OFDM是一种多载波的数字传输体制,以其特有的优势被广泛地应用到数字音频广播,数字电视广播和无线宽带等领域,并将进入到更多的领域中。对OFDM系统的仿真可以用软件完成,但是对于硬件平台的搭建往往需要大量的开销
本系统设计在硬件上由基于ARM7TDMI-S内核的微控制器LPC2478、重复可擦写低功耗U盘、点阵LCD显示器模块等组成心电动态采集存储仪;软件上则使用嵌入式实时操作系统mC/OSⅡ作为系统控制平台,提高了系统的可靠性。本系统
飞思卡尔在低功耗和混合信号方面的先进技术导致出现更为灵活的微控制器(MCU),这些微控制器有许多关键的外围设备,可用来进行妊娠期监护的应用,包括妊娠糖尿病的监护。在所有对于医疗应用重要的领域—低压,混合信号
AT86RF230是低功耗的2.4 GHz无线电收发器,是真正的SPI到天线的解决方案,设计用于ZigBee/IEEE 802.15.4.单片内集成了除天线,晶体和去耦电容外所有的RF关键元件. AT86RF230可编程输出功率从-17dBm到高达 3dBm,接收器灵
A4982是集成了电平转换和过流保护的微型步进马达驱动器,适用于双极步进马达驱动,工作在全步进,半步进,1/4步进和1/6步进模式,输出驱动能力高达35V和±2 A. A4982包括固定的离线电流调节器,兼容3.3V和5V逻辑,睡眠模式电
电路的功能线性驱动直流伺服电机时,如输出晶体管的功率下降,发热量就会增加。大功率条件下,大多采用象本电路那样的脉冲调幅驱动方式。通过晶体管的开关切换作用来提高功率控制发热。PWM电路也可采用分立元件组成。
电路的功能关于PWM波的产生,采用最多的方法是用电压比较器把要调制的信号与线性好的三角波进行比较。本电路可用数字据以1%为1档在1%~99%范围内准确无误而稳定地控制占空比。因此,它可用作校准、调整PWM解调电路或作
电路的功能采用切换差动放大器输入信号的方法也可构成全波整流式同步检波电路,其基本工作原理与“低频小漂移极性转换式同频检波电路”类似,它用参数不正规的差动放大器接收双向切换模拟开关的输出信号。该电路的输
电路的功能采用反相、同相切换的同步检波电路的工作频率小于数十千赫兹,其直流稳定度须眉于双重平衡差动电路,在整个低频段均可应用。本电路的模拟开关采用了一般的N沟道J-FET。平滑电路加了12DB/OCT的低通滤波器,
电路的功能在低频范围内广泛应用的全波同步检波电路,其输出脉动波中不含基波,所以对低通滤波器截止性能的要求可以放宽,“由开关电路构成的半波同步检波电路”的半波整流开关电路输出的高频成分可用下式表示:式中
电路的功能同步检波电路用来检测被噪声淹没的信号,它是锁相放大器最重要的电路单元,有许多实用方式。本电路属于同步检波的基本方式,用开关电路检测相位差,输出电压EO=EXCOSφ,即可以获得信号的振幅和相位φ。如
电路的功能MC1496作为IC平衡调制电路被广泛应用,电路的基本连接与调制电路相同,但输出电路中加了电平移位电路,可用于同步检波,得到EO=E.COSθ的输出。没有使用开关电路,按电路图中的元件参数,信号频率可达2MHZ
电路的功能采用OP放大器的不稳多谐振荡器可以获得正、负对称的占空比为1:1的振荡输出,若从外部改变阀值电压,即可实现对脉冲宽度的调制,这种电路非常简单。采用CR充放电路,对大调制输入的线性会产生不良影响。振
电路的功能可以在76~90MHZ的FM广播波段使用的频率调制FM发射机,通常也称作无线电话筒。用FM广播接收机接收其信号。如果不用话筒是输入低频信号,便可用无线形式传输信号或数据。用60CM的天线,传输距离可达30米以上
电路的功能改变555的自激多谐振荡器的充电电流即可进行频率调制。值得注意的是如大幅度地改变充电电流,还可作为VCO使用。这种振荡器的振荡频率在100KHZ以下,本电路的频率为40KHZ,这一频率接近红外线遥控频率。本电