当前位置:首页 > pwm
  • pwm技术是什么?pwm波占空比如何测量?

    pwm技术是什么?pwm波占空比如何测量?

    pwm是脉冲带宽调制技术,采用pwm技术,可以对脉冲带宽加以调节。在往期文章中,小编对pwm占空比有所介绍。为增进大家对pwm技术的了解程度,本文将阐述如何测量pwm波占空比。如果你对pwm技术具有兴趣,不妨继续往下阅读哦。 一、pwm控制技术介绍 PWM(Pulse Width ModulaTIon)控制技术就是对脉冲的宽度进行调制的技术,即通过对一系列脉冲的宽度进行调制,来等效的获得所需要的波形(含形状和幅值)。面积等效原理是PWM技术的重要基础理论。一种典型的PWM控制波形SPWM:脉冲的宽度按正弦规律变化。而和正弦波等效的PWM波形称为SPWM波。 脉宽调制(PWM,Pulse Width ModulaTIon)是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用在从测量、通信到功率控制与变换的许多领域中。PWM是一种对模拟信号电平进行数字编码的方法。通过高分辨率计数器的使用,方波的占空比被调制用来对一个具体模拟信号的电平进行编码。 二、如何测量PWM波占空比 pwm占空比就是一个脉冲周期内高电平的所整个周期占的比例。例如1秒高电平1秒低电平的PWM波占空比是50%。pwm就是脉冲宽度调制。 PWM波是占空比可调的周期性数字脉冲,广泛应用于电机控制、温度控制等领域。PWM波的关键参数是占空比,那么有哪些方式可以测量PWM波的占空比呢? NI的数据采集板卡提供了模拟采集、数字IO、计数器等丰富测量资源,不同资源下都能完成PWM波的测量,同时R系列的FPGA板卡和cRIO也可以测量,测量pwm波的占空比有以下几种方法,一起来了解一下。 1、利用计数器测量占空比 最简单的方案是采用计数器半周期测量,支持的计数器需要有双边沿分离检测的特性,支持的板卡包括 M系列(STC2核心)、X系列(STC3核心)数据采集卡、定时器/计数器板卡(NI-TIO核心)和部分C模块(DIO数目≤8)等,通常32位宽的计数器都支持该测量。该方案通过预设半周期时间可以得到非常高精度的测量结果。 图1 一个计数器测量占空比 对于带2个24位计数器的板卡,不具有双边沿分离检测,如PXI-6133,可以采用脉冲宽度测量,分别测量高脉宽时间和低脉宽时间,从而计算占空比。 图2 两个计数器测量占空比 2、利用模拟采集测量占空比 该方案主要使用波形测量选板中的脉冲测量VI,可以根据周期性的采集数据计算占空比。要求模拟采集有足够高的采样率(5~10倍以上脉冲频率,根据占空比而定)才能获取足够的波形信息,来提高占空比测量精度。这种通过软件来计算占空比的方式,处理速度一般。 图3 模拟采集测量占空比 3、cRIO上如何实现占空比测量 CompactRIO平台上,针对数字IO位宽小于等于8位的C模块,选择Scan Interface模式,项目中选择数字输入模块(如9401),右键打开属性配置界面,选择专用数字配置中的‘计数器’,可以配置每个计数器的测量模式,例如CTR0测量高脉冲,CTR1测量低脉冲,硬件连线上将信号同时连至DIO0和DIO1,即可实现占空比测量。 图4 C模块配置方式 图5 cRIO占空比测量程序 4、利用FPGA测量占空比 FPGA上有精确的40MHz时钟驱动的计数器资源,通过记录信号沿变化时刻的计数器值可以计算得到PWM波的脉宽和周期,从而计算出占空比。由于LabVIEW2012之前的FPGA程序不支持浮点运算,所以占空比计算需要放在RT程序或者上位机程序中。图6所示的程序即为FPGA占空比测量程序,实际调用时可将Digital In换成模块IO。 图6 FPGA占空比测量程序 以上便是此次小编带来的“pwm”相关内容,通过本文,希望大家对如何测量pwm波占空比具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!

    时间:2021-01-12 关键词: pwm 指数 占空比

  • 什么是单极性pwm模式?什么又是双极性pwm模式?

    什么是单极性pwm模式?什么又是双极性pwm模式?

    pwm是脉冲调制技术,对于pwm,我们或多或少有所了解。在前文中,小编对pwm控制原理、spwm控制原理有所介绍。为增进大家对pwm技术的了解程度,本文将对单极性pwm模式以及双极性pwm模式予以阐述。如果你对pwm具有兴趣,不妨继续往下阅读哦。 一、单极性PWM模式 产生单极性PWM模式的基本原理如图6.2所示。首先由同极性的三角波载波信号ut。与调制信号ur,比较(图6.2(a)),产生单极性的PWM脉冲 (图6.2(b));然后将单极性的PWM脉冲信号与图6.2(c)所示的倒相信号UI相乘,从而得到正负半波对称的PWM脉冲信号Ud,如图 6.2(d)所示。 二、双极性PWM模式 双极性PWM控制模式采用的是正负交变的双极性三角载波ut与调制波ur,如图6.3所示,可通过ut与ur,的比较直接得到双极性的PWM脉冲,而不需要倒相电路。 与单极性模式相比,双极性PWM模式控制电路和主电路比较简单,然而对比图6.2(d)和图6.3(b)可看出,单极性PWM模式要比双极性PWM模式输出电压中、高次谐波分量小得多,这是单极性模式的一个优点。 单极性调制方式的特点是在一个开关周期内两只功率管以较高的开关频率互补开关,保证可以得到理想的正弦输出电压:另两只功率管以较低的输出电压基波频率工作,从而在很大程度上减小了开关损耗。但又不是固定其中一个桥臂始终为低频(输出基频),另一个桥臂始终为高频[载波频率),而是每半个输出电压周期切换工作,即同一个桥臂在前半个周期工作在低频,而在后半周则工作在高频,这样可以使两个桥臂的功率管工作状态均衡,对于选用同样的功率管时,使其使用寿命均衡,对增加可靠性有利。 双极性调制方式的特点是4个功率管都工作在较高频率(载波频率),虽然能得到正弦输出电压波形,但其代价是产生了较大的开关损耗。 三、有限双极性控制ZVZCSPWM全桥变换器 1、ZVZCS PWM全桥电路有限双极性控制过程分析 有限双极性控制ZVZCS PWM全桥电路功率部分如图1所示。Q1~Q4四个功率管(内带续流二极管)组成一个全桥电路。其中,Q1、Q2组成超前桥臂,两端分别并联有吸收电容C1、C2,用来实现Q1、Q2的ZVS。L1为高频变压器的漏感。Cb为隔直电容,用来实现滞后臂(由Q3、Q4组成)的ZCS。 图1 ZVZCSPWM全桥电路示意图 在有限双极性方法控制下,Q1~Q4的驱动时序见图2。其中ug1、ug2为脉宽可调的定频变宽脉冲;ug3、ug4为互补方波,频率、脉宽固定。当然考虑到直通的问题,ug3、ug4不能同时为1,要错开一个固定的死区时间。ug1、ug4的上升沿(表示Q1、Q4开始导通)一致,ug2、ug3的上升沿一致。uAB表示加在隔直电容及变压器两端的电压。由于超前桥臂并联电容的存在,变压器端电压在下降时不会突然到零,而是有个过渡过程,其时间取决于并联电容的大小及负载电流等条件。ip为变压器绕组电流。ucb为隔直电容Cb上的电压,其幅值取决于Cb大小及其它条件,Cb越小,ucb幅值越大,ZCS实现得越好,但同时开关管电压应力又增大,因此Cb不能太小,一般要让ucb最大值小于直流输入电压的10%。 图2 全桥电路有限双极性控制时序及各变量响应图 电路工作过程分析如下: 1)t0时刻Q1、Q4同时导通,变压器原边电流ip开始上升,流向是从Q1到L1、变压器、Cb、Q4。功率从原边流向副边,同时隔直电容Cb上的电压开始上升。为了简化分析,暂不考虑变压器的励磁电流和副边电流Io的波动,因此变压器原边电流ip(t)为 ip(t)=Ipo=Io/n(1) 式中:n为变压器原副边匝比。 当然,实际电路中由于副边整流二极管的反向恢复过程,ip(t)上升沿有一个尖峰,见图2。 Cb两端电压ucb(t)为 ucb(t)= -ucbp(2) 式中:ucbp为电容Cb上最大电压。 2)在t1时刻Q1关断,Q1的关断是ZVS关断,原边电流ip通过C1(充电)、C2(放电)继续按原方向流动。C2经过一段时间的放电,在t12时刻C2上的电压降到零,Q2上的反并联二极管开始导通续流。此阶段电容C2两端电压uc2(t)变化过程为 uc2(t)=Ipot/(C1+C2)(3) 并有 t12-t1=E(C1+C2)/Ipo(4) 式中:E为直流输入电压。 3)由于Cb上的电压作用,在t2时刻环流衰减到零,原边电流变化过程为 ip(t)=Ipo-ucbpt/L1(5) 该状态持续时间(即环流时间)为 t2-t12=IpoL1/ucbp(6) 此时ucb(t)达到最大值UCbp。由式(2)可近似得到 t2-t0=2UCbpCb/Ipo(7) 4)在t2~t23时刻,电容Cb上的能量通过变压器漏感对Q2的输出电容充电,由于时间常数很小,可认为该过程响应速度很快,谐振过程很快结束。稳定时Q2两端电压保持为UCbp。 5)t23时刻Q4关断,显然,由于此时Q4上电压电流均为零,因此Q4是ZVZCS关断。经一个固定的死区时间后,在t3时刻,Q2、Q3同时导通,由于此时Q2两端电压为UCbp,由设计可保证UCbp《10%E,且环流已衰减到零,因此可近似认为Q2是ZVZCS导通。而Q3是硬开关导通,而且Q3导通时其两端电压大小约为直流输入电压大小。而在普通硬开关工作方式下Q3导通时其端电压是直流输入电压的一半,因此ZVZCS控制模式下Q3导通时输出电容上的能量损耗反而比普通硬开关状态下大,这是这种方法最大的缺点。为了减轻该缺点所带来的不利因素,Q3、Q4可选输出电容较小的功率管如IGBT。 6)在t3时刻之后电路工作过程和t0~t3时类似,这里就不详细分析了。 2、全范围实现ZVS和ZCS的约束条件 由式(2)可以看到,在占空比一定时,隔直电容Cb越小,UCbp越大,由式(6)可看到,变压器漏感越小、ucbp越大,则环流时间越短,因而ZCS实现得越充分。将式(7)代入式(6),并设t12-t0=DT/2(D为占空比,T为开关周期),则有 t2-t12=4CbL1/DT(8) 可见在电路参数固定的情况下,环流时间是一个固定值,不依赖于负载。实验也表明,适当减小开关频率,从而使DT变大,可使环流时间t2-t12减小,有利于ZCS的实现。 由式(4)可看到C1、C2越大,超前桥臂由导通转截止后,C2上电压降到零的过渡时间越长,因而ZVS实现得越好。而且负载越轻(Ipo越小),过渡时间越长。而移相控制由于超前桥臂上下两个开关管的导通基本是互补的,因此在轻载时很难实现开关管的ZVS导通。而相比之下,有限双极性控制方法就显出它的优越性。如当Q1关断后,Q2导通时刻由移相控制时的t12~t3时刻推后到了t3时刻,可以充分保证只有当Q2的续流二极管导通后才使Q2导通,从而保证全范围的ZVS。实验证明,在正确设计好电路参数后,超前桥臂的ZVS实现得相当好。 3、应用实例 这种有限双极性控制的ZVZCSPWM全桥变换器,已应用到一种3kW(48V/50A)通信电源模块的设计当中。具体参数为:输入220V/15A;输出56.4V(最大)/53A(最大);开关工作频率60kHz;功率管为IRG4PC50W(高速型IGBT);变压器原副方匝数比为24/4;输出滤波电感40μH;输出滤波电容5000μF。由于没有专用的芯片,因此采用UC3825+CD4042合成所需要的逻辑。原理图如图3所示。 图3 有限双极性控制逻辑生成电路实例 UC3825A是一种峰值电流型控制芯片,在控制环路中加入电流环后,电源具有响应速度快,保护迅速,源效应和负载效应好等优点。模块整机功率因数为0.99,效率90%,重约10kg。该产品已成功运行于某移动通信基站现场。 以上便是此次小编带来的“pwm”相关内容,通过本文,希望大家对单极性和双极性pwm模式具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!

    时间:2021-01-12 关键词: 单极性 pwm 指数

  • pwm如何实现控制?正弦pwm波如何生成?

    pwm如何实现控制?正弦pwm波如何生成?

    pwm也即脉冲宽度调制,通过pwm,可以对脉冲带宽加以调节。对于pwm技术,自动化、电子方面的朋友更为熟悉。为增进大家对pwm的了解程度,本文将对pwm控制以及spwm波的生成予以介绍。如果你对pwm具有兴趣,不妨继续往下阅读哦。 一、PWM控制的基本原理 PWM(PulseWidthModulaTIon)控制就是对脉冲的宽度进行调制的技术。即通过对一系列脉冲的宽度进行调制,来等效地获得所需要的波形。PWM控制技术在逆变电路中的应用最为广泛,对逆变电路的影响也最为深刻,PWM控制技术在逆变电路中的应用也最具代表性。 面积等效原理是PWM控制技术的重要理论基础,即在采样控制中,冲量相等而形状不同的窄脉冲加在具有惯性的同一环节上时,其效果基本相同。其中,冲量指的是窄脉冲的面积;效果基本相同是指环节的输出响应波形基本相同。如图1.1.1(1)所示,三个窄脉冲形状不同,但是它们的面积都等于1,当它们分别加在如图1.1.1(2)(a)所示的R-L电路上时,并设其电流i(t)为电路的输出,则其输出响应波形基本相同且如图1.1.1(2)(b)所示。 二、SPWM法基本原理 脉冲幅值相等而脉冲宽度按正弦规律变化而正弦波等效的PWM波称为SPWM(sinusoidalPWM)波形。 如图1.1.2所示,把正弦半波分成N等份,就可以把正弦半波看成是由N个彼此相连的脉冲序列所组成的波形,这些脉冲宽度都等于N/,但幅值不等,且脉冲顶部不是水平直线,而是按正弦规律变化的曲线。如果把这些脉冲序列用相同数量的等幅值而不等宽的矩形脉冲来代替,使矩形脉冲的中点和相应的正弦波部分中点重合,且使矩形脉冲和相应的正弦波部分面积相等,则可得图所示的矩形脉冲序列,这就是SPWM波形。 三、规则采样法 SPWM的控制就是根据三角载波与正弦调制波的交点来确定逆变器功率开关器件的通断时刻。规则采样法是一种应用较广的工程实用方法,一般采用三角波作为载波,其原理就是用三角波对正弦波进行采样得到阶梯波,再以阶梯波与三角波的交点时刻控制开关器件的通断,从而实现SPWM法。当三角波只在其顶点(或底点)位置对正弦波进行采样时,由阶梯波与三角波的交点所确定的脉宽,在一个载波周期(即采样周期)内的位置是对称的,这种方法称为对称规则采样其原理如图1.1.3所示。 四、单极性和双极性PWM控制逆变电路分析 电路如图1.2所示,该电路工作时,1V和2V通断互补,3V和4V也通断互补,如在ou正半周,1V导通,2V关断,3V和4V交替通断,且负载电流比电压滞后,在电压正半周,电流有一段区间为正,一段区间为负。在ou的负半周,让2V保持通态,1V保持断态,3V和4V交替通断,负载电压ou可以得到-dU和零两种电平。 1、单极性PWM控制方式 如图1.2.1所示,调制信号ru为正弦波,载波cu在ru的正半周为正极性的三角波,在ru的负半周为负极性的三角波。a)在ru的正半周时,1V保持通态,2V保持断态,当ru》cu时,使4V导、3V关断,ou=dU。当ru《cu时,使4V关断、3V导通,ou=0。b)在ru的负半周时,1V保持断态,2V保持通态。当ru《cu时,使3V导通、4V关断,ou=-dU。当ru》cu时,使3V关断、4V导通,ou=0。 1.1单极性PWM控制方式 如图1.2.1所示,调制信号ru为正弦波,载波cu在ru的正半周为正极性的三角波,在ru的负半周为负极性的三角波。a)在ru的正半周时,1V保持通态,2V保持断态,当ru》cu时,使4V导、3V关断,ou=dU。当ru《cu时,使4V关断、3V导通,ou=0。b)在ru的负半周时,1V保持断态,2V保持通态。当ru《cu时,使3V导通、4V关断,ou=-dU。当ru》cu时,使3V关断、4V导通,ou=0。 1.2双极性PWM控制方式 如图1.2.2所示,在调制信号ru和载波信号cu的交点的时刻控制各个开关器件的通断。 a)在ru的半个周期内,三角波载波有正有负,所得的PWM波也有正有负,在ru的一个周期内,输出的PWM波只有±dU两种电平。b)在ru的正负半周,对各个开关器件的控制规律相同。当ru》cu时,1V和4V导通,2V和3V关断,这时如果oi》0,则1V和4V导通,如果oi《0,则1VD和4VD导通,但不管那种情况都是ou=dU。当ru《cu时,2V和3V导通,1V和4V关断,这时如果oi《0,则2V和3导通,如果oi》0,则2VD和3VD导通,但是不管哪种情况都是ou=-dU。 以上便是此次小编带来的“pwm”相关内容,通过本文,希望大家对pwm控制和spwm波生成具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!

    时间:2021-01-12 关键词: pwm波 pwm 指数

  • 你足够了解pwm吗?搞清楚pwm控制技术

    你足够了解pwm吗?搞清楚pwm控制技术

    pwm是现代重要技术之一,在各种电子设备中,均存在pwm的身影。在往期文章中,小编对pwm原理、pwm占空比、pwm频率均有所介绍。为增进大家对pwm的认识,本文将对pwm控制技术予以阐述。如果你对pwm抑或本文即将介绍的内容具有兴趣,不妨继续往下阅读哦。 一、pwm简介 PWM,即脉冲宽度调制,是英文“Pulse Width ModulaTIon”的缩写,简称脉宽调制,是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用在从测量、通信到功率控制与变换的许多领域中。 二、pwm控制技术 PWM(Pulse Width ModulaTIon)控制技术就是对脉冲的宽度进行调制的技术,即通过对一系列脉冲的宽度进行调制,来等效的获得所需要的波形(含形状和幅值)。面积等效原理是PWM技术的重要基础理论。一种典型的PWM控制波形SPWM:脉冲的宽度按正弦规律变化。而和正弦波等效的PWM波形称为SPWM波。 脉宽调制(PWM,Pulse Width ModulaTIon)是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用在从测量、通信到功率控制与变换的许多领域中。PWM是一种对模拟信号电平进行数字编码的方法。通过高分辨率计数器的使用,方波的占空比被调制用来对一个具体模拟信号的电平进行编码。 (一)pwm控制技术特点 开关电源一般都采用脉冲宽度调制(PWM)技术,其特点是频率高、效率高、功率密度高、可靠性高。然而,由于其开关器件工作在高频通断状态,高频的快速瞬变过程本身就是一电磁骚扰(EMD)源,它产生的EMI信号有很宽的频率范围,又有一定的幅度。若把这种电源直接用于数字设备,则设备产生的EMI信号会变得更加强烈和复杂。 PWM的一个优点是从处理器到被控系统信号都是数字形式的,在进行数模转换。可将噪声影响降到最低。对噪声抵抗能力的增强是PWM相对于模拟控制的另外一个优点,而且这也是在某些时候将PWM用于通信的主要原因。从模拟信号转向PWM可以极大地延长通信距离。 (二)pwm控制技术优点 由于PWM可以同时实现变频变压反抑制谐波的特点。由此在交流传动及至其它能量变换系统中得到广泛应用。PWM控制技术大致可以分为三类: 1、正弦PWM(包括电压、电流或磁通的正弦为目标的各种PWM方案,多重PWM也应归于此类)。正弦PWM已为人们所熟知。旨在改善输出电压、电流波形、降低电源系统谐波的多重PWM技术在大功率变频器中有其独特的优势。 2、优化PWM优化PWM所追求的是实现电流谐波畸变率(THD)最小、电压利用率最高、效率最优,及转矩脉动最小以及其它特定优化目标。 3、随机PWM。 (三)PWM控制方法 采样控制理论中有一个重要结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。PWM控制技术就是以该结论为理论基础,对半导体开关器件的导通和关断进行控制,使输出端得到一系列幅值相等而宽度不相等的脉冲,用这些脉冲来代替正弦波或其他所需要的波形。 按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可改变输出频率。 以上便是此次小编带来的“pwm”相关内容,通过本文,希望大家对pwm控制技术具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!

    时间:2020-12-10 关键词: pwm控制技术 pwm 指数

  • 大佬带你深入pwm殿堂,搞明白pwm频率是咋回事

    大佬带你深入pwm殿堂,搞明白pwm频率是咋回事

    对于pwm,想必很多朋友都有所耳闻。但是,大家对于pwm真的了解吗?譬如,pwm频率是如何被确定下来的?pwm频率和pwm值是同一个东西吗?如果不是,pwm频率和pwm值有什么区别呢?如果你对这些问题存在疑惑,或者是对本文涉及的pwm相关知识具有兴趣,不妨继续往下阅读哦。 一、PWM介绍 脉冲宽度调制是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用在从测量、通信到功率控制与变换的许多领域中。 脉冲宽度调制是一种模拟控制方式,其根据相应载荷的变化来调制晶体管基极或MOS管栅极的偏置,来实现晶体管或MOS管导通时间的改变,从而实现开关稳压电源输出的改变。这种方式能使电源的输出电压在工作条件变化时保持恒定,是利用微处理器的数字信号对模拟电路进行控制的一种非常有效的技术。 PWM控制技术以其控制简单,灵活和动态响应好的优点而成为电力电子技术最广泛应用的控制方式,也是人们研究的热点。由于当今科学技术的发展已经没有了学科之间的界限,结合现代控制理论思想或实现无谐振波开关技术将会成为PWM控制技术发展的主要方向之一。其根据相应载荷的变化来调制晶体管基极或MOS管栅极的偏置,来实现晶体管或MOS管导通时间的改变,从而实现开关稳压电源输出的改变。这种方式能使电源的输出电压在工作条件变化时保持恒定,是利用微处理器的数字信号对模拟电路进行控制的一种非常有效的技术。 二、如何确定PWM频率 PWM的周期(频率)就是ARR寄存器值与PSC寄存器值相乘得来,但不是简单意义上的相乘,例如要设置PWM的频率参考上次通用定时器中设置溢出时间的算法,例如输出100HZ频率的PWM,首先,确定TIMx的时钟,除非APB1的时钟分频数设置为1,否则通用定时器TIMx的时钟是APB1时钟的2倍,这时的TIMx时钟为72MHz,用这个TIMx时钟72MHz除以(PSC+1),得到定时器每隔多少秒涨一次,这里给PSC赋7199,计算得定时器每隔0.0001秒涨一次,即此时频率为10KHz,再把这个值乘以(ARR+1)得出PWM频率,假如ARR值为0,即0.0001*(0+1),则输出PWM频率为10KHz,再假如输出频率为100Hz的PWM,则将ARR寄存器设置为99即可。如果想调整PWM占空比精度,则只需降低PSC寄存器的值即可。 TIMx_CCRx寄存器, 确定PWM的占空比。 TIMx_CCR1—TIMx_CCR4确定定时器的CH1—CH4四路PWM的占空比。直接给该寄存器赋0—65535值即可确定占空比。 占空比计算方法:TIMx_CCRx的值除以ARR寄存器的值即为占空比,因为占空比在0—100%之间,所以一般TIMx_CCRx寄存器值不能超过ARR寄存器的值,否则可能会引起PWM的频率或占空比的准确性。 三、pwm频率、pwm的值区别 脉冲宽度调制(PWM)是英文“Pulse Width Modulation”的缩写,简称脉宽调制。 PWM值是在一个周期内,开关管导通时间长短相加的平均值。导通时间越长,则直流输出的平均值越大;PWM频率是一个周期内,导通时间与周期时间的一个比值。通常叫作占空比。 导通次数越多,则频率越大。它们之间的区别在于:在输出不变的情况下,前者体现在导通时间长短上,后者体现在导通次数上。 以上便是此次小编带来的“pwm”相关内容,通过本文,希望大家对pwm频率以及pwm频率和pwm值之间的区别具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!

    时间:2020-12-10 关键词: 频率 pwm 指数

  • pwm有哪些优点?pwm占空比又是神马??

    pwm有哪些优点?pwm占空比又是神马??

    pwm也即脉宽调制,在现实中,pwm在诸多器件中均有所应用。在往期文章中,小编对pwm的原理、调制方法有所介绍。为增进大家对pwm的了解程度,本文将对pwm占空比以及pwm优点加以阐述。如果你对pwm相关内容具有兴趣,不妨继续往下阅读哦。 一、pwm占空比 脉宽调制PWM是开关型稳压电源中的术语。这是按稳压的控制方式分类的,除了PWM型,还有PFM型和PWM、PFM混合型。脉宽宽度调制式(PWM)开关型稳压电路是在控制电路输出频率不变的情况下,通过电压反馈调整其占空比,从而达到稳定输出电压的目的。 PWM就是脉冲宽度调制的英文缩写,方波高电平时间跟周期的比例叫占空比,例如1秒高电平1秒低电平的PWM波占空比是50%。 pwm占空比就是一个脉冲周期内高电平的所整个周期占的比例。例如1秒高电平1秒低电平的PWM波占空比是50%。pwm就是脉冲宽度调制。脉冲宽度调制是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用在从测量、通信到功率控制与变换的许多领域中。 脉冲宽度调制是一种模拟控制方脉冲宽度调制是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用在从测量、通信到功率控制与变换的许多领域中。 脉冲宽度调制根据相应载荷的变化来调制晶体管基极或MOS管栅极的偏置,来实现晶体管或MOS管导通时间的改变,从而实现开关稳压电源输出的改变。这种方式能使电源的输出电压在工作条件变化时保持恒定,是利用微处理器的数字信号对模拟电路进行控制的一种非常有效的技术。 PWM控制技术以其控制简单,灵活和动态响应好的优点而成为电力电子技术最广泛应用的控制方式,也是人们研究的热点。 由于当今科学技术的发展已经没有了学科之间的界限,结合现代控制理论思想或实现无谐振波开关技术将会成为PWM控制技术发展的主要方向之一。其根据相应载荷的变化来调制晶体管基极或MOS管栅极的偏置来实现晶体管或MOS管导通时间的改变,从而实现开关稳压电源输出的改变。 这种方式能使电源的输出电压在工作条件变化时保持恒定,是利用微处理器的数字信号对模拟电路进行控制的一种非常有效的技术。 二、pwm优点 PWM的一个优点是从处理器到被控系统信号都是数字形式的,无需进行数模转换。让信号保持为数字形式可将噪声影响降到最小。噪声只有在强到足以将逻辑1改变为逻辑0或将逻辑0改变为逻辑1时,也才能对数字信号产生影响。 对噪声抵抗能力的增强是PWM相对于模拟控制的另外一个优点,而且这也是在某些时候将PWM用于通信的主要原因。从模拟信号转向PWM可以极大地延长通信距离。在接收端,通过适当的RC或LC网络可以滤除调制高频方波并将信号还原为模拟形式。 总之,PWM既经济、节约空间、抗噪性能强,是一种值得广大工程师在许多设计应用中使用的有效技术。 以上便是此次小编带来的“pwm”相关内容,通过本文,希望大家对pwm占空比以及pwm优点具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!

    时间:2020-12-10 关键词: pwm 指数 占空比

  • 当开关电源出现故障的时候,你知道该怎么做吗?

    当开关电源出现故障的时候,你知道该怎么做吗?

    在生活中,你可能接触过各种各样的电子产品,那么你可能并不知道它的一些组成部分,比如它可能含有的开关电源,那么接下来让小编带领大家一起学习开关电源。 开关电源作为一种电源转换设备在生活中随处可见,而一般人很少会知道它的基本常识和作用有哪些。开关电源是一种小型便携式电源转换设备,一般由外壳、开关、电源变压器和整流电路组成。可分为交流输出型和直流输出型,一般有插墙式和桌面式两种类型。常常应用于手机、照相机、电脑、游戏机等电子设备当中。 开关电源是各种电子设备必不可缺的组成部分,其性能优劣直接关系到电子设备的技术指标及能否安全可靠地工作。 我们中国的标准供电是220V交流电,而我们使用的小功率电子设备基本上是无法承受这样的电压的,所以需要电源转换设备把220V交流电转换为各种电子设备能接受的电压。而开关电源就是作为这样的一种电源转换设备的存在为电子设备进行转换。 由于开关电源内部关键元器件工作在高频开关状态,功耗小,转化率高,且体积和重量只有线性电源的20%—30%,故目前它已成为稳压电源的主流产品。 开关电源指的是通过现代电子技术来控制开启闭合从而电流正常输出的一种电源器件。开关电源的核心部件就是脉冲宽度调制(PWM)控制IC和MOSFET。随着现代电子技术的不断前进,开关电源技术也在不断的更新发展的不断发展。开关电源所体现出的高效节能,便捷低成本正是我们人类所追求的。开关电源被广泛运用到各种电子产品设备上,很显然开关电源已经成了电子器件中必不可少的一部分。 无输出,保险管正常,这种现象说明开关电源未工作或进入了保护状态。首先要测量电源控制芯片的启动脚是否有启动电压,若无启动电压或者启动电压太低,则要检查启动电阻和启动脚外接的元件是否漏电,此时如电源控制芯片正常,则经上述检查可以迅速查到故障。 当在开关电源的使用当中,久而久之出现一些故障也是在所难免的,那么关于开关电源具有哪些常见的故障,该如何解决呢? 在开关电源的使用中,常常会发生保险丝熔断、电压输出不稳定、无直流电压输出、电源负载能力降低等故障,发生问题之后,都会有一些表现,能够帮助使用者找到用户的原因,并且做好维修保养甚至是更换。 保险烧或炸,主要检查300V上的大滤波电容、整流桥各二极管及开关管等部位,抗干扰电路出问题也会导致保险烧、发黑。 保险丝熔断是常见的问题,元器件和开路电源的损坏时发生这一问题最大的原因,在产品发生保险丝熔断的情况下,不要让维修人员随便的更换了保险丝之后,就立刻开机,没有排除其熔断的原因,盲目的开机很有可能出现二次熔断,在计算机中使用的电源如果经常性的出现电源断电的情况,如果在硬盘告诉写入的情况下,就容易导致硬盘的损伤,得不偿失。保险丝的损坏一般都是元件发生了问题,解决了根本的问题,才能避免再次发生这种情况。 有输出电压,但输出电压过高,这种故障一般来自于稳压取样和稳压控制电路。在直流输出、取样电阻、误差取样放大器如TL431、光耦、电源控制芯片等电路共同构成一个闭合的控制环路,任何一处出问题就会导致输出电压升高。 负载能力差一般发生在工作时间较长的电源中,长期使用的老化现象也是导致发生这一情况最大的原因,在使用中由于电源内部是会有一部分的热量散发不出去的,所以电源更换也是有一定频率的,各种元器件在使用中发生老化是正常现象,工作不稳定就是出现在这样的时候,所以在日常的使用中,散热问题解决比较好的情况下,使用寿命是可以有效地延长的。在发生开关电源负载能力较差的情况下,往往会是二极管漏电引起的,不排除其损坏的情况,而电容损坏也是经常发生的。 输出电压过低 除稳压控制电路会引起输出电压低,还有下面一些原因也会引起输出电压低:开关电源负载有短路故障(特别是DC/DC变换器短路或性能不良等),此时,应该断开开关电源电路的所有负载,以区分是开关电源电路还是负载电路有故障。 电压输出不稳定问题发生也是相当经常的。维修人员一般在检查故障的时候,都会首先看保险丝是不是完好,如果保险丝完好的情况下,还是有电压不稳定情况的出现,证明电路中有短路的现象, 并且也有可能是过压引起的。在利用万用表检测时候,也会发现二极管已经击穿了,而短路往往也是其引起的。 相信通过阅读上面的内容,大家对开关电源有了初步的了解,同时也希望大家在学习过程中,做好总结,这样才能不断提升自己的设计水平。

    时间:2020-11-10 关键词: 开关电源 保险丝 pwm

  • 通过现在的开关电源的发展看未来发展

    通过现在的开关电源的发展看未来发展

    在科学技术高度发达的今天,各种各样的高科技出现在我们的生活中,为我们的生活带来便利,那么你知道这些高科技可能会含有的数字化电源吗? 说到开关电源,也就是一种相对线性的电源,它通过使用先进电力电子技术控制开关时间比并保持稳定输出电压的电源。它通常由脉冲宽度调制(PWM)控制IC和MOSFET组成。 随着电力电子技术的发展和创新,开关电源技术不断创新。 目前,开关电源由于体积小,重量轻,效率高,几乎在所有电子设备中得到广泛应用。它是电子信息产业快速发展不可或缺的供电方式。 开关电源发展趋势 高频化是目前开关电源技术发展的主要方向之一,也是高频开关整流器发展的主要趋势之一。但随着开关频率的提高,功率器件的开关损耗将成比例地增加。所以在开关颇率较高时,需采取非常有效的“软化”措施,尽可能降低器件的开关损耗。 开关电源发展趋势已经离不开小、薄了,而在近几年的发展趋势看来,已经开始往低噪音和低能耗的方向发展了,各种开关电源研发团队不断地拓展着着市场,解决着其中出现的技术和工艺问题,对于环保问题的解决,也受到了各种各样的市场欢迎,节约电能,避免过多废气的排出。其实电源并不是容易损坏的设备,在使用中,因为高效、低能耗、低噪音、抗干扰能力实现,目前加上厂家之间的联合生产,已经有越来越多的产品,通过技术打开了市场。 模块式结构除了具有很强的适应性外,还有一些很重要的优点,如:系统初始投资少、扩容非常方便、安装运输方便、冗余方式工作额外投入很少、维护快捷方便等。目前绝大多数通信电源厂家均采用模块化设计叫,并已形成系列化,其单体整流器模块 绿色化的开关电源产品将得到广泛应用。绿色开关电源产品具体是指显著的节省电能和不对用电网络产生污染。21世纪的节点和环保要求,将使多种智能开关电源技术得到广泛应用,使电源供给结构由集中式向分布式发展。 智能化是现代通信系统对其基础供电电源高标准要求的必然结果,是新型单片机技术在开关电源领域应用的完美体现。 小型的高频开关电源及其技术成为现代供电系统的主流。电源的小型化、减轻重量对便携式电子设备(如移动电话,数字相机等)尤为重要。因此,提高开关电源的功率密度和电源转换效率,使之小型化、轻量化、是人们不断努力追求的目标。高频化、软开关技术作为电源小型化的主要技术手段之一,近年来是国际电力电子界研究的热点之一。 目前高频开关整流器产品在设计时需满足的标准,除自身规范要求外,主要有电磁兼容标准和安全标准两种。 数字化电源将开关电源的高效与数字芯片的智能控制相结合,并运用适当算法对电压、电流进行调整。数字电源与模拟电源相比,对电流检测误差可以进行精确的数字校正,电压检测更精确;可以实现快速,灵活的控制设计。 随着技术的进步,特别是功率器件的更新换代,功率变换技术的不断改进,新型电磁材料的不断使用,控制方法的不断改进,以及相关学科的技术不断发展,开关电源已经成为多学科技术相融合的产物。 为了提高系统的可靠性,整机厂家与元器件厂家合作开发“用户专用”功率模块成为一种趋势。也就是将一台整机的几乎所有硬件都已芯片的形式安装到一个模块中,使大量元器件之间不再有传统的引线相连,把寄生参数降到最小,从而把电源元器件和功率器件承受的电应力降至最低,达到提高系统设备可靠性的目的。 以上就是数字化电源的一些值得大家学习的详细资料解析,希望在大家刚接触的过程中,能够给大家一定的帮助,如果有问题,也可以和小编一起探讨。

    时间:2020-11-10 关键词: 开关电源 数字芯片 pwm

  • 什么是电压控制方法PWM和PFM?你知道吗?

    什么是电压控制方法PWM和PFM?你知道吗?

    什么是PWM和PFM?它有什么区别?针对开关稳压器的基础,介绍电压控制方法。不论开关稳压器与否,电压稳压器的功能为产生稳定化的输出电压。为此,已在“反馈控制方式”一项中说明,必须将输出电压反馈至控制电路来进行环路控制。在这里,要说明的是、有关电压控制的方式,例如该进行何种控制才能将输入电压调整为5V等。 开关稳压器如名称所示,是借着开关输入电压,也就是ON/OFF来转换成所希望的输出电压。此结构已在“工作原理”一项中说明,简单来说就是开关后平均化以均衡已设定输入电压的输出电压。此输入电压的开关法主要有2個方法。 ・PWM控制(脉冲宽度调制) PWM是最普通的电压控制方法。在恒定周期下,将开关设为ON,从输入截取符合输出所需功率的部分。因此,ON和OFF的比率、占空比会随必要的输出功率而变化。 由于频率恒定,故有可预测即将产生的开关噪声、滤波器处理容易等优点。其缺点是,由于频率恒定,重负载时和轻负载时的开关次数都相同,自我消耗电流不变,故轻负载时开关损耗是主要损耗而效率降低。 ●频率恒定根据占空比调整输出电压 频率恒定,易于过滤噪声 频率恒定,轻负载时开关损耗效率显著恶化 ・PFM控制(脉冲频率调制) PFM有固定ON时间型和固定OFF时间型。以固定ON时间型为例(下图参考),ON时间恒定OFF时间变化。 换句话说,接下来一直到ON之前的时间会改变。当负载变大时,将会随着负载增加时间内的ON次数。也就是说,重负载时频率会变高,轻负载时频率会变低。 其优点是,轻负载时无需增加功率,开关频率变低,开关次数减少,开关损耗减少,故轻负载时也可维持高效率。其缺点是,频率会变化,开关相关噪声不稳定且难以滤波。噪声难消除。此外,频率一进入可听带20kHz时有可能会发生声响等对音响设备的S/N造成影响。从这个意义来说,PWM比较容易操作。 ●ON(或OFF)时间设为恒定,调整OFF(或ON)时间 轻负载时会降频率工作,故开关损耗会减少而维持效率 频率不稳定,故噪声滤波困难而有进入听觉范围的可能性 利用哪一方,必须在理解各特性后权衡,不过有些IC为了能够利用双方的优点,于稳定工作时采PWM工作,于轻负载时开关成PFM来维持效率。 ●PWM和PFM的效率特性示意图 PWM轻负载时恒定周期开关,故效率低下。 PFM轻负载时会降频率工作,故开关损耗减少而维持效率。 有些IC于稳定工作时采PWM工作,于轻负载时开关成PFM来维持效率。 关键要点: ・PWM(脉冲宽度调制),频率恒定通过ON/OFF的时间比(占空比)控制。 ・PFM(脉冲频率调制),脉冲的ON(或OFF时间)恒定通过OFF时间(或ON时间)变化控制。 ・理解优缺点区分使用。 ・双方控制切换使用,越来越多加入详细控制模式的IC。以上就是PWM和PFM解析,希望能给大家帮助。

    时间:2020-10-27 关键词: 电压稳压器 开关稳压器 pwm

  • PWM电机调速原理

    电机是重要的执行机构,可以将电能转化为机械能,从而驱动被控设备的转动或者移动,在我们的生活中应用非常广泛。 例如,应用在电动工具、电动平衡车、电动园林工具、儿童玩具中。 直流电机的实物图如下图所示。 1-直流电机实物图 对于普通的直流电机,在其两个电极上接上合适的直流电源后,电机就可以满速转动,电源反接后,电机就反向转动。 但是在实际应用中,我们需要电机工作在不同的转速下,该如何操作呢? 1 直流电机的调速原理 我们可以做这样的实验,以24V直流电机为例,在电机两端接上24V的直流电源,电机会以满速转动,如果将24V电压降至2/3即16V,那么电机就会以满速的2/3转速运转。 由此可知,想要调节电机的转速,只需要控制电机两端的电压即可。 以三极管作为驱动器件驱动小功率的电机,其电路原理图如下图所示。 电机作为负载接在三极管的集电极上,基极由单片机控制。 2-直流电机调速原理图 当单片机输出高电平时,三极管导通,使得电机得电,从而满速运行; 当单片机输出低电平时,三极管截止,电机两端没有电压,电机停止转动。 那如何使电机两端的电压发生变化,进而控制电机的转速呢? 只要单片机输出占空比可调的方波,即PWM信号即可控制电机两端的电压发生变化,从而实现电机转速的控制。 2 PWM信号调速的原理 所谓PWM,就是脉冲宽度调制技术,其具有两个很重要的参数: 频率和占空比。 频率,就是周期的倒数; 占空比,就是高电平在一个周期内所占的比例。 PWM方波的示意图如下图所示。 3-PWM的基本参数 在上图中,频率F的值为1/(T1+T2),占空比D的值为T1/(T1+T2)。 通过改变单位时间内脉冲的个数可以实现调频; 通过改变占空比可以实现调压。 占空比越大,所得到的平均电压也就越大,幅值也就越大; 占空比越小,所得到的平均电压也就越小,幅值也就越小。 动图演示如图4所示。 4-PWM调压演示 通过以上原理就可以知道,只要改变PWM信号的占空比,就可以改变直流电机两端的平均电压,从而实现直流电机的调速。 前文说过,改变电机两端的电源极性可以改变电机的转速,那么电路如何实现电机的正反转调速呢? 这需要通过H桥电路来实现。 H桥的电路原理如下图所示。 5-H桥驱动电机电路 H桥电路由四个功率电子开关构成,可以是晶体管也可以是MOS管。 电子开关两两构成桥臂,在同一时刻只要对角的两个电子开关导通,另外两个截止,且每个桥臂的上下管不能同时导通。 通过这个电路就可以实现电机的正反转调速。 3 PWM如何实现电机的正转调速 要实现电机的正转只需要做如下设置即可: A控制端: 高电平,控制三极管Q4导通; B控制端: 高电平,控制三极管Q3截止; C控制端: 低电平,控制三极管Q1导通; D控制端: 低电平,控制三极管Q2截止; 通过以上操作,即实现三极管Q2和Q3截止,三极管Q1和Q4导通,电流的流向如下: VCC→Q1→电机→Q4→GND,实现了电机的正转。 6-H桥驱动电机正转调速电路 在这种情况下要实现电机转速的调节,只需要给Q4的基极加载PWM信号即可。 4 PWM如何实现电机的反转调速 要实现电机的反转只需要做如下设置即可: A控制端: 低电平,控制三极管Q4截止; B控制端: 低电平,控制三极管Q3导通; C控制端: 高电平,控制三极管Q1截止; D控制端: 高电平,控制三极管Q2导通; 通过以上操作,即实现三极管Q1和Q4截止,三极管Q2和Q3导通,电流的流向如下: VCC→Q3→电机→Q2→GND,实现了电机的反转。 7-H桥驱动电机反转调速电路 在这种情况下要实现电机转速的调节,只需要给Q2的基极加载PWM信号即可。 5 电机专用驱动IC和分离元器件电路的对比 目前有很多电机专用驱动IC,体积小、控制简单,比用分离元器件所搭建的电路占有更大的优势。 专用IC优势之一:死区控制更容易 使用分离元器件时,必须要严格控制死区时间,也就是绝对不能让每个桥臂上的电子开关同时导通,这样容易导致电源短路,电流过大把两个电子开关烧坏。 而专用的驱动IC都有死区控制,比分离元器件电路更安全。 8-电机专用驱动IC 专用IC优势之二:器件体积更小 分离元器件所搭建的驱动电路,所使用的元器件数目较多,体积较大。 而专用驱动IC只需要一颗芯片即可,大大减小了体积、节省了PCB空间,使电路调试更容易。 关注微信公众号『玩转嵌入式』,后台回复“128”获取干货资料汇总,回复“520”了解我。 精彩技术文章推荐 01 |功率电感在升压电路中的作用 02 |设计电路时如何选取电容? 03 |什么是上拉电阻、下拉电阻 04 |电路的守护神:二极管与八大电路保护元器件 免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

    时间:2020-10-26 关键词: 电机 pwm

  • 关于主动式PFC电源的一些有点,你了解吗?

    关于主动式PFC电源的一些有点,你了解吗?

    什么是主动式PFC电源?它有什么特点?通常来说主动式PFC可以省电真的是这个样子么,下面小编来和你分析一波,主动式PFC在结构上来说基本就是一个通过PWM控制电流波形的AC/DC整流器,交流输入通过整流桥进行整流,然后PWM触发主动PFC电路中的MosFET管,分离中间直流电压到恒定脉冲序列,随后这些脉冲信号通过滤波电容,将相对平顺的电流送到主开关电路。 此外我们可以在主动式PFC电路中看到一个体积相对较大的电感线圈,这个电感线圈可以对电流起到缓冲和梳理的作用,当然它在体积和重量上比起被动式PFC的电感要小很多。 以先马金牌500W模组版为例的主动式PFC电源,PF值可以轻松达到0.9以上 从设计结构上来说,主动式PFC显然比被动式PFC更复杂,成本也更高。但是主动式PFC有着更宽广的电压适应能力,在电压波动较大的情况下仍然可以稳定工作,不少产品甚至直接支持110V到220V电压的输入。同时在功率因数校正的效果上,主动式PFC也有凌驾于被动式PFC,可以轻松达到0.9以上,部分高端产品甚至可以实现无限接近于1的效果。 此外由于主动式PFC电路的体积和重量都远小于被动式PFC,随着电源额定功率的提升,其在体积和重量上的变化也不会很大,因此在被动式PFC电源上“越重越好”的标准其实并不适合主动式PFC电源。 在主动式PFC电源刚刚步入主流的时候,又不少厂商为了宣传自家的主动式PFC电源产品,都纷纷打出了“主动式PFC电源更加省电”的旗帜,引导消费者选择采用主动式PFC设计的产品。但事实上是不是这样呢?主动式PFC电源就一定比被动式PFC电源省电吗? 如果从宏观的角度来看,确实是这样没错的。同样是200W的有效功率,采用被动式PFC设计、PF值为0.8的PC电源需要消耗250W的视在功率,而采用主动式PFC设计、PF值为0.9的PC电源则只需要222W的视在功率,如果说视在功率相当于发电机的输出功率,那主动式PFC电源对发电机造成的负荷就更低,自然也就是更省电了。 然而这样的省电对于消费者而言并没有什么实际意义,因为我们的电表只统计有效功率,并不是统计视在功率,换句话说你只需要为有效功率付电费,因此不管是主动式PFC、被动式PFC还是没有PFC,只要有效功率相同,电表上走的数字就是相同的,消费者需要支付的电费也是相同的。 真正能让你省电费的参数是电源的转换效率,这个转换效率直接影响电源有效功率的高低,在相同的输出负载下,转换效率更高的电源所需要的有效功率越低,你需要付的电费自然也越少了。 我们为什么要选择主动式PFC电源? 如果仅仅是从省电费的角度来考虑,电源是采用主动式PFC、被动式PFC甚至是有无PFC都没有什么关系,因为省钱与否的关键是在电源的转换效率。但是实际与理论总是有一些差别的,从客观事实来说,同样额定功率的电源产品,主动式PFC电源大部分确实有着比被动式PFC产品更高的转换效率,因为前者往往在做工、用料和架构上都会有更高的水平,品质也会更好,所以主动式PFC电源产品在客观上确实要更省电费,虽然两者没有必然的联系。 此外主动式PFC电源对交流输入电压的适应性也更强,基本上目前的宽幅电源都采用了主动式PFC设计,这样在电压波动比较大环境下,主动式PFC电源仍然可以保持稳定的输出。而被动式PFC电源对输入电压的稳定性有一定的要求,电压浮动的适应范围往往不如主动式PFC产品,在输入电压起伏较大的环境下可能无法正常工作。 另外选择主动式PFC电源也是一种环保观念,由于其PF值更接近于1,因此它对电网的负荷和污染也会更低,有利于减少不必要的能量消耗。现在PC电源中的80Plus认证不仅对产品的转换效率有要求,它还同时要求PC电源的PF值在0.9以上,因此80Plus认证在一定程度上也是对电源产品在环保贡献上的肯定。以上就是主动式PFC电源解析,希望能给大家帮助。

    时间:2020-10-25 关键词: pfc 整流器 pwm

  • 东芝推出新款采用PWM控制的双H桥直流有刷电机驱动IC,推荐应用为移动设备和家用电器

    东芝推出新款采用PWM控制的双H桥直流有刷电机驱动IC,推荐应用为移动设备和家用电器

    中国上海,2020年10月22日——东芝电子元件及存储装置株式会社(“东芝”)今日宣布,推出H桥电机驱动IC“TC78H660FNG”,且采用了TSSOP16封装和广泛使用的引脚分配。这是东芝直流有刷电机和步进电机驱动产品系列中的最新成员,适用于包括移动设备和家用电器在内的众多应用。 东芝的新一代DMOS工艺让TC78H660FNG能够在最大额定值为18V/2.0A[1]时实现低至0.48Ω的导通电阻,较东芝的现有产品发热更低。 新款驱动内置了用于驱动内部逻辑电路的稳压电源,可使用2.5V至16V的单电源来驱动电机。其应用范围广泛,其中包括由3.7V锂离子电池供电的移动设备、5V USB供电的设备以及由12V电压供电的家电系统设备。此外,它也支持1.8V的低压接口。 特性: Ø 单电源驱动,简单的PWM控制 Ø 导通电阻低,较东芝的现有产品发热更低(Ron=0.48Ω(高侧+低侧:典型值)@VM=12V,Ta=25℃) Ø 电流消耗低(超低待机电流:0.1mA或更低@Ta=25℃) 应用: Ø 电池供电移动设备,包括机器人和玩具;家用电器,包括冰箱、智能电表等 主要规格:

    时间:2020-10-22 关键词: 东芝 电机驱动 pwm

  • pwm如何进行调制?5种pwm调制方式介绍

    pwm如何进行调制?5种pwm调制方式介绍

    对于电子专业的朋友来说,pwm早已耳熟能详。pwm技术的发展极大程度上推动了社会的进步。上篇文章中,小编对pwm的3种调制方式有所介绍。本文中,小编将对其余5种pwm调制方式进行讲解。如果你对pwm具有兴趣,不妨继续往下阅读哦。 一、空间电压矢量控制PWM 空间电压矢量控制PWM(SVPWM)也叫磁通正弦PWM法。它以三相波形整体生成效果为前提,以逼近电机气隙的理想圆形旋转磁场轨迹为目的,用逆变器不同的开关模式所产生的实际磁通去逼近基准圆磁通,由它们的比较结果决定逆变器的开关,形成PWM波形。此法从电动机的角度出发,把逆变器和电机看作一个整体,以内切多边形逼近圆的方式进行控制,使电机获得幅值恒定的圆形磁场(正弦磁通)。具体方法又分为磁通开环式和磁通闭环式。磁通开环法用两个非零矢量和一个零矢量合成一个等效的电压矢量,若采样时间足够小,可合成任意电压矢量。此法输出电压比正弦波调制时提高15%,谐波电流有效值之和接近最小。磁通闭环式引入磁通反馈,控制磁通的大小和变化的速度。在比较估算磁通和给定磁通后,根据误差决定产生下一个电压矢量,形成PWM波形。这种方法克服了磁通开环法的不足,解决了电机低速时,定子电阻影响大的问题,减小了电机的脉动和噪音。但由于未引入转矩的调节,系统性能没有得到根本性的改善。 二、矢量控制PWM 矢量控制也称磁场定向控制,其原理是将异步电动机在三相坐标系下的定子电流Ia,Ib及Ic,通过三相/二相变换,等效成两相静止坐标系下的交流电流Ia1及Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1及It1(Im1相当于直流电动机的励磁电流;It1相当于与转矩成正比的电枢电流),然后模仿对直流电动机的控制方法,实现对交流电动机的控制。其实质是将交流电动机等效为直流电动机,分别对速度、磁场两个分量进行独立控制。通过控制转子磁链,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制。 但是,由于转子磁链难以准确观测,以及矢量变换的复杂性,使得实际控制效果往往难以达到理论分析的效果,这是矢量控制技术在实践上的不足。此外.它必须直接或间接地得到转子磁链在空间上的位置才能实现定子电流解耦控制,在这种矢量控制系统中需要配置转子位置或速度传感器,这显然给许多应用场合带来不便。 三、直接转矩控制PWM 1985年德国鲁尔大学Depenbrock教授首先提出直接转矩控制理论(DirectTorqueControl简称DTC)。直接转矩控制与矢量控制不同,它不是通过控制电流、磁链等量来间接控制转矩,而是把转矩直接作为被控量来控制,它也不需要解耦电机模型,而是在静止的坐标系中计算电机磁通和转矩的实际值,然后,经磁链和转矩的Band-Band控制产生PWM信号对逆变器的开关状态进行最佳控制,从而在很大程度上解决了上述矢量控制的不足,能方便地实现无速度传感器化,有很快的转矩响应速度和很高的速度及转矩控制精度,并以新颖的控制思想、简洁明了的系统结构、优良的动静态性能得到了迅速发展。 四、非线性控制PWM 单周控制法又称积分复位控制(IntegraTIonResetControl,简称IRC),是一种新型非线性控制技术,其基本思想是控制开关占空比,在每个周期使开关变量的平均值与控制参考电压相等或成一定比例。该技术同时具有调制和控制的双重性,通过复位开关、积分器、触发电路、比较器达到跟踪指令信号的目的。单周控制器由控制器、比较器、积分器及时钟组成,其中控制器可以是RS触发器,其控制原理如图1所示。图中K可以是任何物理开关,也可是其它可转化为开关变量形式的抽象信号。 单周控制在控制电路中不需要误差综合,它能在一个周期内自动消除稳态、瞬态误差,使前一周期的误差不会带到下一周期。虽然硬件电路较复杂,但其克服了传统的PWM控制方法的不足,适用于各种脉宽调制软开关逆变器,具有反应快、开关频率恒定、鲁棒性强等优点,此外,单周控制还能优化系统响应、减小畸变和抑制电源干扰,是一种很有前途的控制方法。 五、谐振软开关PWM 传统的PWM逆变电路中,电力电子开关器件硬开关的工作方式,大的开关电压电流应力以及高的du/dt和di/dt限制了开关器件工作频率的提高,而高频化是电力电子主要发展趋势之一,它能使变换器体积减小、重量减轻、成本下降、性能提高,特别当开关频率在18kHz以上时,噪声将已超过人类听觉范围,使无噪声传动系统成为可能。 谐振软开关PWM的基本思想是在常规PWM变换器拓扑的基础上,附加一个谐振网络,谐振网络一般由谐振电感、谐振电容和功率开关组成。开关转换时,谐振网络工作使电力电子器件在开关点上实现软开关过程,谐振过程极短,基本不影响PWM技术的实现。从而既保持了PWM技术的特点,又实现了软开关技术。但由于谐振网络在电路中的存在必然会产生谐振损耗,并使电路受固有问题的影响,从而限制了该方法的应用。 以上便是此次小编带来的“pwm”相关内容,通过本文,希望大家对上述提及的5种pwm调制方式具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。

    时间:2020-10-22 关键词: 调制方式 pwm 指数

  • pwm如何进行调制?3种pwm调制方式介绍

    pwm如何进行调制?3种pwm调制方式介绍

    pwm作为目前常用技术之一,在电子行业具备重要地位。前文中,小编对pwm的基本内容有所介绍。为增进大家对pwm的认识,本文将介绍3种pwm调制方式。如果你对pwm具有兴趣,不妨继续往下阅读哦。 一、相电压控制PWM 1.1等脉宽PWM法 VVVF(VariableVoltageVariableFrequency)装置在早期是采用PAM(PulseAmplitudeModulaTIon)控制技术来实现的,其逆变器部分只能输出频率可调的方波电压而不能调压。等脉宽PWM法正是为了克服PAM法的这个缺点发展而来的,是PWM法中最为简单的一种。它是把每一脉冲的宽度均相等的脉冲列作为PWM波,通过改变脉冲列的周期可以调频,改变脉冲的宽度或占空比可以调压,采用适当控制方法即可使电压与频率协调变化。相对于PAM法,该方法的优点是简化了电路结构,提高了输入端的功率因数,但同时也存在输出电压中除基波外,还包含较大的谐波分量。 1.2随机PWM 在上世纪70年代开始至上世纪80年代初,由于当时大功率晶体管主要为双极性达林顿三极管,载波频率一般不超过5kHz,电机绕组的电磁噪音及谐波造成的振动引起了人们的关注。为求得改善,随机PWM方法应运而生。其原理是随机改变开关频率使电机电磁噪音近似为限带白噪声(在线性频率坐标系中,各频率能量分布是均匀的),尽管噪音的总分贝数未变,但以固定开关频率为特征的有色噪音强度大大削弱。正因为如此,即使在IGBT已被广泛应用的今天,对于载波频率必须限制在较低频率的场合,随机PWM仍然有其特殊的价值;另一方面则说明了消除机械和电磁噪音的最佳方法不是盲目地提高工作频率,随机PWM技术正是提供了一个分析、解决这种问题的全新思路。 1.3SPWM法 SPWM(SinusoidalPWM)法是一种比较成熟的、目前使用较广泛的PWM法。前面提到的采样控制理论中的一个重要结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。SPWM法就是以该结论为理论基础,用脉冲宽度按正弦规律变化而和正弦波等效的PWM波形即SPWM波形控制逆变电路中开关器件的通断,使其输出的脉冲电压的面积与所希望输出的正弦波在相应区间内的面积相等,通过改变调制波的频率和幅值则可调节逆变电路输出电压的频率和幅值。该方法的实现有以下几种方案。 1.3.1等面积法 该方案实际上就是SPWM法原理的直接阐释,用同样数量的等幅而不等宽的矩形脉冲序列代替正弦波,然后计算各脉冲的宽度和间隔,并把这些数据存于微机中,通过查表的方式生成PWM信号控制开关器件的通断,以达到预期的目的。由于此方法是以SPWM控制的,基本原理为出发点,可以准确地计算出各开关器件的通断时刻,其所得的波形很接近正弦波,但其存在计算繁琐,数据占用内存大,不能实时控制的缺点。 1.3.2硬件调制法 硬件调制法是为解决等面积法计算繁琐的缺点而提出的,其原理就是把所希望的波形作为调制信号,把接受调制的信号作为载波,通过对载波的调制得到所期望的PWM波形。通常采用等腰三角波作为载波,当调制信号波为正弦波时,所得到的就是SPWM波形。其实现方法简单,可以用模拟电路构成三角波载波和正弦调制波发生电路,用比较器来确定它们的交点,在交点时刻对开关器件的通断进行控制,就可以生成SPWM波。但是,这种模拟电路结构复杂,难以实现精确的控制。 1.3.3软件生成法 由于微机技术的发展使得用软件生成SPWM波形变得比较容易,因此,软件生成法也就应运而生。软件生成法其实就是用软件来实现调制的方法,其有两种基本算法,即自然采样法和规则采样法。 1.3.3.1自然采样法 以正弦波为调制波,等腰三角波为载波进行比较,在两个波形的自然交点时刻控制开关器件的通断,这就是自然采样法。其优点是所得SPWM波形最接近正弦波,但由于三角波与正弦波交点有任意性,脉冲中心在一个周期内不等距,从而脉宽表达式是一个超越方程,计算繁琐,难以实时控制。 1.3.3.2规则采样法 规则采样法是一种应用较广的工程实用方法,一般采用三角波作为载波。其原理就是用三角波对正弦波进行采样得到阶梯波,再以阶梯波与三角波的交点时刻控制开关器件的通断,从而实现SPWM法。当三角波只在其顶点(或底点)位置对正弦波进行采样时,由阶梯波与三角波的交点所确定的脉宽,在一个载波周期(即采样周期)内的位置是对称的,这种方法称为对称规则采样。当三角波既在其顶点又在底点时刻对正弦波进行采样时,由阶梯波与三角波的交点所确定的脉宽,在一个载波周期(此时为采样周期的两倍)内的位置一般并不对称,这种方法称为非对称规则采样。 规则采样法是对自然采样法的改进,其主要优点就是计算简单,便于在线实时运算,其中非对称规则采样法因阶数多而更接近正弦。其缺点是直流电压利用率较低,线性控制范围较小。 以上两种方法均只适用于同步调制方式中。 1.3.4低次谐波消去法 低次谐波消去法是以消去PWM波形中某些主要的低次谐波为目的的方法。其原理是对输出电压波形按傅氏级数展开,表示为u(ωt)=ansinnωt,首先确定基波分量a1的值,再令两个不同的an=0,就可以建立三个方程,联立求解得a1,a2及a3,这样就可以消去两个频率的谐波。 该方法虽然可以很好地消除所指定的低次谐波,但是,剩余未消去的较低次谐波的幅值可能会相当大,而且同样存在计算复杂的缺点。该方法同样只适用于同步调制方式中。 1.4梯形波与三角波比较法 前面所介绍的各种方法主要是以输出波形尽量接近正弦波为目的,从而忽视了直流电压的利用率,如SPWM法,其直流电压利用率仅为86.6%。因此,为了提高直流电压利用率,提出了一种新的方法--梯形波与三角波比较法。该方法是采用梯形波作为调制信号,三角波为载波,且使两波幅值相等,以两波的交点时刻控制开关器件的通断实现PWM控制。由于当梯形波幅值和三角波幅值相等时,其所含的基波分量幅值已超过了三角波幅值,从而可以有效地提高直流电压利用率。但由于梯形波本身含有低次谐波,所以输出波形中含有5次、7次等低次谐波。 二、线电压控制PWM 前面所介绍的各种PWM控制方法用于三相逆变电路时,都是对三相输出相电压分别进行控制的,使其输出接近正弦波,但是,对于像三相异步电动机这样的三相无中线对称负载,逆变器输出不必追求相电压接近正弦,而可着眼于使线电压趋于正弦。因此,提出了线电压控制PWM,主要有以下两种方法。 2.1马鞍形波与三角波比较法 马鞍形波与三角波比较法也就是谐波注入PWM方式(HIPWM),其原理是在正弦波中加入一定比例的三次谐波,调制信号便呈现出马鞍形,而且幅值明显降低,于是在调制信号的幅值不超过载波幅值的情况下,可以使基波幅值超过三角波幅值,提高了直流电压利用率。在三相无中线系统中,由于三次谐波电流无通路,所以三个线电压和线电流中均不含三次谐波。 除了可以注入三次谐波以外,还可以注入其他3倍频于正弦波信号的其他波形,这些信号都不会影响线电压。这是因为,经过PWM调制后逆变电路输出的相电压也必然包含相应的3倍频于正弦波信号的谐波,但在合成线电压时,各相电压中的这些谐波将互相抵消,从而使线电压仍为正弦波。 2.2单元脉宽调制法 因为,三相对称线电压有Uuv+Uvw+Uwu=0的关系,所以,某一线电压任何时刻都等于另外两个线电压负值之和。现在把一个周期等分为6个区间,每区间60°,对于某一线电压例如Uuv,半个周期两边60°区间用Uuv本身表示,中间60°区间用-(Uvw+Uwu)表示,当将Uvw和Uwu作同样处理时,就可以得到三相线电压波形只有半周内两边60°区间的两种波形形状,并且有正有负。把这样的电压波形作为脉宽调制的参考信号,载波仍用三角波,并把各区间的曲线用直线近似(实践表明,这样做引起的误差不大,完全可行),就可以得到线电压的脉冲波形,该波形是完全对称,且规律性很强,负半周是正半周相应脉冲列的反相,因此,只要半个周期两边60°区间的脉冲列一经确定,线电压的调制脉冲波形就唯一地确定了。这个脉冲并不是开关器件的驱动脉冲信号,但由于已知三相线电压的脉冲工作模式,就可以确定开关器件的驱动脉冲信号了。该方法不仅能抑制较多的低次谐波,还可减小开关损耗和加宽线性控制区,同时还能带来用微机控制的方便,但该方法只适用于异步电动机,应用范围较小。 三、电流控制PWM 电流控制PWM的基本思想是把希望输出的电流波形作为指令信号,把实际的电流波形作为反馈信号,通过两者瞬时值的比较来决定各开关器件的通断,使实际输出随指令信号的改变而改变。其实现方案主要有以下3种。 3.1滞环比较法 这是一种带反馈的PWM控制方式,即每相电流反馈回来与电流给定值经滞环比较器,得出相应桥臂开关器件的开关状态,使得实际电流跟踪给定电流的变化。该方法的优点是电路简单,动态性能好,输出电压不含特定频率的谐波分量。其缺点是开关频率不固定造成较为严重的噪音,和其他方法相比,在同一开关频率下输出电流中所含的谐波较多。 3.2三角波比较法 该方法与SPWM法中的三角波比较方式不同,这里是把指令电流与实际输出电流进行比较,求出偏差电流,通过放大器放大后再和三角波进行比较,产生PWM波。此时开关频率一定,因而克服了滞环比较法频率不固定的缺点。但是,这种方式电流响应不如滞环比较法快。 3.3预测电流控制法 预测电流控制是在每个调节周期开始时,根据实际电流误差,负载参数及其它负载变量,来预测电流误差矢量趋势,因此,下一个调节周期由PWM产生的电压矢量必将减小所预测的误差。该方法的优点是,若给调节器除误差外更多的信息,则可获得比较快速、准确的响应。目前,这类调节器的局限性是响应速度及过程模型系数参数的准确性。 以上便是此次小编带来的“pwm”相关内容,通过本文,希望大家对上述讲解的3种pwm调制方式具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。

    时间:2020-10-22 关键词: 调制方式 pwm 指数

  • 什么是pwm?pwm优点、原理、应用全解析

    什么是pwm?pwm优点、原理、应用全解析

    pwm在现代电子器件中使用较多,pwm作为控制技术之一,实现了自身价值。为增进大家对pwm的了解,本文将对pwm、pwm原理、pwm优点等内容予以介绍。如果你对pwm具有兴趣,不妨继续往下阅读哦。 一、PWM简介 脉冲宽度调制是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用在从测量、通信到功率控制与变换的许多领域中。 脉冲宽度调制是一种模拟控制方式,其根据相应载荷的变化来调制晶体管基极或MOS管栅极的偏置,来实现晶体管或MOS管导通时间的改变,从而实现开关稳压电源输出的改变。这种方式能使电源的输出电压在工作条件变化时保持恒定,是利用微处理器的数字信号对模拟电路进行控制的一种非常有效的技术。 PWM控制技术以其控制简单,灵活和动态响应好的优点而成为电力电子技术最广泛应用的控制方式,也是人们研究的热点。由于当今科学技术的发展已经没有了学科之间的界限,结合现代控制理论思想或实现无谐振波开关技术将会成为PWM控制技术发展的主要方向之一。其根据相应载荷的变化来调制晶体管基极或MOS管栅极的偏置,来实现晶体管或MOS管导通时间的改变,从而实现开关稳压电源输出的改变。这种方式能使电源的输出电压在工作条件变化时保持恒定,是利用微处理器的数字信号对模拟电路进行控制的一种非常有效的技术。 二、PWM优点 PWM的一个优点是从处理器到被控系统信号都是数字形式的,无需进行数模转换。让信号保持为数字形式可将噪声影响降到最小。噪声只有在强到足以将逻辑1改变为逻辑0或将逻辑0改变为逻辑1时,也才能对数字信号产生影响。 对噪声抵抗能力的增强是PWM相对于模拟控制的另外一个优点,而且这也是在某些时候将PWM用于通信的主要原因。从模拟信号转向PWM可以极大地延长通信距离。在接收端,通过适当的RC或LC网络可以滤除调制高频方波并将信号还原为模拟形式。 总之,PWM既经济、节约空间、抗噪性能强,是一种值得广大工程师在许多设计应用中使用的有效技术。 三、PWM脉宽调制原理 脉宽调制技术是通过对逆变电路开关的通断控制来实现对模拟电路的控制的。脉宽调制技术的输出波形是一系列大小相等的脉冲,用于替代所需要的波形,以正弦波为例,也就是使这一系列脉冲的等值电压为正弦波,并且输出脉冲尽量平滑且具有较少的低次谐波。根据不同的需求,可以对各脉冲的宽度进行相应的调整,以改变输出电压或输出频率等值,进而达到对模拟电路的控制。 四、PWM同步调制简介 同步调制一N等于常数,并在变频时使载波和信号波保持同步 1.基本同步调制方式,fr变化时N不变,信号波一周期内输出脉冲数固定 2.三相电路中公用一个三角波载波,且取N为3的整数倍,使三相输出对称 3.为使一相的PWM波正负半周镜对称,N应取奇数 4.fr很低时,fc也很低,由调制带来的谐波不易滤除 5.fr,很高时,fc会过高,使开关器件难以承受 五、PWM同步调制优缺点 在改变f的同时成正比地改变fc,使K保持不变,则称为同步调制。 PWM采用同步调制的优点是:可以保证输出波 形的对称性。对于三相系统,为保持三相之间对称、互差120゜相位角,K应取3的整数倍;为保证双极性调制时每相波形的正、负半波对称,则该倍数应取奇数。由于波形的对称性,不会出现偶次谐波问题。但是,受开关器件允许的开关频率的限制,保持K值不变,在逆变器低频运行时,K值会过小,导致谐波含量变大。 使电动机的谐波损耗增加,转矩脉动相对加剧 六、PWM具体应用 1.PWM软件法控制充电电流 该方法的基本思想就是利用单片机具有的PWM端口,在不改变PWM方波周期的前提下,通过软件的方法调整单片机的PWM控制寄存器来调整PWM的占空比,从而控制充电电流。该方法所要求的单片机必须具有ADC端口和PWM端口这两个必须条件,另外ADC的位数尽量高,单片机的工作速度尽量快。在调整充电电流前,单片机先快速读取充电电流的大小,然后把设定的充电电流与实际读取到的充电电流进行比较,若实际电流偏小则向增加充电电流的方向调整PWM的占空比;若实际电流偏大则向减小充电电流的方向调整PWM的占空比。在软件PWM的调整过程中要注意ADC的读数偏差和电源工作电压等引入的纹波干扰,合理采用算术平均法等数字滤波技术。 2.PWM在推力调制中的应用 1962年,Nicklas等提出了脉冲调制理论,指出利用喷气脉冲对航天器控制是简单有效的控制方案,同时能使时间或能量达到最优控制。 脉宽调制发动机控制方式是在每一个脉动周期内,通过改变阀门在开或关位置上停留的时间来改变流经阀门的气体流量,从而改变总的推力效果,对于质量流率不变的系统,可以通过脉宽调制技术来获得变推力的效果。 脉宽调制通常有两种方法:第一种为整体脉宽调制,对控制对象进行控制器设计,并根据控制要求的作用力大小,对整个系统模型进行动态的数学解算变换,得出固定力输出应该持续作用的时间和开始作用时间;第二种为脉宽调制器,不考虑控制对象模型,而是根据输入进行“动态衰减”性的累加,然后经过某种算法变换后,决定输出所持续的时间。这种方式非常简单,也能达到输出作用近似相同。 脉宽调制控制技术结构简单、易于实现、技术比较成熟,俄罗斯已经将其成功地应用于远程火箭的角度稳定系统控制中。但是当调制量为零时,正反向的控制作用相互抵消,控制效率明显比变流率系统低。而且系统响应有一定的滞后,其开关的频率必须远大于KKV本身的固有频率,否则不但起不到调制效果,甚至会发生灾难性后果。 以上便是此次小编带来的“pwm”相关内容,通过本文,希望大家对pwm是什么以及pwm的优点、原理等具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。

    时间:2020-10-22 关键词: 原理 pwm 指数

  • 你了解BLDC电机换向吗?

    你了解BLDC电机换向吗?

    什么是BLDC电机换向?它有什么作用?BLDC电机的定义:一种采用直流电源并通过外部电机控制器控制实现电子换向的电机。BLDC电机与有刷电机不同之处就是BLDC 电机依靠外部控制器来实现换向。说通俗点,换向就是切换电机各相中的电流以产生运动的过程。有刷电机是指具有物理电刷的电机,其每转一次可实现两次换向过程,而 BLDC 电机无电刷配备,因此而得名。由于其设计特性,无刷电机能够实现任意数量的换向磁极对。 与传统有刷电机相比,BLDC 电机具有极大的优势。这种电机的效率通常可提高 15-20%;没有电刷物理磨损,因而能减少维护;无论在什么额定速度下都可以获得平坦的转矩曲线。 虽然 BLDC 电机并不是新发明,但由于需要复杂控制和反馈电路,所以广泛采用的进展较为缓慢。然而,由于近期半导体技术的发展、永磁体品质提升,以及对更高效率不断增长的需求,促使 BLDC 电机在大量应用中取代了有刷电机。BLDC 电机在许多行业找到了市场定位,包括白色家电、汽车、航空航天、消费、医疗、工业化自动设备和仪器仪表等。 随着行业朝着需要在更多应用中使用 BLDC 电机的方向发展,许多工程师不得不将目光投向该技术。虽然电机设计的基础要素仍然适用,但添加外部控制电路也增加了另一系列需考虑的设计事项。在诸多设计问题中,最重要的一点是如何获取电机换向的反馈。 电机换向 在深入探索 BLDC 电机反馈选项之前,先了解为什么需要它们至关重要。BLDC 电机可配置为单相、两相和三相;其中最常用的配置为三相。相数与定子绕组数相匹配,而转子磁极数根据应用需求的不同可以是任意数量。 因为 BLDC 电机的转子受旋转的定子磁极影响,所以须追踪定子磁极位置,以有效驱动三个电机相。为此,需使用电机控制器在三个电机相上生成六步换向模式。这六步(或换向相)移动电磁场,进而使转子永磁体移动电机轴。 图 1:BLDC 电机六步换向模式 通过采用这种标准电机换向序列,电机控制器即可利用高频率脉宽调制 (PWM) 信号,有效降低电机承受的平均电压,从而改变电机速度。 除此之外,这种设置通过让一个电压源用于各种各样的电机,大大提升了设计灵活性,即使直流电压源大大高出电机额定电压的情况也不例外。为了让此系统保持相对于有刷技术的效率优势,在电机和控制器之间需要安装非常严格的控制回路。 反馈技术的重要性就体现在这里;控制器要能保持对电机的精确控制,它必须始终掌握定子相对于转子的确切位置。预期和实际位置出现任何非对准或相移可能会导致意想不到的情况及性能下降。针对 BLDC 电机换向可采用许多方式来实现这种反馈,不过最常见的方式是使用霍尔效应传感器、编码器或旋转变压器。另外,某些应用也会依靠无传感器换向技术来实现反馈。 位置反馈 自无刷电机诞生以来,霍尔效应传感器一直是实现换向反馈的主力。因三相控制仅需要三个传感器且单位成本较低,所以单纯从 BOM 成本角度来看,它们往往是实现换向最经济的选择。 电机定子中嵌入了检测转子位置的霍尔效应传感器,这样就可以切换三相电桥中的晶体管来驱动电机。三个霍尔效应传感器输出一般标记为 U、V 和 W 通道。虽然霍尔效应传感器能够有效解决 BLDC 电机换向问题,但它们仅仅满足了 BLDC 系统一半所需。 图 2:三相桥式驱动器电路 虽然霍尔效应传感器能使控制器驱动 BLDC 电机,但遗憾的是,其控制仅限于速度和方向。在三相电机中,霍尔效应传感器只能在每个电循环内供角度位置。 随着磁极对数量的增加,每次机械转动的电循环数量也增加,而且随着 BLDC 的使用变得更加普及,对精确位置传感的需求也由此增加。为确保解决方案稳健且完整,BLDC 系统应提供实时位置信息,从而使得控制器不仅可以追踪速度和方向,还可以追踪行程距离和角度位置。 为满足对更严格位置信息的需求,常用的解决方案是向 BLDC 电机添加增量式旋转编码器。通常,除霍尔效应传感器之外,还会在相同的控制反馈回路系统中添加增量编码器。 其中霍尔效应传感器用于电机换向,而编码器则用于更加精确地追踪位置、旋转、速度和方向。由于霍尔效应传感器仅在每个霍尔状态变化时提供新的位置信息,所以其精度只达到每一电力循环六个状态; 而对双极电机而言,仅为每一机械循环六个状态。与能提供分辨率以数千 PPR(每转脉冲数)计的增量编码器(可解码为状态变化次数的四倍)相比,两者均需的必要性就显而易见了。 图 3:六步霍尔效应输出和梯形电机相位 然而,由于电机制造商目前必须将霍尔效应传感器和增量编码器都组装到他们的电机上,所以许多编码器制造商开始提供具有换向输出的增量编码器,通常我们简称为换向编码器。 这些编码器经过专门设计,不仅可以提供传统的正交 A 和 B 通道(以及某些情况下“每转一次”的索引脉冲通道 Z),还可以提供大多数 BLDC 电机驱动器所需的标准 U、V 和 W 换向信号。这样一来,电机设计师就可以省掉同时安装霍尔效应传感器和增量编码器的不必要步骤。 尽管该方法所具有的优势有目共睹,但此方法也做了很大的折衷。如上文所述,为使 BLDC 电机有效换向,必须掌握转子和定子的位置。这意味着必须小心谨慎地确保换向编码器的 U/V/W 通道与 BLDC 电机相位正确对准。 对于光盘上具有固定图案的光学编码器以及必须手动放置的霍尔效应传感器而言,实现 BLDC 电机正确对准的过程既反复、又耗时。对准方法还需要额外的设备,包括第二个电机和一个示波器。要对准一个光学编码器或一组霍尔效应传感器,必须使用第二个电机来反向驱动 BLDC 电机; 然后,当电机在第二个电机的作用下匀速旋转时,使用示波器监控三个电机相的反电动势(也称之为逆电动势或反电势)。编码器或霍尔效应传感器随后发出的 U/V/W 信号必须同示波器上的反电动势波形进行对照检查。 如果 U/V/W 通道和反电动势波形之间有任何差异,则必须进行相位调整。这个过程中,每台电机将耗费 20 多分钟的时间,并且需要大量的实验室设备进行操作,因此是使用 BLDC 电机的主要烦恼来源。虽然光学换向编码器通过仅安装一项技术而解决了安装负担,但光学换向编码器的实施也具有缺乏多功能性的缺点。 因为光学编码器使用其光盘中的固定图案,所以购买之前,电机磁极数、正交分辨率和电机轴的尺寸等都必须掌握清楚。 图 4:换向通道和电机相位理想对准 CUI Inc. 推出的增强型换向编码器可同时解决这两个问题。该编码器基于其 AMT 系列产品中采用的专利电容技术。光学编码器采用非常小的 LED,它们发出的光线透过光盘(带有特定间隔的槽口),从而生成输出图案。AMT 编码器原理与之类似,但不同之处在于 AMT 编码器不是通过 LED 传输光线,而是传输电场。 PCB 转子将替换光盘,该转子包含调节电场的正弦曲线图案。然后,调制信号的接收端回传信号到发射器,此时通过专有 ASIC 将此信号与原始信号进行比较。该技术与数字游标卡尺原理相同,具有极佳的可靠性和精度。 图 5:电容式编码器工作原理 AMT31 系列换向编码器提供增量输出 A/B/Z 和换向输出 U/V/W。设计包含电容式 ASIC 和板载 MCU 后,编码器就可以产生数字输出。这种方式具有非常重要的作用,因为它能允许用户按一下按钮即可按数字形式设置编码器的零位。 只需将 BLDC 电机锁定到所需的相位状态,并使用 AMT One Touch Zero? 模块或 AMT Viewpoint? 编程 GUI 调零 AMT31 编码器。这样一来,就可以去掉反向驱动电机或使用示波器查看输出信号的步骤,同时组装时间也可大幅减少 20 分钟。 由于采用了电容技术,因此正交分辨率和换向输出可实现动态调节。用户只需连接 AMT31 编码器与 AMT Viewpoint GUI,从 20 个正交分辨率(最大 4096 PPR)以及 7 个标准磁极对选项(最多 20 个磁极)列表中进行选择,然后点击“Program”(编程)即可。 这为开发过程带来了优势,工程师能够快速、轻松地更改原型样机,并且还能对不同分辨率和 BLDC 磁极数的多种电机控制使用单个库存单位 (SKU),以提升生产供应链管理效率。 除了每个装置支持多个分辨率和磁极对数外,编码器外壳还易于组装,同时可提供多种安装以及多个套管尺寸选择,以便适应常用的电机轴直径。 另外,AMT Viewpoint GUI 还为 AMT31 系列编码器带来前所未有的设计支持。连接到 AMT Viewpoint 时,可以从 AMT31 编码器下载诊断数据并用于避免现场潜在故障以及减少停机时间。 总结 高精度的严格控制回路能让 BLDC 电机在许多领域发挥出色的优势。精度增加意味着功率损耗更少、精确度更高,以及能让终端用户更好地控制 BLDC 操作。 当前,BLDC 电机广泛已应用于多种多样的领域中,包括外科手术机械臂、无人驾驶汽车、装配线自动化等,并且很快将在还未设想的许多其它领域中获得一席之地。 BLDC 电机市场在不断增长,对 BLDC 电机的要求却始终未变:市场需要低成本、高精度位置传感反馈的高效耐用电机。 当与 BLDC 电机配合使用时,AMT31 系列编码器能够在安装过程中节省宝贵的时间,同时简化开发和制造流程。以上就是BLDC电机换向解析,希望能给大家帮助。

    时间:2020-10-21 关键词: bldc电机 有刷电机 pwm

  • PCB电源设计中的注意事项

    PCB电源设计中的注意事项

    目前随着科技产品更新的飞速发展,电源产品的 PCB 设计面临着更大的挑战,主要包括电源转换效率、热分析、电源平面完整性和 EMI(电磁干扰)等。 随着行业应用日趋广泛多元,电源产品也不断向高频、高效、高密度化、低压、大电流化和多元化方向发展。同时,电源产品的封装结构、外形尺寸也日趋标准化,以适应全球一体化市场的要求。 首先是电源转换效率。转换效率是指电源的输出功率与实际消耗的输入功率之比,在实际应用中,电能不能完全转化,中间会有一定的能量消耗,所以,无论哪种电路,在电源转换中必然存在效率问题。对于线性电源,需要考虑 LDO 的散热问题;对于开关电源,要考虑开关管的损耗问题。 其次,有能量损耗就必然会产生热量,这就涉及到散热的问题。除此之外,随着负载变重,促使电源芯片的功耗加大,所以,在电源设计中热分布是个不得不考虑的问题。 再者是电源平面完整性设计。保持电源的完整性,就是保持电源的稳定供电。在实际系统中,总是存在不同频率的噪声。比如 PWM 的固有频率或 PFM 可变频率控制信号,快速的 di/dt 会产生电流波动的信号,所以一个低阻抗的电源平面设计是必要的。 最后是 EMI(电磁干扰)问题。开关电源在不断的开和关就会产生开关噪声,如果在设计过程中没有考虑回路电感问题,过大的回流路径会产生 EMI 问题。 业界一直寻求能提高电源 PCB 设计成功率的方法。经验表明,在设计过程中,如果能提前预知可能的风险并规避,成功率将会大幅度提高。由此,选择一款合适的设计仿真工具就显得尤为重要。

    时间:2020-10-19 关键词: 电源 pcb设计 电源芯片 pwm

  • 你知道PWM信号转换为模拟量信号的过程吗?

    你知道PWM信号转换为模拟量信号的过程吗?

    你知道PWM信号转换为模拟量信号的过程吗?有一个测量位置变化的位置传感器,用万用表电压档测量传感器的输出信号,结果显示的是模拟量信号,即位置和信号输出大小呈线性关系。但是,用示波器(Picoscope 4227)测量传感器的输出信号,显示的却是 PWM 信号(脉宽调制),即位置不同,输出 PWM 信号的占空比不同。 PWM 信号的参数是:200 Hz, 低电平为 0V,高电平为 18V。 现在可以确定,我的传感器输出信号是 PWM 信号。PWM 信号需要输入到控制器 I/O 中,但是控制器 I/O 口不具备直接采集 PWM 信号的功能。 解决方案 设计个电路,将 PWM 信号转化为模拟量信号,然后将转换后的模拟量信号输入到控制器模拟量 I/O 口。 转换电路 1. 二阶压控有源低通滤波电路。 设计一个深度滤波电路。滤波电路图为: 低通滤波频率公式为:f=1/(2π*RC),我最后选择 R=1K,C=10uf,算出的低通截止频率 f=15.9HZ。 滤波电路后端是一个运算放大器,放大倍数公式:A=1+Rf/R1。我不希望电压被放大,所以我选择 A=1.1。又因为 R1//Rf=2R(R1,Rf 两者并联的值等于 R 串联值),最终:Rf=220 欧,R1=2.2k,R=1k。 2. 积分电路(无源滤波电路) 低通滤波电路前面是一个二级积分电路(将两个电容都接地),R=1K,C=10uf。下图是一级积分电路,设计的积分电路是将两个下图电路串联构成二级积分积分: 为验证电路效果进行的测试,我使用的设备是 PicoScope4227,由于该设备最大只能生成正负 1V 的电压信号,就生成了幅值为 1V(低电平 0V,高电平 1V),频率为 200HZ 的 PWM 信号作为积分电路的输入信号。各种效果图如下: 示波器直接采集发生器生成的 PWM 信号,波形如下: 示波器从二阶滤波电路输入端采集信号,波形如下。发现该号波形与上图的波形相比已经发生了变化。 示波器从一阶滤波电路输出端中采集到的信号波形,即滤波电路从左往右数,第一个电阻与第一个电容交点的输出波形: 滤波器从二阶滤波电路输出端采集到的信号波形,即最终输出信号波形 最终输出波形的参数。 问题 1:为什么万用表电压档测量传感器输出信号,结果是模拟量信号,而示波器看到的是 PWM 信号?我该相信哪个结果? 答:这个问题牵涉到测量输入口的分辨率问题。万用表输入口的分辨率低(通过此例看低于 200HZ),而示波器输入口的分辨率高,可达几千,甚至几兆赫兹频率,所以输出的结果不同。我们要相信示波器显示的结果。我理解 PWM 信号本质还是希望达到模拟量的效果,只是表现形式不同。 2:关于计算公式 答:在低通滤波电路中,有个频率公式 f=1/(2π*RC), 它计算的是低通截止频率(-3dB)。而在积分电路中,有个公式 T=RC。 这个 T 是指电容充放电需要的时间。选取 T 时,根据一般经验公式,T>10 * T\'(T\'表示信号周期)。 在本例的积分电路中,RC=10ms,只有两倍的信号周期,但是通过测试,信号效果还是比较理想的。如果将更多的积分电路串联,效果会更好。 3:PWM 信号被控制器采集还有其他方案吗? 答:方案一:将 PWM 信号倍频,就是提高 PWM 信号的频率,但是占空比不变化。PWM 倍频后的频率大于控制器 I/O 的分辨率,就可以被控制器默认为做模拟量,从而可以输入到模拟量 I/O。 方案二:通过软件办法计算 PWM 的占空比。在控制器中编写程序,首先定时,测量这段时间内 PWM 信号中高电平的时间,从而计算出占空比。以上就是PWM信号转换为模拟量信号的过程解析,希望能给大家帮助。

    时间:2020-10-17 关键词: 位置传感器 模拟量信号 pwm

  • 为什么 LED 灯具需要用恒流电源来驱动?

    为什么 LED 灯具需要用恒流电源来驱动?

    通常来说,LED 的发光强度与电流大小成正比,因此,LED 驱动电源需要具有恒流输出特性,以保证 LED 在使用过程中能获得稳定的发光强度和厂家保证的长寿命。恒流电源为了保证恒流驱动 LED,则 LED 必须串联,才能保证电路内的每一个 LED 的电流都相等且恒定。当 LED 灯组的功率需求越来越大时,LED 串联数就越来越多,电压需求正比于串联数,结果电压就越来越高,安全就易出问题,制造和使用要求会更严格,这就会给电源带来成本升高和使用的困难。因此大功率 LED 的驱动就出现了低压驱动的要求。 LED 的寿命是指发生光衰的时间,恒流驱动由于控制住了 LED 的电流,确保了 LED 芯片的结温不会过高,防止了半导体芯片,封装材料,荧光材料的异常老化。LED 的发光强度就不会过快降低(即光衰)。采用其他类型的电源因不能控制 LED 的电流恒定,因其温升不易得到控制,导致了光衰的发生。 CV+CC 的电源是可以工作在恒压,也可以工作在恒流上。 ■IP 等级 效率 Efficiency:用百分比表示的总输出功率对有源输入功率的比率。即:效率=输出功率 / 输入功率*100%。 额定功率:指电源的最大输出功率(电压 V 和电流 A 的乘积)。 EMC:电磁兼容性(EMC)是指设备或系统在其电磁环境中符合要求运行并不对其环境中的任何设备产生无法忍受的电磁干扰的能力。EMC 包括 EMI(电磁干扰)及 EMS(电磁耐受性)两部门,所谓 EMI 电磁干扰,为开关电源传导或辐射的有害能量。而 EMS 指开关电源在执行应有功能的过程中不受周围电磁环境影响的能力。 纹波:由于直流稳定电源一般是由交流电源经整流稳压等环节而形成的,这就不可避免地在直流稳定量中多少带有一些交流成分,这种叠加在直流稳定量上的交流分量就称之为纹波。 输出纹波和噪声 Ripple and Noise,Output:在规定的带宽内,开关电源输出交流电压的幅度,通常用毫伏级的峰峰值或 RMS 值表示。 总谐波失真:Total Harmonic Distortion,简称 THD。是指用信号源输入时,输出信号(谐波及其倍频成分)比输入信号多出的额外谐波部分,通常用百分数来表示。一般说来,1000Hz 频率处的总谐波失真最小,因此不少产品均以该频率的失真作为它的指标。所以测试总谐波失真时,是发出 1000Hz 的声音来检测,这一个值越小越好。 过冲(Over shoot)和下冲(Under shoot):过冲就是第一个峰值或谷值超过设定电压—对于上升沿是指最高电压而对于下降沿是指最低电压。下冲是指下一个谷值或峰值。过分的过冲能够引起保护二极管工作,导致过早地失效。过分的下冲能够引起假的时钟或数据错误。 工作环境温度 Temperature,Operating Ambient:开关电源可以合理的电气指标和稳定性工作的温度范围。除非规定如此,否则不要认为开关电源在整个的温度范围内都可以输出满功率,也不是说开关电源在整个工作温度范围内都能保持同样的电气指标。 PWM:脉冲宽度调制(Pluse Width Modulation):一种开关电源使用的电压调整方法,指仅通过改变脉冲序列的宽度控制输出。

    时间:2020-10-17 关键词: LED 恒流电源 pwm

  • 开关模式电源电路图合集,请速速收藏

    开关模式电源电路图合集,请速速收藏

    我们都知道开关模式电源(Switch Mode Power Supply,简称SMPS),又称交换式电源、开关变换器,是一种高频化电能转换装置,是电源供应器的一种。其功能是将一个位准的电压,透过不同形式的架构转换为用户端所需求的电压或电流。1、PWM 开关电源集成控制 IC-UC3842 工作原理 UC3842 工作原理 下图为 UC3842 内部框图和引脚图,UC3842 采用固定工作频率脉冲宽度可控调制方式,共有 8 个引脚,各脚功能如下:①脚是误差放大器的输出端,外接阻容元件用于改善误差放大器的增益和频率特性;②脚是反馈电压输入端,此脚电压与误差放大器同相端的 2.5V 基准电压进行比较,产生误差电压,从而控制脉冲宽度;③脚为电流检测输入端, 当检测电压超过 1V 时缩小脉冲宽度使电源处于间歇工作状态;④脚为定时端,内部振荡器的工作频率由外接的阻容时间常数决定,f=1.8/(RT×CT);⑤脚为公共地 . 端;⑥脚为推挽输出端,内部为图腾柱式,上升、下降时间仅为 50ns 驱动能力为±1A ;⑦脚是直流电源供电端,具有欠、过压锁定功能,芯片功耗为 15mW;⑧脚为 5V 基准电压输出端,有 50mA 的负载能力。 UC3842 内部原理框图 UC3842 是一种性能优异、应用广泛、结构较简单的 PWM 开关电源集成控制器,由于它只有一个输出端,所以主要用于音 . 端控制的开关电源。 UC3842 7 脚为电压输入端,其启动电压范围为 16-34V。在电源启动时,VCC﹤16V,输入电压施密物比较器输出为 0,此时无基准电压产生,电路不工作;当 Vcc﹥16V 时输入电压施密特比较器送出高电平到 5V 蕨 . 稳压器,产生 5V 基准电压,此电压一方面供 . 销内部电路工作,另一方面通过⑧脚向外部提供参考电压。一旦施密特比较器翻转为高电平(芯片开始工作以后),Vcc 可以在 10V-34V 范围内变化而不影响电路的工作状态。当 Vcc 低于 10V 时,施密特比较器又翻转为低电平,电路停止工作。 当基准稳压源有 5V 基准电压输出时,基准电压检测逻辑比较器即达 . 出高电平信号到输出电路。同时,振荡器将根据④脚外接 Rt、Ct 参数产生 f=/Rt.Ct 的振荡信号,此信号一路直接加到图腾柱电路的输入端,另一路加到 PWM 脉宽 . 制 RS 触发器的置位端,RS 型 PWN 脉宽调制器的 R 端接电流检测比较器输出端。R 端为占空调节控制端,当 R 电压上升时,Q 端脉冲加宽,同时⑥脚送出脉宽也加宽(占空比增多);当 R 端电压下降时,Q 端脉冲变窄,同时 ⑥脚送出脉宽也变变窄(占空比减小)。 UC3842 各点时序如图所示,只有当 E 点为高电平时才有信号输出 ,并且 a、b 点全为高电平时,d 点才送出高电平,c 点送出低电平,否则 d 点送出低电平,c 点送出高电平。②脚一般接输出电压取样信号,也称反馈信号。当② 脚电压上升时,①脚电压将下降,R 端电压亦随之下降,于是⑥脚脉冲变窄;反之,⑥脚脉冲变宽。③脚为电流传感端,通常在功率管的源极或发射极串入一小阻值取样电阻,将流过开关管的电流转为电压,并将此电压引入 . 境脚。当负载短路或其它原因引起功率管电流增加,并使取样电阻上的电压超过 1V 时,⑥脚就停止脉冲输出,这样就可以有效的保护功率管不受损坏。 2、TOP224P 构成的 12V、20W 开关直流稳压电源电路 由 TOP224P 构成的 12V、20W 开关直流稳压电源电路如图所示。电路中使用两片集成电路:TOP224P 型三端单片开关电源(IC1),pc817A 型线性光耦合器 (IC2)。交流电源经过 UR 和 Cl 整流滤波后产生直流高压 Ui,给高频变压器 T 的一次绕组供电。VDz1、VD1 能将漏感产生的尖峰电压钳位到安全值, 并能衰减振铃电压。VDz1 采用反向击穿电压为 200V 的 P6KE200 型瞬态电压抑制器,VDl 选用 1A/600V 的 UF4005 型超快恢复二极管。 二次绕组电压通过 V 砬、C2、Ll 和 C3 整流滤波,获得 12V 输出电压 Uo。Uo 值是由 VDz2 稳定电压 Uz2、光耦中 LED 的正向压降 UF、R1 上的压降这三者之和来设定的。改变高频变压器的匝数比和 VDz2 的稳压值,还可获得其他输出电压值。R2、VDz2 五还为 12V 输出提供一个假负载,用以提高轻载时的负载调整率。反馈绕组电压经 VD3 和 C4 整流滤波后,供给 TOP224P 所需偏压。由 R2 和 VDz2 来调节控制端电流,通过改变输出占空比达到稳压目的。 共模扼流圈 L2 能减小由一次绕组接 D 端的高压开关波形所产生的共模泄漏电流。C7 为保护电容,用于滤掉由一次、二次绕组耦合电容引起的干扰。C6 可减小由一次绕组电流的基波与谐波所产生的差模泄漏电流。C5 不仅能滤除加在控制端上的尖峰电流,而且决定自启动频率,它还与 R1、R3 一起对控制回路进行补偿。

    时间:2020-10-14 关键词: 开关模式电源 误差放大器 pwm

首页  上一页  1 2 3 4 5 6 7 8 9 10 下一页 尾页
发布文章

技术子站

更多

项目外包