EDA上云,利用云计算的分布式验证与弹性算力调度技术,成为解决这些问题的有效途径。
在自动驾驶技术飞速发展的当下,自动驾驶芯片作为核心部件,其可靠性验证至关重要。多传感器数据融合为自动驾驶提供了全面的环境感知,而功能安全则保障了车辆在各种情况下的安全运行。将多传感器数据融合与功能安全进行协同设计,并开展可靠性验证,是确保自动驾驶芯片稳定、安全工作的关键。
在RISC-V生态蓬勃发展的当下,电子设计自动化(EDA)工具的适配成为推动其广泛应用的关键。RISC-V的开源特性为EDA工具带来了新的机遇与挑战,从开源协议栈移植到实现高性能验证,是构建完整RISC-V设计流程的重要环节。
随着量子计算技术的飞速发展,量子电子设计自动化(EDA)工具链的重要性日益凸显。量子纠错电路综合与量子门映射算法作为量子EDA工具链中的关键环节,对于实现稳定、高效的量子计算至关重要。本文将深入探讨这两个方面的内容,并给出相关代码示例。
在电子设计自动化(EDA)领域,设计规则检查(DRC)是确保芯片设计符合制造工艺要求的关键环节。随着芯片设计复杂度的不断提高,DRC违规数量呈指数级增长,传统的人工检查方法已难以满足高效、准确的需求。机器学习(ML)技术的兴起为DRC违规分类和定位带来了新的机遇,通过训练模型自动识别和分类违规问题,能够显著提高检查效率和准确性。
在集成电路(IC)设计领域,随着工艺节点的不断缩小和设计复杂度的急剧增加,传统的设计验证流程面临着巨大的挑战。左移(Shift Left)策略作为一种新兴的设计方法,旨在将验证活动提前到设计流程的早期阶段,以便尽早发现和解决问题,从而降低后期修复成本,提高设计质量和效率。Calibre DesignEnhancer作为一款先进的电子设计自动化(EDA)工具,提供了强大的早期EMIR(电迁移/电压降/可靠性)签核验证功能,为左移策略的实施提供了有力支持。
随着半导体技术的飞速发展,3D集成电路(3D IC)凭借其高集成度、低功耗和卓越性能等优势,成为推动电子系统持续进步的关键力量。然而,3D IC的复杂结构以及日益严苛的性能和可靠性要求,使得在其整个生命周期内进行持续维护和优化变得至关重要。硅生命周期管理(SLM)作为一种新兴范式,通过监控、分析和优化半导体器件的设计、制造、测试和部署过程,为3D IC的发展提供了有力支持。
随着芯片设计复杂度的提升,Chiplet(芯粒)技术凭借其高良率、低成本和异构集成优势成为行业焦点。然而,Chiplet间通过高密度互连(如硅中介层或再分布层RDL)实现的高速链路,面临信号完整性的严峻挑战。特别是在数据速率达到56Gbps甚至更高的场景下,串扰、反射和损耗等问题尤为突出。本文将探讨光电混合建模与S参数提取技术在Chiplet间高速链路信号完整性仿真中的应用。
随着半导体工艺节点进入7nm/5nm之后,2.5D/3D IC凭借先进封装(Interposer、TSV)实现Die - to - Die互连,成为后摩尔时代提升系统效能、缩小芯片面积并整合不同功能的核心驱动力。然而,2.5D/3D IC的电源完整性面临诸多挑战,如高功耗、散热问题以及热应力形变等。在此背景下,mPower工具凭借其多物理场协同分析能力,为解决这些问题提供了有效方案。
医疗电子设备在现代医疗中扮演着至关重要的角色,其电磁兼容性(EMC)设计直接关系到设备的性能、安全性以及患者的健康。医疗环境复杂,存在大量电磁干扰源,如MRI、超声波设备等,因此医疗电子设备必须具备良好的EMC性能。本文将详细阐述医疗电子设备从电路抗干扰设计到辐射合规性测试的全流程。
在数字集成电路设计中,时钟门控技术是降低动态功耗的关键手段。随着芯片规模和复杂度的不断增加,对时钟门控技术的优化需求也日益迫切。ODCG(Optimized Dynamic Clock Gating)和SDCG(Smart Dynamic Clock Gating)作为先进的时钟门控技术,结合可达性分析,能够进一步提升时钟门控的效果,实现更高效的功耗优化。
本文探讨了电子设计自动化(EDA)领域中基于引脚间吸引力的时序建模方法。首先介绍了欧式距离损失函数在时序建模中的应用,随后详细阐述了如何利用GPU加速技术优化时序建模过程,提高计算效率,并通过实际代码示例展示了相关实现。