中心议题:医疗设备中的电容检测技术的分析解决方案:使用容性传感器电极的器件开发高性能电容数字控制器电容检测不仅用在您的智能手机中;在必须与人体皮肤接触的医疗设备等产品中,它也有用武之地。本文介绍如何使用电
在很多液体化工产品和中间体中,水分含量是产品质量的重要标志之一,过多的水分会破坏化学反应,产生副产品,降低收率,在复合前事先测定乙酯中的水分含量就显得非常重要了。精确测定产品中的水分含量,不但可事先避
风力发电站(WindPower)一般简称风电站,属绿色能源。通过传动轴方式,将耸立于山坡或海边的高空扇叶转动的动能传送至发电机使发电机转动产生电能,再使用升压变压器将电压升高传送到较远处的变电站,再由变电站进行降
一般来说,含碳燃料,例如煤气或丙烷很难作为燃料电池的燃料。虽然如果燃气轮机和燃料电池能够组成混合系统,可将能量利用率从目前的50%提高到80%,减少提供同等能量所需的燃煤量从而减少二氧化碳排放。但含碳燃料会
检定人员在检定热电偶过程中,对于接线柱不牢靠、热电偶短路或捆扎偏离几何中心等常见问题导致的所测数据不准确的情况,一般都能及时发现轻松处理,但是会遗忘一些影响检测结果却容易被忽视的问题。一、热电偶的长度
引言恶性肿瘤严重危害着人类的健康,但是对于早期恶性肿瘤的患者由于没有明显的症状,所以检测相对而言比较麻烦,人们也逐渐认识到了检测的重要性。下面对一款恶性肿瘤早期测试仪做下简单的介绍。恶性肿瘤电化学筛查
血糖测量通常采用电化学分析中的三电极体系。三电极体系是相对于传统的两电极体系而言,包括,工作电极(WE),参比电极(RE)和对电极 (CE)。参比电极用来定点位零点,电流流经工作电极和对电极工作电极和参比电极构成一
酸度计是实验室中经常使用的一种仪器仪表,也常常被称为pH计。酸度计一般由电极和电计组成,用来精密测量液体介质的酸碱度值,配上相应的离子选择电极也可以测量离子电极电位MV值,因此应用范围十分宽广。酸度计种类繁
电荷藕合器件图像传感器CCD(Charge Coupled Device),它使用一种高感光度的半导体材料制成,能把光线转变成电荷,通过模数转换器芯片转换成数字信号,数字信号经过压缩以后由相机内部的闪速存储器或内置硬盘卡保存
日本丰桥技术科技大学副教授武藤浩行开发出了利用静电作用,在高分子树脂和陶瓷表面粘附碳纳米管(CNT)的技术。使用该技术可以在液晶面板的基板表面形成CNT电极,因此,有望成为需要稀有金属——铟的ITO电极的替代技
电荷藕合器件图像传感器CCD(Charge Coupled Device),它使用一种高感光度的半导体材料制成,能把光线转变成电荷,通过模数转换器芯片转换成数字信号,数字信号经过压缩以后由相机内部的闪速存储器或内置硬盘卡保存
LED芯片是半导体发光器件LED的核心部件(LED灯),LED发光的原理主要在于LED芯片的P-N结。一般来说,半导体晶片由两部分组成,一部分是P型半导体,在它里面空穴占主导地位,另一端是N型半导体,在这边主要是电子。但这
有没有想过有一天,可以用到透明的手机,透明的电子产品?那感觉真是酷极了。虽然目前这还无法实现,但人们已经朝这目标迈进了一大步,因为近日美国科学家研发出了一种透明的锂离子电池,其柔韧性非常好,而且,成本
一、传统的微量元素检测的方法 目前可用于人体微量元素检测的方法有:同位素稀释质谱法、分子光谱法、原子发射光谱法、原子吸收光谱法、 X 射线荧光光谱分析法、中子活化分析法、生化法、电化学分析法等。但在临
LED芯片是半导体发光器件LED的核心部件(LED灯),LED发光的原理主要在于LED芯片的P-N结。一般来说,半导体晶片由两部分组成,一部分是P型半导体,在它里面空穴占主导地位,另一端是N型半导体,在这边主要是电子。但这
光纤传输损耗的产生原因是多方面的,在光纤通信网络的建设和维护中,最值得关注的是光纤使用中引起传输损耗的原因以及如何减少这些损耗。光纤使用中引起的传输损耗主要有接续损耗(光纤的固有损耗、熔接损耗和活动接
要点1.电容式触摸屏已广泛普及,但它易于因产品的噪声而产生虚假和错误的响应。2.噪声来源于内部DC/DC转换器子系统和显示驱动器。3.无论是处理显示屏、充电器、天线或其它来源的噪声,触摸IC都必须做到相同的用户体验
摘要:介绍了脑电物理头模型数据采集系统的总体设计方案,主要对实验中所遇到的一些问题进行了系统的分析和解剖,将实验结果与解析解进行了比较,两者是相符的。关键词:脑电(EEG) 数据采集 鉴相器 差动放大器脑电
1.led数码管的结构及检测方法LED数码管是由发光二极管构成的,亦称半导体数码管.将条状发光二极管按照共阴极(负极)或共阳极(正极)的方法连接,组成"8"字,再把发光二极管另一电极作笔段电极,就构成了LED数码管.若按规定
新日本无线推出粗铜线和半导体芯片铝电极实施丝焊的量产技术以提高可靠性和减轻环境负担为目的,新日本无线一直在持续研究开发用于产业设备、电动汽车(EV)、混合动力汽车及智能电网送电配电等需要高电压及大电流的应