当前位置:首页 > 智能调光
  • 基于ZigBee技术的智能调光系统

      能源危机正在威胁着人类,要想可持续发展,节能环保势在必行。一直以来,千家万户的照明灯都是用白炽灯和荧光灯,但是它们的发光效率低,造成了大量的电能浪费。白光LED照明灯的出现,解决了原有灯具发光效率低等缺点,但是,在外界不是特别暗的时候,如果将室内的白光LED灯全部打开,又会造成不必要的电能浪费。因此,本文提出了一种可以根据外界自然光强度变化而自动调整白光LED灯亮度的智能照明系统,并且可通过ZigBee网络进行本地无线开灯或关灯,不仅省时省力、无额外的无线通信费用,而且通过以太网,还可以实现远程监控。 1 整体设计方案     智能调光系统主要为教室、大型办公场所等建筑而设计,因此,以某个教学楼为例,讲述了方案整体设计思路,系统硬件结构图如图1所示。该系统由远程监控机、主监控机、ZigBee网络协调器、ZigBee终端设备、白光LED和光照传感器等部分组成。     工作过程如下:     ZigBee网络协调器组建网络成功后,将ZigBee终端设备加入网络。光敏电阻对室内工作面上的光照强度进行光强采集,将采集的实时光强信号传送给ZigBee终端设备,对检测值和给定值进行对比,调节输出的PWM波占空比,即可调节自光LED的光强;同时,ZigBee终端设备将刚采集的光强信号传送给ZigBee网络协调器,网络协调器通过串口将数据传送给主监控机进行显示;同时,在主监控机上点击一键开灯或一键关灯,可以通过ZigBee网络打开白光LED灯或将其关闭。另外,通过以太网,异地的远程监控机也可以对室内照明灯进行控制、监视。 2 系统硬件部分 2.1 ZigBee网络协调器     系统的硬件核心是CC2430芯片,ZigBee网络协调器和终端节点均由CC2430芯片构成。它是一个真正的系统芯片(SoC)COMS解决方案,可以满足ZigBee为基础的2.4 GHz ISM波段应用,且成本低,功耗小。它包括1个高性能的2.4 GHz直接序列扩频射频收发器核心和1个工业级小巧高效的8051控制器,芯片上集成了ZigBee射频(RF)前端、内存和微控制器。     ZigBee网络协调器负责ZigBee网络的建立、节点的管理等任务,需要对接收的数据进行处理,以及通过RS 232串口与PC机连接通信。     本系统选择CC2430的UART0作为串口通信接口,其对应的管脚如表1所示。     为了使系统稳定工作,CC2430芯片要求供电电压为3.3 V。为此设计了一种基于AMS1117-3.3的稳压电路,将5 V左右的电压稳定在3.3 V。     CC2430与PC机之间可以通过RS 232通信协议,选用MAX232芯片实现串口电平转换功能。ZigBee网络协调器原理图如图2所示。 2.2 ZigBee终端设备     终端设备硬件结构框图如图3所示。     工作过程如下:将光照检测电路获得的电压信号送给CC2430芯片的A/D转换接口,经过内部编程,通过调节PWM波的占空比来调节白光LED驱动芯片TPS61040输入控制端EN的控制信号,使驱动白光LED灯发光的电流稳定在所需光强。     光敏电阻是一种经济可靠的光电转换器件,利用它的光导效应,当光线照在光敏电阻上时,电阻阻值下降。系统设计采用MG41型光敏电阻。     系统采用恒流驱动电路,使用TI公司的TPS61040芯片。TPS61040开关频率高达500 Hz,由于芯片内部与SW引脚相连的MOSFET是一个低电阻集成电源FET,它有助于实现极高的效率。本文设计的TPS61040白光LED驱动电路如图4所示。该电路可以实现负载断开、过电压保护、PWM调光等功能。 3 系统下位机软件设计 3.1 网络协调器节点设计     本系统的网络协调器有两个任务,一个是与PC机进行通信,互相传送数据;另一个是与其他终端设备进行ZigBee通信,其软件流程图如图5所示。 3.2 终端设备节点设计     终端设备的软件设计包括A/D转换、定时计数器等,其中最主要的是控制光强PWM波占空比设计。      PWM控制就是对脉冲宽度进行调制的技术。系统采用定时器T4,它是8位定时/计数器,支持输出比较和PWM输出,光强控制策略如图6所示。     光强控制策略如下:     (1)当实际光强大于光强合适区的上限时,调节定时器的寄存器,使得PWM占空比变小,光强变小,逐渐回到光强合适区;     (2)当实际光强小于光强合适区的下限时,调节定时器的寄存器,使得PWM占空比变大,光强变大,逐渐回到光强合适区;     (3)当实际光强在光强合适区中时,由于系统误差的存在,以及人眼对光强小范围的变化不是特别敏感,可以不用调节定时器的寄存器。 4 系统上位机软件设计     监控机系统采用LabVIEW进行编程,它的主体由状态机结构、串口通信部分组成,可以实现一键开灯、一键关灯功能,并且观察光照值。状态机功能列表如表2所示。     通信串口设置主要用于设置PC机与网络控制器的串口通信参数,包括串口端口的选择、波特率、奇偶检验位、数据位和停止位等。     为了使系统运行安全可靠,还设计了安全登录子系统,即只有先登录该系统才能完成整个系统的监控。登录程序如图7所示。     最后,将主监控机设置为服务器系统,通过网站技术可以让接入以太网的PC机通过远程登录到该服务器。这样,就可以远程监控整个系统的运行。 5 结语     经过测试,该系统可以满足功能方面的需求,用TI的SmartRFStudio信号测试软件在对ZigBee模块无线收发与数据传输可靠性的测试时,结果比较好。在20多米的有障碍空间中,使得CC2430工作在最强发射功率下,可以比较稳定传输数据,这符合ZigBee的理论值。     用手遮挡光敏电阻来模拟室内光线变暗,白光LED的亮度变强;手移开,白光LED亮度变暗。将系统的调节频率提高后,可以实现无级调光,并在上位机上监控运行状况。

    时间:2011-03-31 关键词: 系统 Zigbee 智能调光

  • ZigBee实现智能调光系统

    白光LED照明灯的出现,解决了原有灯具发光效率低等缺点,但是,在外界不是特别暗的时候,如果将室内的白光LED灯全部打开,又会造成不必要的电能浪费。因此,本文提出了一种可以根据外界自然光强度变化而自动调整白光LED灯亮度的智能照明系统,并且可通过ZigBee网络进行本地无线开灯或关灯,不仅省时省力、无额外的无线通信费用,而且通过以太网,还可以实现远程监控。   1 整体设计方案    智能调光系统主要为教室、大型办公场所等建筑而设计,因此,以某个教学楼为例,讲述了方案整体设计思路,系统硬件结构图如图1所示。该系统由远程监控机、主监控机、ZigBee网络协调器、ZigBee终端设备、白光LED和光照传感器等部分组成。   工作过程如下:   ZigBee网络协调器组建网络成功后,将ZigBee终端设备加入网络。光敏电阻对室内工作面上的光照强度进行光强采集,将采集的实时光强信号传送给ZigBee终端设备,对检测值和给定值进行对比,调节输出的PWM波占空比,即可调节自光LED的光强;同时,ZigBee终端设备将刚采集的光强信号传送给ZigBee网络协调器,网络协调器通过串口将数据传送给主监控机进行显示;同时,在主监控机上点击一键开灯或一键关灯,可以通过ZigBee网络打开白光LED灯或将其关闭。另外,通过以太网,异地的远程监控机也可以对室内照明灯进行控制、监视。   2 系统硬件部分   2.1 ZigBee网络协调器   系统的硬件核心是CC2430芯片,ZigBee网络协调器和终端节点均由CC2430芯片构成。它是一个真正的系统芯片(SoC)COMS解决方案,可以满足ZigBee为基础的2.4 GHz ISM波段应用,且成本低,功耗小。它包括1个高性能的2.4 GHz直接序列扩频射频收发器核心和1个工业级小巧高效的8051控制器,芯片上集成了ZigBee射频(RF)前端、内存和微控制器。   ZigBee网络协调器负责ZigBee网络的建立、节点的管理等任务,需要对接收的数据进行处理,以及通过RS 232串口与PC机连接通信。   本系统选择CC2430的UART0作为串口通信接口,其对应的管脚如表1所示。     为了使系统稳定工作,CC2430芯片要求供电电压为3.3 V。为此设计了一种基于AMS1117-3.3的稳压电路,将5 V左右的电压稳定在3.3 V。   CC2430与PC机之间可以通过RS 232通信协议,选用MAX232芯片实现串口电平转换功能。ZigBee网络协调器原理图如图2所示。   2.2 ZigBee终端设备   终端设备硬件结构框图如图3所示。   工作过程如下:将光照检测电路获得的电压信号送给CC2430芯片的A/D转换接口,经过内部编程,通过调节PWM波的占空比来调节白光LED驱动芯片TPS61040输入控制端EN的控制信号,使驱动白光LED灯发光的电流稳定在所需光强。   光敏电阻是一种经济可靠的光电转换器件,利用它的光导效应,当光线照在光敏电阻上时,电阻阻值下降。系统设计采用MG41型光敏电阻。   系统采用恒流驱动电路,使用TI公司的TPS61040芯片。TPS61040开关频率高达500 Hz,由于芯片内部与SW引脚相连的MOSFET是一个低电阻集成电源FET,它有助于实现极高的效率。本文设计的TPS61040白光LED驱动电路如图4所示。该电路可以实现负载断开、过电压保护、PWM调光等功能。   3 系统下位机软件设计   3.1 网络协调器节点设计   本系统的网络协调器有两个任务,一个是与PC机进行通信,互相传送数据;另一个是与其他终端设备进行ZigBee通信,其软件流程图如图5所示。   3.2 终端设备节点设计   终端设备的软件设计包括A/D转换、定时计数器等,其中最主要的是控制光强PWM波占空比设计。   PWM控制就是对脉冲宽度进行调制的技术。系统采用定时器T4,它是8位定时/计数器,支持输出比较和PWM输出,光强控制策略如图6所示。       光强控制策略如下:   (1)当实际光强大于光强合适区的上限时,调节定时器的寄存器,使得PWM占空比变小,光强变小,逐渐回到光强合适区;   (2)当实际光强小于光强合适区的下限时,调节定时器的寄存器,使得PWM占空比变大,光强变大,逐渐回到光强合适区;   (3)当实际光强在光强合适区中时,由于系统误差的存在,以及人眼对光强小范围的变化不是特别敏感,可以不用调节定时器的寄存器。   4 系统上位机软件设计   监控机系统采用LabVIEW进行编程,它的主体由状态机结构、串口通信部分组成,可以实现一键开灯、一键关灯功能,并且观察光照值。状态机功能列表如表2所示。     通信串口设置主要用于设置PC机与网络控制器的串口通信参数,包括串口端口的选择、波特率、奇偶检验位、数据位和停止位等。   为了使系统运行安全可靠,还设计了安全登录子系统,即只有先登录该系统才能完成整个系统的监控。登录程序如图7所示。     最后,将主监控机设置为服务器系统,通过网站技术可以让接入以太网的PC机通过远程登录到该服务器。这样,就可以远程监控整个系统的运行。   5 结语   用手遮挡光敏电阻来模拟室内光线变暗,白光LED的亮度变强;手移开,白光LED亮度变暗。将系统的调节频率提高后,可以实现无级调光,并在上位机上监控运行状况。  

    时间:2011-08-11 关键词: 系统 Zigbee 智能调光

  • LED照明驱动技术的现状与未来

     LED照明驱动技术发展到现在,在业界已呈现多种解决方案并行的局面,本文主要讨论可调光的LED照明驱动技术。总结所有可调光解决方案,如果从拓扑结构上分,可以归纳为两级AC/DC转换LED电流驱动方案、单级AC/DC转换LED电流驱动方案、线性AC/DC转换LED电流驱动方案;从调光控制接口上分,可以归纳为切相调光LED电流驱动方案(又称为晶闸管调光LED电流驱动方案)和智能接口调光LED电流驱动方案(主要分为I2C接口调光和PWM接口调光两种),智能接口控制信号又可以分为ZigBee、蓝牙、Wi-Fi芯片的相关接口。综上所述,LED照明驱动技术的相关分类可详见图1。 图1:LED调光拓扑结构和调光控制分类 可调光解决方案的发展 两级AC/DC转换LED电流驱动方案曾经由于良好的性能和无输出电流纹波而被业界所广泛接受,但是这种方案成本太高。在2012年Marvell公司成功推出性能优越的单级AC/DC转换LED电流驱动方案EM8183后,两级AC/DC LED电流驱动方案逐渐被业界所放弃。另一方面,线性AC/DC转换LED电流驱动方案已经在技术领域讨论和在业界存在接近十年之久,这一方案因为其在切相调光时无法克服的电流纹波和闪烁指数而始终没有被业界接受。目前,单级AC/DC转换LED调光电流驱动方案由于其优越的性价比已经成为LED调光解决方案的主流。这里主要讨论单级AC/DC转换LED电流控制的切相调光和智能接口调光解决方案。 单级AC/DC转换电流控制方案 切相调光(晶闸管调光)的关键是LED驱动器在任何工作点都可以提供足够的擎住电流(Latching Current)和维持电流(Holding Current)。足够的擎住电流和维持电流是晶闸管在物理上满足正常工作的条件。在这一基础上,LED驱动器在性能上要保证精确的电流控制、足够的调光器兼容性、平滑的调光曲线、足够宽的调光范围、足够低的闪烁指数等。LED驱动器在可靠性上要保证较高的效率、足够低的热损耗、无突出热点和足够长的产品生命周期。此外,尽量降低LED驱动器工作时的音频噪声也是产品成功的关键之一。在上述这些方面,业界都有很多相关的专利技术。其中Marvel l在这一领域拥有超过70项美国和国际专利保证产品的性能,同时还能保护公司和客户的利益。 作为业界第一个单级AC/DC转换LED电流控制方案,Marvell在2 012年成功推出性能优越的切相调光LED 驱动芯片EM8183。该驱动芯片在业界推出的最初阶段即被LED照明领域的领先企业所接受和采用。EM8183 LED驱动芯片给相关的企业和客户带来了巨大的利益,并推动了照明领域的技术发展和创新,并在切相调光的创新上奠定了其在业界的经典地位。继EM8183之后,Marvell在2014年初又推出了第二代切相调光LED驱动芯片EM8187。该驱动芯片在EM8183的基础上,提高了在调光器兼容性、效率和EMI方面的性能,并降低了系统的成本。EM 8187应用了多项Marvel l专利技术以提高其在兼容性、热损耗控制、效率、调光性能方面的性能。图2是EM8187单级切相调光解决方案的参考电路板图,EM8187需要极少的外围器件,同时提供了整个系统极高的可靠性和卓越的性价比。 图2:单级切相调光系统参考电路板图 图3:单级智能调光系统参考电路板图 智能调光性能逐步提升 在LED智能调光技术方面,现阶段业界也主要选择了性价比优越的单级AC/DC转换驱动方案,而LED智能调光接口的选择主要有I2C接口和PWM接口两种。因为只需要一个接口控制信号,因而PWM接口具有连接简单的特点,这也有利于软件的实现。但是在低端光通量的工作状态下,PWM接口调光方案通常会有阶梯调光的现象,即通常所说的低端阶梯调光问题,这是因为PWM精度不够或硬件软件不够匹配所造成的。I2C接口智能调光需要两个连接信号,I2C智能调光可以达到优越的性能和平滑的低端光效输出。更加重要的是,I2C接口除了调光控制之外,还提供了数据采集和传输的功能,可实现并为LED照明的云端接入提供基本的功能单元。Marvell在2014年1月推出了业界第一个I2C接口单级AC/DC转换驱动方案EM8189。 EM8189 I2C接口单级智能调光解决方案可以达到1%的调光精度、平滑的调光性能、较低的待机功耗

    时间:2014-12-25 关键词: LED 照明 智能调光

  • 基于单片机的红外遥控智能调光调速器的设计

    摘要:设计了一种可以对普通电灯(风扇)进行无级调光(调速)的系统。常用的电视机万能红外遥控器进行操作。通过摇控器上的两个按键进行控制,一个控制设备负载的开与关,一个控制调光(调速)。系统还有自动记忆功能。同时,系统还设有手动按键调节与触摸调节功能。 关键词:无级调光(调速);红外摇控;记忆 0 引言     电子遥控技术已经十分成熟了,它能为我们的生活带来方便。在我们日常生活中,处处都可以见到它的影子。比如:在小汽车上,有遥控电子锁。遥控玩具、空调与电视机也用到了遥控。常见的遥控,一是无线遥控,二是红外遥控。红外是一种不可见光,它介于可见光和微波之间,既有可见光的性质,如:直线传播、反射、折射等,又具有微波的一些特性,如穿透力强。红外线遥控是目前使用最广泛的一种遥控手段。由于红外线遥控装置具有体积小、功耗低、功能强、成本低等特点,因而,继彩电、录像机之后,在录音机、音响设备、空调机以及玩具等其它小型电器装置上也纷纷采用红外线遥控。工业设备中,在高压、辐射、有毒气体、粉尘等环境下,采用红外线遥控不仅安全可靠而且能有效地隔离电气干扰。     借助于红外线具有的上述特性。利用红外传感器具有灵敏度高、响应速度快和光谱范围窄的特点,同时利用单片机结构紧凑、可靠性高、数据处理能力强、速度快、功耗小、成本低的特点、可以制作灵敏度高、抗干扰能力强、性能优良的红外遥控装置。 1 红外遥控原理     通用的红外遥控系统由发射和接收两大部分组成。应用编/解码专用集成电路芯片来进行控制操作,如图1所示。发射部分包括键盘矩阵、编码调制、LED红外发送器:接收部分包括光、电转换放大器、解调、解码电路。发射电路采用普通电视机上所使用的万能遥控器,在其上选择两个电视机不用的按键即可。     由电视机万能遥控器发射红外编码,利用一体化红外接收头接收到红外编码经放大、解调后,再经过单片机软件解码后,驱动相应的I/O口工作,即可完成相应的控制功能。 2 单元模块设计     本系统主要部件包括一体化红外接收传感器、STC89C52单片机系统、调光调速系统,电源电路。 2.1 一体化红外接收传感器电路设计     HS0038是一种应用于遥控接收或其它方面的小型一体化接收头,中心频率为38.0kHz,可改善自然光的反射干扰,独立的PIN二极管前置放大器集成在同一封装上,内部原理见图2。     HS0038环氧树脂封装提供一个特殊的红外滤光器,可防止自然光的干扰,HS0038有着极好的抗自然光的性能,可防止无用脉冲的输出。     将HS0038一体化接收头输出端接在单片机的P3.2口上。一体化红外接收头接收到红外编码经放大、解调后,再经过单片机外部中断0 P3.2口,利用软件对P3.2口上的电平信号进行分析解码即可。 2.2 STC89C52单片机系统     单片机系统为最小应用系统,包括电源电路、晶振电路、复位电路。这里不再作详细介绍。 2.3 调光调速系统     电路由输入缓冲器、锁相环、控制逻辑、亮度记忆、相角指针、数字比较器和输出驱动器组成,见图3。电路的基本工作原理为(以调光为例):人体带电与市电同频,当人体接触触摸片时,经输入缓冲级的削波、放大、整形,成为标准的MOS电平。触摸持续时间大于32ms小于332ms时,控制逻辑部分控制电路呈开关工作状态。当触摸持续时间大于332ms时,控制逻辑部分控制电路呈调光工作状态,输出触发脉冲相位角在41°至159°之间连续周期变化,并根据人眼的感受力,分为快、慢和暂歇三个过程。当触摸结束时,亮度记忆对该时相位角进行记忆,若再施与大于32ms,小于332ms的触摸,电路呈关状态时,相位角仍由该部分记忆,保证电路在下一次开状态时,保持原选定相位角,光源保持原亮度。触发脉冲与市电的同步,由锁相环保证,电路的工作时钟,也均由其产生。同时,电路还具有遥控(即远端触发)功能,和渐睡(即由亮至暗,最后关闭)功能,其延续时间由外电路设置。     利用单片机可对上述电路进行遥控。以调光为例:将上述电路中的开关AN1并联在一个继电器K1常闭触头的两端。利用红外遥控器中的一个按键控制单片机对该继电器进行操作,每按一次该按键,继电器K1接通与关断(时间30ms左右)一次,即可实现对灯的开与关。将AN1两端再并联在另一个继电器K常闭的两端,利用红外遥控器中另一个按键控制单片机对该继电器进行操作,按一下该按键,继电器K2接通(调光中)。再按一下该按键,控制继电器K2关断(调光结束)。这样,就实现了红外遥控调光功能。调速原理与此一致,这里不作赘述。 2.4 电源电路     电源可采用阻容降压法,电路如图4所示,注意电容C5要选择高压电容,电阻R4也需要一定的功率,可选0.5W的碳膜电阻。 3 程序设置     软件设计主要分为主程序、遥控接收解码子程序、继电器驱动程序。利用单片机对红外信号进行快速解码的时候,采用外部中断的方式,中断的触发方式为低电平触发方式,具体的算法为:在外部中断服务程序中,如果起始码和结果码正确,进行解码,否则退出。在解码的时候,等待第一个高电平的到来,即红外遥控引导信号(一个9ms的低电平和一个4.5ms的高电平),然后收集用户码高8位和8位键值反码数据,并存入一个数组中。解码的关键是如何识别“0”和“1”。程序中设计一个0.14ms的延时函数,作为单位时间,对脉冲维持高电平的时间进行计数,并把此计数值存入一个变量中。看高电平保持的时间是几个0.14ms。高电平保持时间必须比0.56ms长些,但又不能超过1.12 ms,否则如果该位为“0”,读到的已是下一位的高电平,因此,在程序中,取0.14×6=0.84ms左右比较合理。     “0”和“1”的具体要求判断由程序中的以下语句判断:     IRCOM[j]=IRCOM[j]>>1;∥计数小于6,收到的是0,数据最高位补0。     if(N>=8){IRCOM[j]=IRCOM[j]|0x80;}∥计数大于等于6,收到的是1,数据最高位补1。     另外当高电平计数为30时(0.14×30=4.2ms),说明有错误,程序退出。     程序流程图见图5。 4 结论     红外遥控调光电路的关键是红外遥控的解码,发射时利用现有的电视机万能遥控,使其有了第二功能。在解码红外信号上,应用了脉冲位置调制(PPM)法。即采集其高低电平宽度的方法,可以还原出信号的各个编码,简化了电路。同时,采用了专用调光调速芯片来控制负载,增强了系统功能、并且能安全、可靠地工作。本设计非常简单的实现了红外遥控信号解码,完成了无级调光与调速功能,效果令人满意。制作好的电路见图6、图7。     源程序:                 总电路图:  

    时间:2013-03-08 关键词: 红外遥控 单片机 智能调光 调速器

  • LED智能调光在商业照明应用中快速增长

    LED照明历经“寒冬”的洗礼,预计2013年将迎来市场爆发期,照明行业已全面进入LED节能时代,这也意味着LED照明行业趋向成熟,行业发展趋向平稳增长。未来LED照明市场增长潜力可见,前景值得期待。 近日,Marell绿色技术产品技术行销总监LanceZheng在2013产业和技术展望媒体研讨会上接受阿拉丁照明的提问曾提到,LED只能调光将在商业照明应用中得到快速增长,“1、随着LED照明价格的下降,预计2014到2015年会呈现指数式增长;2、2012美国照明市场将朝着可调光方向转换;3.、无线LED照明智能控制发展势头迅猛。” 据市场预计,明后两年将是LED照明市场至关重要的时期,各家企业也都纷纷在做一些技术储备和方案备选,以待市场爆发时全力投入。其中,LED智能调光在商业照明应用中有望得到迅猛增长。 “在LED照明应用中,调光技术面临的挑战非常大。”Marvell绿色技术产品技术行销总监LanceZheng表示,当前面临的主要挑战在于LED光源价格在不断下降,但驱动电子技术并没有很大的革新,价格一直居高不下,成本上有压力。其次,由于LED照明多采用电流驱动模式,而现有的调光器多是电压调光,所以在兼容性方面的挑战也相当大。此外,电源的轻薄化趋势也要求LED驱动器要有更小的体积。而作为消费者,LED照明产品需要借助驱动IC调光技术提供给消费者独特的感官体验。 同时,MarvellLED照明大规模应用的挑战:1、成本高居不下;2、现有基础设备的兼容性没有得到大规模的解决;3、受众消费需求多种多样。为应对上述市场发出的挑战,Marvell作为全球领先的存储、通信和消费电子产品解决方案供应商,拥有行业领先的LED驱动芯片和终端只能照明解决方案,在创新LED驱动器电子器件方面进行了长期的研发。LanceZheng透露,目前公司已经开发出创新的混合信号LED驱动架构,可为LED照明应用提供高效率、高功率因数和低谐波,而高级调光技术则确保深度调光以及现有照明架构的兼容性。此外,集成电路(IC)的高集成可降低物料成本,允许使用体积小巧的印刷电路板(PCB)。 此外,Marvell面向改型灯泡家庭市场所研发的88EM8183解决方案,支持宽电压输入以及从几瓦到100瓦的LED输出功率范围。高度集成的88EM8183LED驱动器IC采用了Marvell独特的混合信号架构和先进的调光控制技术,可平滑地实现低至1%LED电流的深度调光,相比之下,同类LED驱动器解决方案一般仅能实现10%至20%的调光。以这种幅度调光,人眼感觉不到光强有很大的变化,因此88EM8183显著提高了性能。这使照明OEM厂商和ODM厂商能极大地减少设计工作,并通过采用一种产品平台的方式,提高运行效率,减少LED灯的SKU编码数量,简化库存管理。 1.采用了先进的调光控制算法,符合美国国家电气制造商协会SSL6(NEMASSL6)调光标准的要求。 2.采用了Marvell独特的原边电流控制方法,该方法无需光耦和有关的反馈电路,同时在很宽的AC输入范围内提供非常高的调节准确度。 3.集成了高压启动电路,以在加电时供电,从而无需外部场效应晶体管(FET)和有关的电源电路。 4.可监视调光器状态,并管理调光器负载,以通过内部的数字内核和模拟电路保持正常工作,从而无需市场上现有解决方案所需的外部调光器泄放电路。 5.通过独特的设计方法,实现了高达90%的效率、高于0.95的功率因数和低于20%的总谐波失真,使照明原始设备制造商和原始设计制造商能轻松超过“能源之星””的要求。 6.针对隔离式和非隔离式LED灯,支持反激式和降压-升压型拓扑。 每一个新兴行业的发展都要经历起步,发展,成熟,衰退的过程,LED智能调光在商业照明中的大范围应用必然需要不断的技术革新,LED室内照明才能走向成熟,商业照明才能破茧而出。

    时间:2013-01-22 关键词: 快速增长 LED 智能调光 商业照明

发布文章

技术子站

更多

项目外包

更多

推荐博客