当前位置:首页 > 晶体管技术
  • FPGA 电源设计有哪些规范设计

    FPGA 电源设计有哪些规范设计

    作为一种复杂的集成电路,FPGA 系统供电的电源的设计与一般的电子系统相比,要求也更高,需要具备高精度、高密度、可控性、高效及小型化等的特点。本文系统介绍了 FPGA 电源的不同特性,同时会通过实例,让工程师更深入地了解各特性的意义,以及 FPGA 规范约束及其对电源设计的影响,以便快速完成 FPGA 系统的电源设计。 前言 FPGA (Field Programmable Gate Arrays) 是现今最复杂的集成电路之一。它们采用先进的晶体管技术和芯片架构实现高性能、小体积的高端产品,而为 FPGA 系统供电的电源与一般的电子系统相比,要求更高。 随着市场上对 FPGA 系统应用的普及,对其电源解决方案的需求也越来越旺盛,FPGA 电源系统除了需要满足基本要求外,还需要具备高精度、高密度、可控性、高效及小型化等的特点。 现实中,工程师希望将大部分时间花在编程上,而不想花太多的时间和精力考虑如何设计合适的电源耗材。所以在本文中,我们会介绍 FPGA 电源的不同特性,同时会通过实例,让工程师更深入地了解各特性的意义,以及 FPGA 规范约束及其对电源设计的影响。 电压精度 内核电源电压 (Core Power Supply) 是平衡 FPGA 功耗和性能的最重要关键要素之一。规格书中一般会列出可接受的电压范围,但此范围并不是完整的描述,对 FPGA 而言,电源电压在满足线路运作要求的同时,也需要权衡和优化。下图一是以 Intel 的 Arria 10 FPGA 内核电压要求为例,其也代表了其他 FPGA 内核的电压要求。一般会显示容差范围额定电压,例如 Arria 10 FPGA 为±0.03V,FPGA 会在这个电压窗口内运行得很好,但实际情况比图片显示复杂很多。 事实上,FPGA 可以在不同电压下工作,这具体取决于其特殊的制造公差以及所采用的特定逻辑设计。即使是同一电压要求,一个 FPGA 所需的静态电压也可能是与另一个 FPGA 不同,所以在电源设计时必须要考虑对应 FPGA 的动态与静态之间的变化而自行调控。 动态功率和静态功率 设计合适的 FPGA 电源方案,目标是产生恰当的性能水平来操作编程功能,减少不必要的功耗。我们从半导体物理学的角度看,动态和静态功率都随着内核 VDD 的增加而显著增加,因此我们的目标是让 FPGA 有足够电压来正常运行,以满足其时间要求——因为过量功耗不但对提高性能没有任何帮助,相反它会令晶体管漏电流随着温度的升温,消耗更多的不必要的电力。由于这些原因,当务之急是优化设计和工作点的电压。 该优化过程需要非常精确的电源才能获得成功。如果内核电压低于要求,则 FPGA 可能由于时序错误而发生故障。如果内核电压漂移超过最大规格,可能会损坏 FPGA,或者可能会在逻辑中产生保持时间故障。所以,必须考虑电源容差范围来防止所有这些情况,并且仅保证保持在规格限制内的指令电压。 问题是大多数电源调节器都不够准确。调节电压可以在被指令电压附近的公差范围内的任何地方,并且它可以随负载条件、温度和老化而漂移。±2%容差的电源即表示可以在 4%的电压范围内输出任何值。为了补偿电压处于 2%过低的可能性,被指令电压必须比满足时序所需的电压提高 2%。如果经过调节器后电压漂移到高于被指令电压 2%处,它将比该工作点所需的最小电压运行高 4%。这仍然符合规定的 FPGA 所需的电压要求,却浪费了大量功率,如下图 2 所示。 解决这一问题的方案是选择能够以更严格的电压容差运行的电源调节器。使用具有±0.5%容差的调节器,可以在所需的工作频率下、更接近所需的最小规格内工作,并且保证与所需的电压相差小于 1%。这样,好让 FPGA 在最小功耗的情况下,正常工作。 高电量需求 FPGA 系统中的器件通常需要不同调节电压,例如电压的内核电压处理器,其要求电压可以是 0.8V、1.0V、1.2V、1.5V 或 1.8V 等。虽然是低电压供应,但其密集的晶体管结构及长期保持高速运作的情况下,供电电源方案可能需要 10A 或以上,具体的处理器要求通常决定了其他电源要求,例如负载瞬态恢复、待机模式等,这需要负载点(Point-of-Load,或简称 PoL)稳压电源专为核心电压设计。 PoL 稳压电源是一种高性能稳压器,其各 Vout 电压轨独立于各自的负载设置。这有助于解决高瞬态电流的要求以及诸如 FPGA 高性能半导体器件的低噪声要求。例如 ADI 公司的 LTM4678 系列,包含两组能够同时提供高密度的电源供应输出,分别为 1V@25A 及 1.8V@25V。 可控性需求 FPGA 中含有大量而复杂编排的晶体管,一块芯片包含数亿个晶体管,当中被分割成可以设计并独立管理的内核段、模块段和隔断。这些特定的编排是的其具有许多不同电源域,在电压、电流、纹波和噪声以外,还包括启动、关断和故障条件期间的序列顺序,故可控性的 FPGA 电源需要妥善管理输出的次序及其电量。 市场中较新的 FPGA 在规格中会提供针对启动和关断电源时的序列顺序提出特定的要求,确保 FPGA 正常开启及复位,保持最小的电流消耗,并在电源转换期间将 I/O 保持在正确的三态配置下。再以 Arria 10 为例,其技术规格将电源分为三个序列组(1、2、3),并要求它们按升序排列为 1、2、3,然后按相反的顺序降序排列:3、 2、1。 例如 ADI 公司的 LTC2936 可以提供六个可编程阈值模拟比较器,用于检测快速事件并将数字状态发送到逻辑。该器件还有三个可编程 GPIO 引脚,可提供额外的功能。该可编程 IC 包括 EEPROM,后者可在启动时近乎即时地工作;该 IC 还能通过其 I2C/SMBus 接口存储故障遥测数据以便进行调试。 FPGA 开发套件支持 工程师可利用 FPGA 开发套件协助开发。例如 Arria 10 SoC 开发套件 (DK-SOC-10AS066S-A)展示了用于 Arria 10 SoC 电源要求的 ADI 的 LTM4677µmodule 电源解决方案。 在套件中,内核电源的工作电压为 0.95V,工作电流为 30A。由于这些电源要求相对宽松,单个 LTM4677 模块就可轻松提供所需电流(最高 36A)。对于要求更多电流且条件更为苛刻的应用,最多可以并行运行四个 LTM4677 模块,以提供高达 144A 的电流,如图 7 所示。 利用参数列表选料 了解应用的要求之后,工程师可在 Digi-Key 官网上,在「电源 - 板安装」分类中,选择「直流转换器」子分类。「应用筛选程序」中,工程师可在「类型」中找到「POL」,或直接在「在结果中搜寻」中输入「POL」以筛选 PoL 稳压电源。

    时间:2020-10-15 关键词: FPGA 电源 晶体管技术

  • 基于全耗尽平面晶体管技术的NovaThor平台设计

    随着智能手机功能最近不断升级演化,消费者的期望值日益攀升。速度更快的多核高主频CPU处理器、令人震撼的3D图形、全高清多媒体和高速宽带现已成为高端手机的标配。同时,消费者还期望手机纤薄轻盈,电池续航能力至少与以前的手机持平。对于手机厂商和设计人员来说,消费者的期望意味着移动芯片需具备优异的性能,同时兼具低成本和低功耗。全耗尽平面晶体管技术 (FD-SOI:Fully Depleted Silicon on Insulator),是满足这些需求的最佳解决方案。   在2012年移动通信世界大会上(Mobile World Congress),意法。爱立信首席执行官Didier Lamouche证实我们的下一代NovaThor平台,即NovaThorL8540的后续产品,将采用28nm FD-SOI制造工艺。   FD-SOI技术目前已经可供芯片开发使用,该技术将会使28nm工艺制程的芯片产品在性能和功耗方面有显着的提升。因为工艺复杂程度相对较低,FD-SOI解决了制程升级、泄漏电流和可变性等问题,能够将CMOS制程节点进一步降至28nm或28nm以下。   像FinFET技术一样,FD-SOI最初是为20nm节点及以下开发设计的,能够突破传统体效应CMOS制程升级的限制因素,例如,高泄漏电流和终端设备多样性的难题;但是,又与FinFET技术不同,FD-SOI保留了传统体效应CMOS工艺的平面结构复杂度相对较低的优点,这可加快工艺开发和量产速度,降低现有设计的迁移难度。意法爱立信、意法半导体、Leti 和Soitec的技术合作让我们能够在28nm技术节点发挥FD-SOI的优势:先进性能、具有竞争力的处理速度/泄漏电流比和优化能效。   在宽电压范围内性能领先   下图比较了在慢工艺角(SS)和环境温度最恶劣时ARM Cortex-A9 CPU内核的一个特定关键通道能够达到的最高频率-Vdd电源电压曲线。   每条曲线代表一个特定的28nm制程:   .28HP-LVT是用于移动设备的高性能体效应CMOS工艺,瞄准高性能移动设备CPU,具有处理速度快和栅极氧化层薄的特点,因此,从可靠性看, Vdd 过驱动能力有限(~1.0V)。   .28LP-LVT 是一种低功耗的体效应CMOS 工艺,过去用于低功耗移动应用,LP 基于栅氧化层更厚的晶体管,支持更高的过驱动电压(高达1.3V)。   .28FDSOI-LVT是意法半导体开发的28nm FD-SOI工艺,栅极结构与28LP相似,也支持1.3V过驱动电压。   在这三种工艺中,只考虑低压阈值(LVT),因为处在这样的电压下时处理性能最高。   1.首先观察到的是,在标称电压(HP=0.9V,LP=1.0V,FD-SOI=1.0V)时,FD-SOI的峰值性能与HP工艺相似;在Vdd电压相同时,性能比LP高35%.   2.此外,随着Vdd 电压升高,FD-SOI的性能进一步提高,而 HP 工艺无法承受更高的电压,因此,前者的综合峰值性能高于后者。   3.在工作电压过低时,如Vdd=0.6V, LP将无法运行或性能很低;FD-SOI与HP工艺相当甚至高于HP工艺,但是前者的泄漏电流和动态功耗要比后者低很多,我将在后面的内容中给予说明。   4.相比体效应CMOS工艺,FD-SOI的工艺可变性低,在适合CPU处理非密集型任务的频率(200MHz-300MHz)时,能够支持更低的工作电压(最低0.5V),例如,硬件加速音、视频播放。   因此,在宽Vdd电压范围(0.5V 至 1.3V)内,FD-SOI的综合性能高于移动处理器专用的体效应CMOS工艺,这些性能优势可用于提高峰值性能,或者在保证性能不变的前提下降低Vdd工作电压,从而降低动态功耗。   我们探讨了FD-SOI工艺在性能-电压比方面的技术优势,接下来,我们将分析另外两大优势:具有竞争力的处理速度/泄漏电流比和优化能效。   具有竞争力的处理速度/泄漏电流比   FD-SOI工艺不仅带来前文所述的性能优势,还具有同级产品最低的泄漏电流,下图示是前文图示的ARM Cortex-A9 关键通道在85°C时典型泄漏电流与最高频率之比。以系统的方法分析,当泄漏电流相同时,FD-SOI在标称电压(1.0V)时的运行频率高于标称电压(1.0V)时的LP工艺或标称电压(0.9V)时的HP工艺。   浅蓝色曲线代表Vdd=0.9V条件下的FD-SOI 泄漏电流/速度曲线,这意味着FD-SOI可让我们降低标称 Vdd 电压(对动态功耗影响巨大的参数),同时保持与LP和HP工艺相同的或更高的性能。然后,如蓝色延长虚线所示,施加在LVT FD-SOI晶体管上的正向体偏压(*) 使其能够达到HP可达到的性能,而在施加偏压后,多晶硅晶体管的泄漏电流增幅与LP工艺相同。   该泄漏电流/速度比优势是28nm FD-SOI工艺独有优势,真正地融LP 和 HP两大工艺的优点于一身。   体偏压是在CMOS晶体管的体效应部分施加可变电压,以提高泄漏电流为代价换取更快运行速度(正向体偏压),或者以牺牲性能为代价换取更低的泄漏电流(反向体偏压)。虽然体效应CMOS具有这项功能,但是,因为埋沟氧化层将晶体管沟道与硅体效应部分(背栅效应)隔离,体偏压的效果在FD-SOI技术上更加出色。   优化能效   对高端移动应用来说,良好处理性能兼出色的泄漏电流还不够,在移动设备日常使用过程中降低不同工作模式的总功耗才是最大化电池续航能力的关键。   下图描述了三种不同的 28nm 工艺的动态功耗特性,并给出了动态功耗-最大频率特性曲线。   从图中不难看出,在给定频率时,FD-SOI的总功耗总是比其它两项技术低很多,即便达到目标频率所需的电源电压略高于28nm HP.这主要因为FD-SOI技术的总功耗中泄漏电流较低。在整个电源电压范围和对应的性能范围内均是如此,这充分证明,FD-SOI是能够给移动设备带来最高能效的解决方案。   从上文可以看出,28nm FD-SOI在对于移动计算设备极其重要的关键参数方面优于现有的体效应工艺,具有高性能且低功耗的优点。  

    时间:2012-12-07 关键词: 平台设计 novathor 晶体管技术

  • 应对功耗挑战:晶体管技术方案面临瓶颈

    在电费占运营成本 (OPEX) 很大一部分,而运营成本则占总成本约 70% 的情况下,降低功耗对运营商来说已刻不容缓。以前,芯片提供商想办法通过晶体管和工艺技术来降低功耗。虽然晶体管是产生功耗的主要原因,但并非唯一因素,而且通过晶体管来降低功耗作用是有限的。 通过更全面的系统级方法能够更有效地降低功耗。只有全面兼顾芯片工艺技术,充分发挥功率感知型 (power-aware tool) 工具的作用,在代码设计时即考虑到低功耗需要,调整系统级架构,同时采用能够显著降低系统级功耗的算法(如在远程射频头应用中使用数字预失真 [DPD]),就能获得最佳成效。 选择合适的芯片技术合作伙伴将使您受益匪浅。赛灵思正是采用上述全面而系统的措施来处理电源管理问题的,而不是单纯狭隘地关注晶体管和工艺节点技术。Xilinx® FPGA 平台解决方案能帮助设计人员采用功率优化设计方案和系统级设计与集成方法,全面解决功耗问题。从设计层面来说,赛灵思功率感知型工具和广泛的低功耗参考设计库以及应用指南都能帮助工程师优化整体功耗。此外,赛灵思技术精良的应用工程师团队还可帮助设计人员达到严格的功耗目标。赛灵思工程师能够帮助客户逐步采取设计优化技术,如折叠 DSP 密集型设计以缩小设计尺寸等,从而使用尺寸更小的器件来降低静态功耗和成本。 从系统级层面来说,赛灵思对集成度的重视也获得了非常好的结果。例如,在单个 FPGA 上高度集成多个分立组件能够大幅降低系统 I/O 的总量,进而显著降低功耗。此外,在远程射频头中采用 DPD 等高级算法也能使电信设备制造商 (TEM) 使用功耗和成本均较低的功率放大器,这将对系统级功耗产生巨大影响。 显然,赛灵思认识到不能完全忽视晶体管和工艺节点技术在降低功耗方面的作用。与其前代 40 纳米系列相比,赛灵思 28 nm 7 系列 FPGA 将总体功耗锐降 50%。在晶体管技术方面,赛灵思的低功耗工艺及其对多种晶体管尺寸的使用,能够最大限度地降低静态功耗。赛灵思 FPGA 针对DSP、存储器以及 SERDES 使用硬模块,这与同类竞争 DSP 和其它 FPGA 设计相比最大限度地降低了动态功耗。 在晶体管层面解决功耗难题只是降低功耗和节约运营成本的一个起点,而只有全面综合地精细化改进所有相关方面,才能获得最出色的结果。   基于赛灵思 FPGA 的设计可充分利用业界领先的功能密度和高级无线电算法(如 DPD)来最小化外部电路并降低功率放大器的功耗,从而将整个系统的功耗降至最低。  

    时间:2011-08-17 关键词: 方案 瓶颈 功耗 晶体管技术

  • 中国穷学生发明新晶体管技术震惊世界

    国外媒体报道,美国伦斯勒理工学院中国博士生Weixiao Huang发明了一种新的晶体管技术,有望取代高功率和高温电导特性的硅晶体管,目前已经引起了美国和日本一些大汽车公司的注意。 Huang出身低微,是中国乡下一位农民的儿子,2001年毕业于北京大学,2003年获伦斯勒理工学院硕士学位,这两天将拿到伦斯勒理工学院博士学位。 一些基于镓的材料具有某些极其出色的电气特性,远远优于硅,但是要制造出晶体管来比较困难,Huang开发出了一种使用镓氮化物(GaN)混合材料的新晶体管,它具有非常好的物理属性,可以大大降低功耗,改善电子系统的效率,也能够工作在高温、大功率乃至产生辐射的严苛环境下,在各种电子设备、汽车动力、家用设备等里面都有广阔的应用前景。

    时间:2008-05-19 关键词: 晶体管技术

  • 晶体管技术历经巨变60年 不能忘怀的人与事!

    1947年12月23日第一块晶体管在贝尔实验室诞生,从此人类步入了飞速发展的电子时代。在晶体管技术日新月异的60年里,有太多的技术发明与突破,也有太多为之作出重要贡献的人,更有半导体产业分分合合、聚聚散散的恩怨情仇,当然其中还记载了众多半导体公司的浮浮沉沉。 1959年首次将集成电路技术推向商用化的飞兆半导体公司,也是曾经孵化出包括英特尔、AMD、美国国家半导体、LSI Logic、VLSI Technology、Intersil、Altera和Xilinx等等业界众多巨擘的飞兆半导体,现在已成为专注于功率和能效的公司;曾经在上世纪80年代中连续多年位居半导体产业榜首的NEC,在90年代中跌出前10后,再也没有东山再起;更有与发明第一块晶体管的贝尔实验室有着直系血缘的杰尔(Agere),通过多次变卖,被“五马分尸”找不到踪迹。 世上没有常胜的将军。曾经的呼风唤雨,并不代表能成为永久的霸主。当我们用历史的眼观来看今天的半导体产业,我们有什么启示呢?全球半导体产业正在东移,以台积电为首的晶圆代工将成为全球半导体工艺与产能双双领先的公司;传统的IDM厂商都向轻资厂转变,65nm已鲜有IDM跟踪,至45nm时除了memory厂商外,仅剩英特尔一家了;私募基金正在加速半导体业的整合,未来每个产业仅有前五名是可以生存的;PC在主导半导体产业10多年后,正让位于消费电子,英特尔还能守住霸主地位多久?以台湾联发科为代表的新一代IC公司的崛起,使得众多欧美大厂不再轻易放弃低利润行业,未来的半导体产业会逐渐成为一个成熟的产业,一个微利的产业。 回忆过去60年,哪些人是我们必须记住的?哪些重大事件对业界影响最大?《国际电子商情》记者与来自全球的半导体精英对话,为读者翻开那一页页可能早已忘却的记忆,更重要的是,通过与他们的对话,我们努力描绘出未来10年半导体产业的版图。 半导体精英话60年重要里程碑 1947年12月23日,贝尔实验室在助听器中展示了人类第一块晶体管,William Shockley被誉为晶体管之父。在随后的10年中,晶体管技术不断进步,包括随后发明的单锗晶硅、生长结型晶体管、接触型硅晶体管和固态晶体管开关等,德州仪器和贝尔实验室分别在1954年推出晶体管收音机和全晶体管计算机,并且,1957年美国第一个轨道卫星“探测者”也首次使用了晶体管技术。这10年间,半导体产业处于最激动人心的“发明时代”。 然而,1958年8月,另一个重大的里程碑出现了,它就是德州仪器的Jack Kilby将分离的晶体管和器件集成到一个锗片上,向人类展示了第一片集成电路;次年,飞兆半导体的Robert Noycy发明了平面工艺技术,使得集成电路可量产化,从此,人类从半导体的“发明时代”进入了“量产时代”。尽管很多人认为是Jack Kilby发明了集成电路,但由于Robert Noycy发明了制造性更强的集成电路,他与Jack Kilby一起理应被称为集成电路的共同发明人。对此,美国国家半导体亚太区副总裁暨董事总经理祁骅天对《国际电子商情》记者解释:“Jack Kilby发明的集成电路是在锗片上,而Robert Noycy发明的集成电路是在硅片上,将半导体产业引入量产阶段。” 集成电路发明之后的50年又有哪些人和事是我们不能忘怀的呢?以下将引用本刊近期对领先半导体公司VIP的访问,听他们谈谈50年来半导体产业最重要的里程碑。 德州仪器中国区总裁谢兵:虽然William Shockley在1947年发明了晶体管,取代了低效的电子管,但科学家面临的另一个问题是如何将更多的晶体管集成在一块电路中。Jack Kilby的发明不仅开创了电子技术历史的新纪元,也彻底改变了人类的生活方式。1971年,全球第一个单芯片微处理器问世从此打开机器设备像个人电脑一样可嵌入智能的未来之路。1982年,德州仪器研发出全球第一枚数字信号处理器(DSP)TMS320,该处理器采用32位算术逻辑单元,每秒能处理500万条指令(MIPS),与当时许多大型计算机的速度不相伯仲。这项发明开启了数字世界的无限可能。 美国国家半导体亚太区副总裁暨董事总经理祁骅天:1965年Bob Widlar发明的运算放大器具有重大意义,因为它是模拟器件的基本构成部分。 安森美半导体执行副总裁兼首席运营官John Nelson:1963年F.M.Wanlass和C.T.Sah首次提出CMOS技术;1965年Gordon Moore提出摩尔定律,它预测了硅芯片每隔18个月集成度就会翻一番。CMOS器件的发明有效地实践了摩尔定律。 英飞凌科技亚太私人有限公司总裁兼执行董事潘先弟:1970年,英特尔推出第一片DRAM;次年,英特尔推出SRAM和EPROM,和第一片微处理器4004。记忆体芯片和微处理器的发明,决定了半导体工业发展的方向。 瑞萨半导体管理(中国)有限公司CEO山村雅宏:20世纪80年代,日本制造商在半导体产业中处于领先地位,他们采用基于DRAM的IDM商业模式。日本人几乎占领了全球半导体市场的半壁江山。他们以全面出击的策略来扩张业务,利用成功的内存业务为其创造资源,在MCU、ASIC、分立器件多个市场进行扩张;到了90年代,PC在全球普及,日本制造商的风头减弱,其它IC厂商通过把资源集中到PC业务而取得长足发展。英特尔和德州仪器等美国制造商恢复生机。特别是英特尔,通过专心致志地搞MPU,从NEC手中夺得了全球第一的排名。同时,韩国和台湾地区厂商也把有限的资源集中到核心竞争力上面,加入了竞争;到了21世纪,除了PC以外,汽车和手机等产业对半导体的需求浮现,专注于系统方案的LSI厂商随之复苏。结果,新市场开始出现,它不同于源自MPU或者内存专业厂商的市场。展望未来,我们相信2010年左右将出现半导体产业的下一个重要里程碑:即进入半导体无处不在的时代——需要大量半导体把一切设备连接起来。 Altera高级副总裁Don Faria:Vinton Cerf和Darpa在1973年发明互联网,彻底改变了我们的生活方式。互联网及其带来的一切应用的核心是半导体技术。Altera在1983年发明第一个可重编程芯片(PLD),允许工程师对其设计进行重新编程、修改和升级,而且不需额外成本。 凌阳科技股份有限公司副总经理沈文义:1980年,IBM PC XT问世,画出产业标准的大道(Wintel),加速半导体技术发展的进程,让摩尔定律得以持续。Apple II个人计算机的问世,实现人人有计算机的世界。 赛灵思CTO Ivo Bolsens:1984年赛灵思发明第一块现场可编程器件FPGA;其创始人Bernie Vonderschmitt开创了无厂模式,后来世界上的多数领先半导体厂商都接受了这种模式。 博通公司主席兼CEO Henry Samueli:1987年台积电建立,成为全球第一家纯粹的晶圆代工厂,促进了无晶圆半导体产业的繁荣。 Microchip大中国区市场营运经理曹介龙:1988年,精简指令集芯片(RISC)技术实现商业化,支持速度更快和占用内存更少的优势。 中星微电子CTO杨晓东:1988年16M DRAM问世,1平方厘米大小的硅片上集成有3,500万个晶体管,标志着半导体产业进入超大规模集成电路(ULSI)阶段。 MIPS科技市场副总裁Jack Browne:1997年华润上华(CSMC)的成立在中国开创了开放式代工模式。 澜起科技董事长兼CEO杨崇和:中国909计划和华虹集团的成立,标志着当代半导体产业在中国大陆的开始。 圣邦微电子总裁张世龙:2005年中星微电子在纳斯达克成功上市无疑是中国半导体产业的一个重大事件,风险投资在其后的一年多时间里对中国半导体行业空前关注和看好。 恩智浦半导体大中华区区域执行官叶昱良:2006年,私募基金加入半导体行业是一个里程碑。这会变成一种趋势,这个趋势基于大者恒大的定论, 在IC产业通常也只有前5强才能生存。 应用材料公司副总裁姚公达博士:半导体技术的发展也对其他邻近产业的发展起到了积极的影响。举个例子来说,平板显示器的生产中很多工艺技术都是来源于半导体制造技术;对于新兴的太阳能面板制造业也是一样,我们在半导体和平板显示器制造上的薄膜技术也可以借鉴到薄膜太阳能电池的制造上。

    时间:2007-12-20 关键词: 晶体管技术

发布文章

技术子站

更多

项目外包