当前位置:首页 > 设计教程
  • 基于nRF24E1的无线同声传译系统的设计与实现

    介绍了射频收发芯片nRF24E1的性能特点,阐述了基于此芯片的无线同声传译系统的系统结构,分析了语音发送和接收的工作原理以及实现本系统所要解决的关键问题,最后通过实验验证了系统的性能。 前言随着国际交流与合作的日益频繁,国际性的会议越来越多,来自不同国家和地区的代表用自己熟悉的语言进行发言讨论,这就需要有一套同声传译系统将发言的内容翻译成几种与会代表都能听懂的语言。目前,同声传译系统已成为国际性会议厅的必备设施。同声传译系统是在同时使用不同语种的会议场合,将发言者的语言(原语)由译员同步翻译(译语),并传递给听众的装置[1]。同声传译系统按传送方式可分为有线同声传译系统和无线同声传译系统[1]。无线同声传译系统按信号发射方式可分为红外线辐射式、无线感应式和调频发射式。由于调频发射式具有抗干扰能力强、覆盖面积大、成本较低等优点,所以本系统采用了调频发射式。本文设计与实现了基于无线射频收发芯片nRF24E1的同声传译系统。1. 无线射频收发芯片nRF24E1的特点介绍 nRF24E1芯片是北欧集成电路公司NORDIC推出的一款带2.4GHz无线收发器nRF2401和增强型8051内核的无线收发模块。该芯片的通道运算时间小于200μs,数据速率为1Mbps,不需要外接SAW滤波器,是目前世界首推的全球通用的低成本射频系统级芯片。内部嵌有与8051兼容的微处理器和10位9输入的模/数转换器,可以在1.9V~3.6V之间的电压下稳定工作;另外还嵌有电压调整器和VDD电压监视器。无线收发部分有与nRF2401同样的功能,该功能由内部并行口和内部SPI启动,每一个待发信号对于处理器来讲都可以作为中断进行编程,或者通过GPIO端口传送给微处理器。nRF24E1芯片可以在世界公用的ISM(工业、科学和医学)频段2.4~25GHz内实现无线通讯。其收发部分包含有分频器、放大器、调节器和两个收发单元,输出能量、频段和其它射频参数可通过射频寄存器方便地编程调节。在发送模式下,电流消耗只有10.5mA;在接收模式下,电流消耗也只有18mA,所以功耗相当低[2]。2. 同声传译系统的基本结构如图1所示,整个同声传译系统由主席单元、代表单元、译音单元和其他的一些辅助设备组成[6]:图1 整个系统的基本结构框图主席单元上有优先权按钮,一般分配给会议主持人或贵宾使用。整个系统的过程控制完全由主席单元来管理和控制。本系统把中央控制单元集成到主席单元上,中央控制单元是本系统的控制中心,实现对整个系统的软硬件(包括代表单元、主席单元、译音单元和音频接口设备)进行统一管理和指挥。其主要功能如下:(1)限制发言人数;(2)处理多种语言翻译通道;(3)具有发言申请功能,并可否决或批准代表的发言申请;(4)总音量调节及输入电平调节;(5) 配合视频切换台、高速云台摄像机及视频控制软件,可实现摄像机自动跟踪功能,当代表开启话筒时,摄像机会立即跟踪到该话筒。 代表单元用于发言人发言,其上面有申请发言的按钮。译音单元包括输入、输出及通讯部分,翻译人员使用译音单元把传送过来的原语或译语翻译成会议规定的语种。主席机、代表机和译音机之间通过nRF24E1无线收发芯片实现数据通信,它们的基本电路都是相似的,如图2所示: 图2 利用nRF24E1实现通信的基本框图 nRF24E1芯片是无线数据采集、收发部分的核心,通过内嵌的8051单片机内核,控制芯片内的A/D转换模块和无线收发模块nRF2401,从而实现数据的采集、传输和处理等功能。 EEPROM部分是nRF24E1芯片的程序存储器,其容量为4KB,内部存放系统运行所需的程序。当模块加电后先将EEPROM中的程序调入芯片的RAM中,然后运行程序。EEPROM通过SPI(串行外设接口)与nRF24E1芯片连接。 nRF24E1芯片内嵌有9通道的10位ADC模块,可对麦克风送过来的模拟的音频信号进行A/D转换。 nRF24E1具有一个可编程控制的PWM输出。使用时,通过编程可决定PWM工作在6位、7位或8位[1]。nRF24E1中PWM调制器的最大载波频率为64KHz,这个频率更易于数据接收后的过滤。 键盘和LCD显示屏实现系统的人机界面功能。 3. 语音的采集、发送及接收过程 会议代表的发言(原语)经麦克风拾音后,通过无线调频传输到译音单元,然后由翻译人员译成各种规定好的语言,再经无线调频把译音送到各个代表单元。 nRF24E1芯片内嵌有9通道的10位ADC,它的采样频率是8kHz,即每隔125μm采样一次;同时,PWM的输出值也是每隔125μm更新一次。nRF24E1之间在进行数据通信之前必须先同步化(握手)。在ShockBurst通信方式下,每个RF数据包含有24个字节或3ms的音频采样信号[7]。 语音的发送和接收过程如图3所示: 在发送端,ADC模块对麦克风送过来的模拟音频信号进行A/D转换;采集到的数字音频信号,在不够一个RF数据包之前,存储在微控制器8051内开辟的发送缓冲区(TxBuf)中;采样数据满包后,8051一边存储下一个数据包,一边把已满的数据包转移到RF前端去[7]。 在接收端,当RF前端收到1个有效的数据包,并且微控制器收到1个RF接收中断的时候,接收到的数据包中的有效数据部分可用RF前端的FIFO分离出来;然后,把分离出的有效数据部分存储到8051内的接收缓冲区(RxBuf);存在接收缓冲区的语音信号以PWM信号的形式输出;PWM输出通过8位PWM引擎来驱动,不需要微控制器分担处理任务[7];最后语音信号被送到扬声器。图3 语音的采集、发送和接收 4. 系统实现的关键技术4.1 单通道收发模式和双通道接收模式的切换 同声传译系统的各个设备之间主要进行的是语音信号的通信。原语通过无线调频发送到代表单元和译音单元;译音单元又把接收到语音信号翻译成规定的语种,再发送到代表单元和其它的译音单元。所以实现各个设备之间的语音信号通信是最基本的要求。通过nRF24E1芯片中的nRF2401无线收发模块即可实现各个设备之间的译音通信。此时,nRF24E1工作在ShockBurst收发模式下。这样,nRF2401无线收发模块通过一个通道来发送并接收数据,即工作于单通道模式。 在各个设备进行语音通信的同时,有时还要进行控制信号的通信。比如,代表单元要申请发言、译员请求发言者语速放慢时,需要通过按键向主席单元发出请求信号;主席单元也要根据情况相应给出应答信号。这样,就会出现各个设备之间语音信号和控制信号同时进行通信的情况。它们分别占用一个通道,这就要求nRF24E1芯片必须工作在ShockBurst双通道接收模式下。nRF24E1通过一个天线,能够接收两个频率相差8MHz(8个频率通道)的1Mbps发射器(如nRF24E1、nRF2401或nRF24E2)发送的数据。这两个不同数据频道的数据被分别送到两套不同的接口

    时间:2019-03-28 关键词: 系统 同声传译 设计教程

  • 基于网络化技术的控制系统设计研究

    将先进的计算技术、半导体技术和电子技术与各个行业的具体应用以及与Intemet技术相结合己经成为未来嵌入式系统的发展趋势。这里以A19lRM9200微处理器为CPU,ATmegal28系列单片机,8 MB的Flash和32 MB的SDRAM存储器,扩展了以太网接口、串行接口等外围通信设备以及输入输出接口,根据处理器和其他接口芯片的要求设计了外围硬件电路及软件。实现了用电机控制系统实时监控多路电机的状态,并且可以控制任一路电机的转速与相位,解决了单片机与ARM系列处理器之间的通信。1 系统硬件设计1.1 主机硬件系统结构 1)电源电路 AT9lRM9200需要1.8 V和3.3 V电源,另外,大部分外围器件需要3.3 V电源,小部分外围器件还需要5 V电源。此处选用了Sipex公司生产的SPXlll7M3-3.3型低压差(LDO)稳压器和SPXlll7M3-1.8型低压差(LDO)稳压器进行DC-DC变换后为各个器件提供工作电压。 2)晶振电路 如图2所示,晶体振荡电路用于向AT91RM9200和其他需要时钟的外设电路提供工作时钟。本系统使用无源晶体振荡器X1(18. 432 MHz)和X2(32.768 kHz)作为系统的主振荡器和慢时钟振荡器,其中32.768 kHz晶振为系统提供慢时钟,18 MHz晶振通过倍频为系统提供180 MHz的主机时钟 3)AT91RM9200处理器 ATglRM9200是Atmel公司基于ARM920T核的高性能、低功耗16/32位RISC微处理器,其最高主频为180 MHz,其双向、32位外部数据总线支持8、16、32位数据宽度,26位地址总线可以对最大64 MB空间寻址。是系统的工作和控制中心。 4)存储器 存储器模块包括Flash存储器和SRAM存储器2部分。Flash存储器用于存放引导程序、嵌入式操作系统、用户应用程序及重要的数据等,即使掉电程序和数据都不会丢失。设计中采用Intel公司生产的28F640J3A,其存储容量为64 Mb(8 MB),工作电压为2.7~3.6 V,采用48引脚TSOP封装,16位数据宽度。 SDRAM存储器是系统代码的运行场所,存放系统运行时的程序和数据,但掉电后该部分程序和数据会丢失。设计中使用2片数据宽度为16位的SDRAM并行运行作为1个32位数据宽度的SDRAM模块,如图3所示。 使用的SDRAM电路为Hynix公司的HY57V651620BTC,其工作电压为3.3 V,单片存储容量为4组x16 Mb,54引脚TSOP封装,兼容LVTTL电平接口,支持自动刷新和自刷新。 5)网络端口 采用DAVICOM公司的DM9161作为以太网的物理层接口。通过这个接口可以控制和配置很多物理层设备,得到状态和错误信息,并且确定PHY设备的工作方式和功能。将DM9161的REF_CLK端接至50 MHz晶振的输出端;DM9161的TXD1,TXD2,TXEN,RXD1,BXD2端接至AT9lRM9200的ETXO,ETXI,ETXEN,ERXO,ERXI;DM9161的EXESEN,COL,PWRDWN端分别通过10 kΩ电阻接高电平,BGRESG,BGRES之间接6.8 kΩ电阻;将DM9161的RXEXDV,RXER,RESET,MDC,MDIO端接至AT9lRM9200的ECRS,ERXER,NRST,EMDIO均连接发光二极管,DM9161的TX+,TX-,RX+,EMDC,FDX,SPEED,LINKRX连接网络隔离变压器。 6)串行接口 用于AT9lRM9200系统短距离双向串行通信。使用的电平转换电路为Sipex公司双产的SP3232E。本系统包含1个UART接口,它是两线调试串口,用来连接到超级终端观察AT91RM9200的启动,完成与PC的通信调试。其原理图如图4所示。1.2 从机硬件设计 1)ATmega128单片机 ATMEL公司的AVR单片机是增强型RISC内载Flash的单片机,128 K字节的系统内可编程Flash(在写入过程中还具有读取能力,即RWW)、4 K字节的EEPROM、4 K字节的SRAM、53个通用I/O口线、32个通用工作寄存器、实时时钟RTC、4个灵活的具有比较模式和PWM功能的定时器/计数器(T/C)、2个USART、面向字节的两线接口TWI、8通道10位ADC(具有可选的可编程增益)、具有片内振荡器的可编程看门狗定时器、SPI串行端口、与IEEEll49.1规范兼容的JTAG测试接口,以及6种可以通过软件选择的省电模式。 2)系统控制和复位 复位时所有的I/O寄存器都被设置为初始值,程序从复位向量处开始执行。复位向量处的指令必须是绝对跳转JMP指令,以使程序跳转到复位处理例程。如果程序永远不会使能中断,则中断向量可以由一般的程序代码所覆盖。 图5为复位逻辑的电路图。复位源生效时I/O端口立即复位为初始值,不需要任何时钟的辅助。当所有的复位信号消失之后,延迟计数器被激活,从而延长了内部复位,并使得在MCU正常工作之前电源达到稳定的电平。延迟计数器的溢出时间通过熔丝位CKSEL由用户设定。 3)I/O端口 作为通用数字I/O使用时,所有AVRI/O端口都具有真正的读-修改-写功能。输出缓冲器具有对称的驱动能力,可以输出或吸收大电流,直接驱动LED。 4)SPI串行外设接口 串行外设接口SPI允许ATmegal28和外设之间进行高速的同步数据传输。主机和从机之间的SPI连接如图6所示。

    时间:2019-03-27 关键词: 控制系统 技术 设计教程

  • 可携式媒体播放器(PMP)机内设计趋势

    可携式媒体播放器(PMP)机内设计趋势

    许多的观察家、分析师都一致表示:今年电子工程及应用的领域只会有两个技术热题,一个是无线通讯技术,另一个则是数码视讯技术。 确实,数码视讯技术一直是近几年的关注焦点,包括数码视讯的编解码算法(如:MPEG-4、H.264、VC-1)、数码视讯的界面端子(如:HDMI、DisplayPort)、数码视讯的广播技术(如:DVB-H、Qualcomm MediaFLO)等。同样的,视讯相关应用的装置也是当热,各位看看新次代的电视游乐器(如:Nintendo Wii、Sony PS3)、再看看Apple今年初发表的Apple TV、再看看Google收并YouTube、还有IPTV、HDTV,以及家庭社区保全、视讯会议与视讯电话等,就知道视讯应用是多么地受到欢迎。 同样的,在数码随身听大量取代传统CD(Compact Disc)随身听、MD(Mini Disc)随身听、甚至是数码录音笔之后,也积极在寻找下一波的强劲成长空间,而最有可能的发展路线即是追加视讯功效,包括静态画面的显示、动态影像的播放、以及静态摄影、动态录像等,都将成为新的强化提升方向,再加上手持式装置的各项技术也都在不断地精进演算,因此本文以下将针对PMP的机内技术与相关技术进行更多的讨论与剖析,期望能对正想投入或正从事PMP设计的业者、工程师有所助益。图说:Broadcom推出的BCM2722行动多媒体处理器(Mobile Multimedia Processor)具备数码信号处理器的加速运算功效,同时也支持DRM的数码版权管理(内容防拷)功效,Apple的iPod Video即是采行此芯片来加速视讯播放运算,图为BCM2722的功能方块图。(图片来源:) 视讯编解码实现方案 「视讯编解码」是PMP最关键的部分,但同时也是目前实现方式最多样、最无一致性的部分,以笔者的归纳整理,就有多种不同的实现手法: 1.完全针对PMP需求而设计、开发出应用芯片,多以SoC方式实现,此亦可称ASIC或ASSP,ASIC/ASSP内会用上嵌入式的处理器(或控制器),甚至是嵌入式的数码信号处理器(Digital Signal Processor;DSP),或硬件线路式的音视讯编解码器。 2.使用多媒体处理器来实现,例如Philips半导体(今日已改称NXP)的TriMedia或者是Sigma Designs的Media Processor等,此类型的处理器多半具备VLIW架构,可加速多媒体视讯的运算。 3.使用双处理器(或双核)设计,除了使用一个一般性(General)的32-bit微处理器(或微控制器)外,会再额外搭配一颗数码信号处理器,音视讯编解码运算的部分就由DSP负责,微处理器/微控制器(uP/uC)则负责一般性的控制工作及一般性的应用程序执行,TI的OMAP方桉即是此中的代表。(附注1) 4.一样使用一个一般性的32-bit微处理器、微控制器,但另一个搭配芯片则是一个已将音视讯编解码运算加以硬件线路化的编解码芯片,此一般称为CODEC芯片,如果只需要播放功能则只需要解码运算硬件线路化的芯片,此称为「解码芯片,Decoder」;如果在播放外也希望能录像、录像,那么就必须用上「编解码芯片,CODEC」。 5.只使用32-bit微处理器、微控制器芯片,所有的多媒体编解码运算一律以软件方式实现,在PMP电源开启后这些演算程序会加载到PMP的系统主存储器中,然后由处理器负责执行各种格式的编解码演算。图说:Microsoft推出的Zune数码随身听也等同于可携式媒体播放器,Microsoft Zune锁定的市场竞争对手即是Apple iPod,Zune明显胜于iPod(第五代)的地方主要是WiFi无线功能,Zune允许使用者透过WiFi无线分享数码音乐、数码相片给友人,且分享后依然受DRM机制管理。(图片来源:)各实现方式之差异比较 上述的5种实现方式并无绝对的优劣之分,而是适时适需地选择运用,选择第1种作法的好处是大量生产时最具成本效益,理由是芯片的功效整合度最高,主体芯片外的零件搭配需求最低,另外用电效益也最佳,不仅编解码演算的部分是以硬件方式实现,同时高度的整合也最能做到集中、一致性的电源管理。 不过,此(第一种)作法的缺点是缺乏弹性,一旦有新增或修改编解码算法的需求,或需要加入其它的功效,甚至是修正原有功效的错误,则能够调修的幅度也最低,加上PMP属于电池运作的行动化运算,现阶段不容易使用FPGA、CPLD等可程序逻辑装置来增进硬件线路设计的弹性度。 所以,除非是相当大量的供货,或者是长期不变性的供货,否则极少会以弹性最低的完全客制设计来实现,且此种作法与其它作法相较,必须在芯片设计开发时更注重除错、验证等程序,否则日后若有修改需求且其它方式都无法补强时,重开光罩与重新投产的时间、心力、成本等都将相当高昂。 接着是第二、第三、第四等居中性的作法,此3种作法的弹性都高于第一种作法,也是目前较常见的作法。在此举实际例子,Apple的第五代iPod(也称为iPod Video)用的就是第三种作法,微处理器的部分使用PortalPlayer公司的PP5021C-TDF随身听主控芯片(核心为2个ARM7TDMI),然后再搭配1个Broadcom(博通)公司的BCM2722芯片,BCM2722芯片虽名为行动多媒体处理器,但实质上却是一个数码信号处理器。(附注2) 图说:数码随身听的背光可以用简单的串联、并联设计来驱动,但PMP因为白光LED用量更多,且讲究光均性,因此多半需要专门的白光LED驱动芯片来驱动,图为MAXIM公司的白光LED驱动芯片:MAX1707,其驱动电流最高可至610mA,且可同时以并联方式驱动3组LED应用。(图片来源:) 再来看另一个例子,Microsoft的Zune在主控芯片部分使用Freescale(飞思卡尔)公司的i.MX31L(核心为ARM1136),该芯片同时也整合了硬件式的MPEG-4编码器,如此类似于第4种作法,差别只在于由两个离散封装的芯片整合成单芯片。不过,Microsoft Zune也不全然是第四种作法,或许在MPEG-4格式的编码上可以直接使用i.MX31L芯片内的硬件功效,但除了MPEG-4外的其它音视讯格式就只能使用纯软件的方式来实现,也就是第五种作法。 至于第五种作法,它与第1种作法正好是两种极端,第五种作法的缺点在于最耗电力,且除了耗电之外通常也需要更高效率的处理器以及更大空间的系统主存储器,甚至要加大电池的电容量(意味着体积、重量要增加)才能与前4种方式拥有相同的连续播放时间,然而优点则是弹性最高,要新增、修改任何的编解码算法只要对韧体程序进行更新即可达到,完全不会动用到硬件层面的调修,且硬件零件上多半采用一般性标准元件(包括处理器在内),硬件供货的来源、价格也较弹性。显示器 对于从数码随身听提升至可携式媒体播放器的设计者而言,显示器方面的工程技术恐怕也需要历经一番转变,在过去数码随身听可以使用Color STN、OLED等来做为显示器,但在PMP领域恐怕这两种作法都得舍弃,而必须使用TFT LCD。 另外,以往在数码随身听可以卖弄的七彩背光(Backlight)技术(运用7种不同颜色的LED)在PMP领域也一样不适用(除非是提供电子相簿的情境效果),能用的依旧是LED背光技术,不过只能使用白光LED,而且很可能因为省电或价格因素而要回头考虑、评估使用EL、CCFL等背光技术,如此在背光驱动上的供电设计也较LED复杂。 即便是使用白光LED,由于显示面积将比过去随身听大上许多,因而需要用上导光板的组件(3.5寸7寸),并在光均性方面要用上更多的设计心力。 图说:由于PMP等手持式装置相当讲究省电性,因此能使用的音效功率放大方式多半为D类放大,D类放大除了用电效益高外,体积也比其它放大计数更为精缩。图为德州仪器(Texas Instruments;TI)的20W单声道D类放大器:TPA3001D1之内部功能方块图。(图片来源:)值得注意的是,背光与处理器、微型硬碟等都是PMP装置中的主要耗电组件,所以要格外注重省电方面的设计,在自动省电机制上,要能在若干分钟(预设,或允许使用者设定)内没有操作也没有内容播放(或画面内容更动)时就要将背光关闭,藉此来精省用电。储存媒体过去PMP的储存媒体都是微型硬碟(Micro drive),微型硬碟指的是碟片直径低于1.8英寸(含)以下的硬碟,此方面主要的业者Toshiba、Hitachi(更正确而言是HGST)、Seagate、Cornice、以及Magicstor等,除了1.8英寸外主要还有1英寸、0.85英寸等规格。PMP使用微型硬碟的主要考量是价格容量比,倘若一部VCD影片要1.3GB(两片650MB)、一部DVD影片要4.7GB,且假设合理的外携影片数目在610部左右(附注3),如此少说需要7.8GB47GB的容量,倘若这些容量都要用快闪存储器来实现,则一部PMP的价格将高昂到消费者无法接受,所以才必须采用微型硬碟。图说:PMP的储存媒体多半是微型硬碟,虽然(NAND型)快闪存储器的价格快速滑落,初阶的PMP与初中阶的数码随身听都已改用快闪存储器,但微型硬碟在中高阶的PMP与高阶数码随身听的市场中依然有价格容量比的优势。图为Hitachi的微型硬碟。(图片来源:)然而现在情形正逐渐改观,以USB随身碟而言,4GB容量已经跌至新台币800、900元的价位,加上MPEG-4、H.264等新视讯压缩算法的普及速度简直能以「疯狂」来形容,使一部60分钟的影片已能储存在300MB左右的空间内且画面质量仍然能维持在一定的水平(附注4)。由于两效应的交相影响,使PMP可接受的最低合理使用容量能往下修正,合理实用的最低可接受容量、价位都有所调整,配备8GB12GB(NAND)快闪存储器的PMP已能够以「入门初阶机种」的姿态打入市场,而不像过去必须独尊微型硬碟。结论:最后,PMP的其它相关技术也在逐渐强化演进中,例如更快的充电效率(愈短的时间内充入愈多的电能)、更多的延伸应用(文件阅读、浏览网页)、更精准的剩余电量显示(从ADC量测到库伦电量计数法)、更多的联机方式(USB同步、USB对街、无线),这些发展也都必须留意。图说:从某种角度审视,日本索尼(Sony)的Mylo(My Life Online的简称)是一种滑盖式设计的PMP,且结合了更多的应用与通讯功效,不过Mylo仅内建1GB快闪存储器,就视讯播放应用而言显的吃紧,不过Mylo仍提供记忆卡槽可扩充储存容量。(图片来源:)

    时间:2019-03-27 关键词: pmp 趋势 媒体播放器 可携式 设计教程

  • 如何利用可编程器件设计车用显示系统

    如何利用可编程器件设计车用显示系统

    汽车电子设备正在迅速发展,尤其是车用显示系统,视频和视频处理正成为汽车应用中增长较快的技术。像车道保持、驾驶监控、夜视以及车载娱乐设备等车用显示系统/FPGA都是典型的应用需求。 设计车用视频系统时,需要考虑系统结构的几个方面:首先是系统的功能,应确定这个系统是针对安全系统处理视频信息、还是车载娱乐设备处理流动的视频数据,或者是两者的结合而设计。其次是互联的类型和视频系统器件的速度。此外还应考虑其它因素包括有多少视频源、有多少显示输出、系统中不同的设备相隔多远、采用哪种布线方案,以及整个系统的成本。由于可编程器件具有很高集成度和灵活性,以及低功耗和宽的工作温度范围,且价格不断下降,因此车用显示系统/FPGA该类器件对于从事汽车电子设计的工程师来说越来越具有吸引力。本文将主要介绍如何利用Lattice公司的可编程器件设计车用显示系统。 电子设备的互联 在汽车电子设备中,各种信息源的互联可采用几种拓扑结构,即星型、总线型和环型结构。这些拓扑结构如图1所示。星型结构是一对一的连接系统,外部的设备连接到视频控制器的一个端口。通信信道可以是双向或者单向的。 图1:汽车电子设备互联的几种拓扑结构。 总线型结构是车用显示系统/FPGA一点对多点,单个设备可以连接到总线。总线上的设备必须有本地控制器,用来协调总线上的设备何时以及如何进行通信。这种类型的系统易于扩展,因为每个设备都有一个唯一的地址。 环型结构中每个设备都有一个唯一的地址,此外还有本地数据控制器和用来连接到环的媒体收发器。当显示设备收发器接收到前一个设备的信息后,在数据包中查看自己的地址,如果地址相匹配的话就处理数据或者命令,如果地址不匹配,就把数据包传送给环中的下一个设备。为使各种设备都能够传送音频和视频包,用于娱乐车用显示系统/FPGA的汽车环型总线都被设计成很高的带宽,以便观众能实时观看。从图1中可以看出,无论哪种结构都需要采用视频控制器。 图像捕获与显示 有效确保图像的捕获和处理十分重要,以下将介绍几种解决方法。在图2展示的智能图像捕获系统的几个例子中,信息从车辆的多媒体总线传送到视频控制器。通常使用的是MOST和D2B协议的环型或总线结构。 图2:采用不同处理器件的三种智能图像捕获系统。 在这三个例子中,MT9V111/125是适用于汽车应用的图像传感器。例1采用了基于微处理器的系统,在数据发送到显示子系统的接口之前进行控制和视频数据处理。例2采用基于闪存的低成本CPLD处理视频。例3采用了基于SRAM的FPGA器件。在以上所有例子中,均由处理单元对车用显示系统/FPGA发送的信息进行处理。其中,后两个例子中采用的可编程逻辑器件体现了重构硬件的灵活性。特别是例3在FPGA中使用了Lattice公司的微处理器核LatticeMico8,因而可获得更大的灵活性。 发送所捕获图像的一种方法是将并行视频数据转换成串行流,并采用8b/10b编码在单对双绞线LVDS接口上传送。这个接口将时钟嵌入数据流,减少了传送信号到视频控制器所需的导线数目。在接收端,系统需要对数据进行处理,以便返回原来的形式。图3是4个LCD显示的例子。前三个例子均使用SERDES电路转换信号,其中例3采用具有集成SERDES功能的基于SRAM的FPGA。此例中采用的是LatticeECP/ECP2 FPGA,由于该器件中已嵌入了关键时序参数,因此设计者车用显示系统/FPGA不必再花大量时间和精力来完成此任务。 图3:LCD显示。 LatticeECP2和LatticeECP2M系列重新定义了低成本FPGA,在更低的成本下拥有更多优秀的FPGA特性。这些器件含有sysDSP块和工程预制的源同步I/O。LatticeECP2M具有高达5.3Mb的RAM块,LatticeECP2具有高达1.1Mb的RAM块。在LatticeECP2M中还具有3.125Gbps嵌入式SERDES,可支持PCI Express、Ethernet(1GbE和SGMII)以及多个其它标准。通过集成以前只有高成本、高性能FPGA才具有的特点和性能,这些系列的产品扩展了低成本FPGA的应用范围。 LatticeMico32是一种针对Lattice FPGA优化的32位RISC软微处理器。如果将LatticeECP2M与开放源代码的LatticeMico32软处理器结合在一起,则LatticeECP2M可以实现完整的视频控制器功能(如图4所示)。内部的外设通过双WISHBONE总线进行通信。定时器、DMA、存储器控制器、通用I/O、串行外围接口和UART均可与LatticeMico32相连。 图4:利用LatticeECP2M和LatticeMico32实现完整的视频控制器功能。 本文小结 由于可编程器件具有可重构的特点,因此特别适合于应对各种变化(例如不断修改的标准和新兴的标准),并可以快速实现新版标准。此外,可编程器件还具有成本低和生命周期长的优势,能够满足车内电子设备与汽车寿命相匹配的要求,设计者也易于对产品进行升级、维护和更新。

    时间:2019-03-27 关键词: 器件 系统 车用 可编程 设计教程

  • 低功耗流程设计可减少五成功耗

      设计的复杂性、上市时间以及成本的压力需要EDA工具提供高  容量、高性能的数字集成设计能力以及高度的可预测性、可靠性验证。  这样一方面可以帮助客户实现更先进产品的设计,另一方面能够规避  产品设计的制造风险,缩短产品上市时间。  没有EDA工具的帮助,设计公司想做低功耗产品是很难的。用低  功耗的流程来做设计,产品至少可以减少50%的功耗。3年前我们把低  功耗的实践加以总结,正式形成了一套理论,把我们自己的工具各个  环节全部做在一起,整合起来,形成了一整套低功耗技术。同时我们  也与产业链、设计链的公司合作,把整个低功耗的一套方法和这些公  司交流,比如IP公司ARM和代工厂中芯国际,我们都与他们保持密切  合作。我们把业界的伙伴联合起来,一起来解决低功耗的问题,这是  一个产业化的模式。  低功耗是把我们整个工具的结构改变,而不是简单地加一项进去,  单纯加一项进去可能会改变时序,会影响它的功能。因此,芯片的功  能、时序、功耗这三个方面要一起考虑。而且功耗不是只在后端物理  实现的时候才考虑,在前端做功能性设计、结构性设计和逻辑性设计  的时候也要考虑。我们起步比较早,目前在一些比较先进的低功耗芯  片市场我们的份额非常高,大家都用Cadence的产品做一些比较先进  的低功耗芯片。  我们的工具之所以可以实现低功耗,是因为在做逻辑设计和物理  设计时,有关低功耗的功能就已经设计在工具里,逻辑集成、数据布  线、仿真等都有低功耗的特征在里面,这是一个趋势。我们在3年前  推出了CPF(通用功率格式)的最早版本,CPF是一种方法,我们把它应  用到工具里面。  Cadence Encounter最新的数字IC设计平台7.1版在Encounter 6.2  版的基础上增加了许多业内领先的功能,把客户从复杂设计的困扰  中解放出来,能够专注于他们的核心竞争力——设计创新之中。  此外,Cadence设计系统公司最近宣布推出C-to-Silicon Compiler  (编译器),这是一种高端综合产品,能够让设计师在创建和复  用系统级芯片IP的过程中,将生产力提高10倍。这种重要的新功能对  于开发新型SoC(系统级芯片)和系统级IP,用于消费电子、无线和  有线网络市场的公司尤其可贵。通过与合作伙伴开发相关产品证实,  C-to-Silicon Compiler可提高设计质量,减少设计时间。  针对半导体工艺技术不断提高,Cadence新工具能也能适应32纳  米设计,但后续工程如布线等要求不同,需要与Cadence后续工具结  合。同时为保证最好的性能,此款新工具最好能与Cadence其他工具  结合,因为Cadence进行了全盘优化,若与其他公司工具结合,可能  需要多花一些时间进行优化。  欢迎转载,信息来自维库电子市场网()

    时间:2019-03-26 关键词: 低功耗 流程 功耗 五成 设计教程

  • 基于CNN的红外图像预处理系统的研究与设计

    本文设计了一个以FPGA为核心处理器实现红外视频图像数字预处理的系统,利用Altera公司提供的DE2开发板,把系统大部分的功能模块集成在一片FPGA 上,大大优化了整个系统的性能。 该方案采用Altera公司推出的低成本、高密度的Cyclone Ⅱ系列FPGA,提高了系统的设计灵活性。细胞神经网络IP核的开发,充分利用了细胞神经网络在图像处理方面的优势,提高了整个系统的处理效率。实现了细胞神经网络的一种高效数字实现方案,并且采用分布式算法可以提供更高的运行速度。 引言 红外视频图像数字预处理系统是红外焦平面阵列探测器必备的后处理电路,对成像质量有很大的影响。随着红外弱小目标检测技术开始广泛应用于制导、跟踪、自动控制、人工智能等诸多领域,这些应用对红外成像质量的要求越来越高。因此,研究红外视频图像数字预处理系统有很大的意义[1-2]。本文从细胞神经网络模型研究开始,将细胞神经网络的模型、算法研究与具体的图像处理特别是在图像边缘检测中的应用紧密结合,充分将理论和实践联系起来。将设计好的模板应用到图像的边缘检测中,利用FPGA的并行性特点,建立基于CNN的红外图像预处理系统,用于进行实时的图像处理。 该系统硬件电路包括两路视频A/D,数据缓冲同步FIFO,FPGA,数据存储、颜色空间转换等功能模块。系统能够完成对IRFPA信号的正确读出,并将读出的视频模拟信号经A/D转换器转换为数字信号,经FIFO缓冲后进入存储器,之后经过中心数字信号处理器进行必要的处理(边缘提取),最后输出标准的VGA模拟视频信号,传送到显示器。 1 图像预处理实现原理分析 红外图像预处理的目的在于,改善图像数据,抑制不需要的变形或者增强某些对于后续处理重要的图像特征,为后续的目标识别与跟踪提供方便。这里做的预处理为边缘提取,即对处于最低抽象层次上的图像所进行的操作,此时处理的输入输出为亮度图像。这些图像是与传感器抓取到的原始数据同类的,通常是用图像函数值矩阵表示的亮度图像。整个系统的核心处理部分是由细胞神经网络IP核实现的。 细胞神经网络(Cellular Neural Network,CNN)是以神经网络的联接方式为背景,具有实时信号处理能力的大规模非线性模拟电路。从结构上讲,CNN类似于细胞自动机,即细胞神经网络中的每一个胞元仅与它的邻近胞元相连接,相连胞元之间存在直接通信,而非邻近胞元之间不直接联接,但是由于连续时间下的动态传播,可以间接影响不相邻的胞元。理论上,可以定义任何维数的细胞神经网络,但是因为处理图像的需要,这里只考虑二维的情况。一个二维的 细胞神经网络结构形式如图1所示,用 表示第i行第j列的细胞。胞元的状态方程为: 由上式可知,在CNN应用使用空间不变的系数的情况下,整个网络的功能由2个的矩阵和,以及胞元偏移值I决定。矩阵A和B分别称为反馈模版和控制模版。胞元结构见图2所示。图13x3规模的细胞神经网络结构图2CNN结构图 在图像处理中,无论是灰度图像还是二值图像,每一个像素的值均为离散量化的,采用CNN进行图像处理时,存在对其输入与输出量化的问题。在的二维图像中,不失一般性地设它的任意一点值为,通常对于二值图像,仅取两个整数值,即;而对灰度图像则为灰度值,以8比特灰度图像为例。在CNN系统中,其输入为,输出为,因而在处理二值图像时,需要使原来的映射为,但必须注意这种映射为:原来的0映射为1(纯黑色),原来的1映射为-1(纯白色)。而处理灰度图像时,首先要对输入与输出的值域进行256级的均匀量化,然后使映射到这个均匀量化的中,同样必须注意:原来的0映射为1(纯黑色),原来的255映射为-1(纯白色),其余灰度值均按照由小到大的顺序依次映射到由1到-1这个由大到小的量化体系中[3-5]。 2总体方案选择 系统的工作流程如图2所示,从CCD传来的数字视频信号及其控制信号首先通过图像采集模块,从而筛选出有效的数据,然后通过RAW2RGB模块,利用插值算法得到每个像素点的R、G、B数据。为了便于CNN模块进行核心处理,在进行边缘提取操作前,把图像数据从RGB颜色空间转换为YCbCr颜色空间,针对Y分量进行处理。处理后的数据再经过YCbCr2RGB模块转换为RGB数据从而提供给VGA模块,供LCD显示。 图2红外图像预处理系统工作流程 整个的核心部分在于CNN模块,在图像边缘提取中使用的算法主要是经典的微分算子,微分算法在硬件中很难实现,将CNN应用于灰度图像边缘提取的算法,是因为CNN是一种基于神经元局域连接的神经网络并行处理器[3],硬件上可以采用相同的电路元件阵列来设计CNN并行处理器,这种阵列同构的电路设计有利于VLSI实现。故采用粒子群算法训练CNN的模板,进行边缘提取。 虽然在细胞神经网络中允许任意规模的邻域,随着模板尺寸的增大,硬件实现的难度也随之增大。受限于目前的VLSI技术,胞元之间的互联只能是局部的。本文中,规定采用3x3邻域,即模板A、模板B都是3x3的矩阵,且它们的系数都是实系数。因为目前大多数图像处理针对的都是灰度级图像,所以细胞神经网络胞元的输入范围被限定在[-1,+1]之间,-1代表白色像素,1代表黑色像素,其余的值代表二者之间的灰度值。这里采用定点数,因为在硬件实现中,定点数具有更高的速度和更低廉的成本,特别是在调用FPGA中的乘法底层原语时。 单个胞元的串行硬件实现结构,完成一次胞元状态更新的运算至少需要9个时钟周期。为了提高速度,可以在计算胞元状态更新时采用并行结构,如图3所示,通过采用流水线结构,完成一次胞元状态的更新只需要1个时钟周期。本文采用并行结构在FPGA中实现细胞神经网络。 图3CNN并行实现结构框图 3硬件设计 图像数据采集模块用于实现图像数据的捕捉,根据图像传感器MT9M011输出数据时序,当视频捕捉开始键按下时,该模块开始接收数据,在获得有效像素数据的同时也接收了消隐期的图像数据,所以设置了输出数据有效信号,用以在接下来的RAW2RGB模块把有效数据和非有效数据区分开来。 3.1RAW2RGB模块的设计 MT9M011采用的是Bayer型CFA(ColorFilterArray,颜色滤波阵列),由于该图像传感器的分辨率为1280x1024,这里采用的插值算法,每四个像素合并为一个像素,像素值的变化如图4所示,这样经过RAW2RGB模块后,图像的分辨率变为原来的一半,即640x512。 该模块的硬件实现框图如图5所示。其中control模块由两个状态机组成,分别是ram_wr_state和ram_rd_state。ram_wr_state状态机负责产生RAM的写使能和写地址。当输入数据有效时,把输入的像素数据依次交替存储在2个RAM中,构成类似乒乓操作的结构。这个状态机负责产生RAM的写使能和写地址。ram_rd_state的状态机负责产生RAM的读使能和读地址。 图4颜色插值算法示意图图5RAW2RGB模块的硬件结构框图 这里为了便于检验算法的正确性,适当的对数字视频流进行了一些简化。由于编程时采用参数化设计,所以这并不会对系统的设计产生影响。这里假定待处理的原始数据每行只有12个像素,以两行数据为例,经过处理后的数据(每个像素包含R、G、B三种颜色分量),每行只包含6个像素,减少了一半,同样行数也变为原来的1/2。这样,当等待处理的图像分辨率为1280x1024时,经过该模块后的图像分辨率变为640x512。图7为经过颜色插值后的实际输出,与图6经过颜色插值后的预期输出相比较可以看出,该颜色插值模块的设计完全达到了预期的要求。图6经过颜色插值后的预期输出图7经过颜色插值后的实际输出 3.2颜色空间转换模块的硬件设计 YCbCr坐标与RGB坐标之间的关系如下: (1) 有三种方案实现此模块设计,第一种方案采用Verilog语言对该转换公式进行行为描述;第二种方案采用FPGA芯片内的嵌入式RAM构造乘法器查找表,将转换公式内所有可能的中间结果存放在存储器中。该系统需要9个乘法器查找表,每个乘法器查找表的深度是1k,将操作数R、G、B作为地址访问存储器,得到的输出数据就是乘法运算的结果。查找表乘法器的速度只局限于所使用存储器的存取速度。第三种方案是对第一种方案进行改进,采用流水线结构实现此系统设计,大大提高了运算速度。 本文采用第三种方案。流水线处理是高速设计中的一个常用设计手段。充分利用了硬件内部并行性,增加数据处理能力。这种流水线作业是在几个步骤中执行运算的功能单元的序列。每个功能单元接受输入,生成的输出则是缓冲器存储的输出。实现流水线结构的方法很简单,只要在每个运算部件(包括乘法器和加减法器)的输出以及系统的输入输出之间加上寄存器缓存即可。利用流水线技术的颜色空间转换实现框图如图8所示。 一个数字系统的最高时钟频率受限于寄存器与寄存器之间的最大门延迟,如果不在每个运算部件的输出后面加上寄存器缓存,则寄存器与寄存器之间的最大门延迟为输入RGB信号到输出YCbCr信号之间的延迟。由于输入RGB信号到输出YCbCr信号之间存在大规模的组合逻辑电路,因此延迟很大。采用流水线结构之后,寄存器与寄存器之间的组合逻辑电路规模变小了,因此延迟变小,从而可以提高系统时钟。 图8利用流水线技术的颜色空间转换实现框图 波形仿真如图9所示。由波形图可以看到,相比于输入,输出结果延迟5个时钟周期出现,这是使用流水线结构造成的结果。例如输入(R,G,B)=(1023,1023,1023),在5个时钟周期后输出(Y,Cb,Cr)=(944,514,514)。虽然输出延迟了5个时钟周期,但每计算一个像素颜色转换仍只需要1个时钟周期。图9RGB2YCbCr模块仿真输出 同理,可以采用方案2,即FPGA芯片内的嵌入式RAM构造乘法器查找表,可以实现YCbCr向RGB的颜色空间转换。波形仿真如图10所示。由波形图可以看到,相比于输入,输出结果延迟3个时钟周期出现,这是使用寄存器锁存造成的结果。例如输入(Y,Cb,Cr)=(944,514,514),在3个时钟周期后输出(R,G,B)=(1023,1021,1023)。虽然输出延迟了3个时钟周期,但每计算一个像素颜色转换仍只需要1个时钟周期。 图10YCbCr2RGB模块仿真输出 3.3细胞神经网络的IP核设计 根据CNN的理论,模板中的权数分别对应了待处理像素周围的八个像素,所以在对某个像素进行处理之前,必须先读入该点周围的八个像素点,即某个像素点的结果不仅同本身像素有关,而且同邻域点像素灰度值有关。因为采用的CMOS图像传感器每行640个像素。因此构造3×3模板的关键在于构造行延时器。视频图像中像素来自非均匀校正后的串行数据流,因此FPGA可以以并行流水方式实现该模板[6]。构成3×3模板的硬件结构如图11所示: 图113×3模板的硬件结构 如图所示,视频输入图像经过由RAM组成的3×3模板后进入卷积模块,最后输出结果。由于采用了流水工作方式,因此在进行图像处理时,并不需要存储整帧图像,只要存储模板操作中的领域像素点。 卷积的实现方式一般有MAC(MultiplyandAccumulate乘加法)和DA(DistributeAlgorithm分布式算法)。MAC法一般直接使用乘法加法进行运算,目前有些FPGA中带有内部乘法器资源,即硬件乘法器。分布式算法将复杂的多位数乘积转变为简单的“与”操作,而且乘位权数的转变为移位操作,有效地提高了运算速度,降低了结构的复杂度。采用分布式算法实现卷积计算。在细胞神经网络中采用该算法具有以下优点:减小存储单元的大小,实现存储单元内容共享,减小数据总线位宽。为了节省FPGA片上资源采用串行分布式算法[7]。 串行方法的实现是先从最低位开始,用所有个输入量的最低位对DA查找表进行寻址,得到了一个部分积,将其右移一位即将其乘以2-1后,放到寄存器当中,同时,个输入量的次低位己经开始对DA查找表寻址得到另一个部分积,与右移一位后的上一个部分积相加,再重复上一步,直到所有的位数都己经寻址一遍。特别要注意,在补码输入的情况下,在最高位寻址得到的值不是与上一个右移一位后的部分积相加,而是相减。这样最后得到的值就是我们需要的结果,由此可以得到全串行DA模式。由上可知,完成一次运算需要个时钟周期。 图12串行分布式算法原理图 3.4VGA模块 该模块的功能是将经过处理的信号显示在显示器上,这个过程与信号处理中的过程是相反的,将数字信号按照电视信号的制式组成合乎时序、格式要求的信号,并加入用于控制的各种同步信号。为了便于检验VGA时序的正确性,适当的对VGA时序进行了一些简化。由于编程时采用参数化设计,所以这并不会对系统的设计产生影响。仿真图如图13所示,符合预期的时序要求。图13VGA时序仿真图 4图像处理结果图14图像处理结果显示 结论 本文采用FPGA实现红外图像预处理算法,能够将结构简单,计算量大的算法从DSP中分离出来,保证DSP有足够的时间完成目标识别、跟踪等其它任务。FPGA给用户提供了很大的自由度去实现所设计的专用集成化数字电路。其简单的外围电路,高度灵活的用户现场编程方式,现场定义高容量数字单片系统的能力,能够重复烧写、反复修改的新颖功能,意味着无须更改电路,只要改写FPGA内部程序,整个系统又可实现新功能。本文以图像边缘提取为基本的应用目标,选择细胞神经网络作为主要的研究对象,对CNN的理论、应用和硬件实现进行了系统的研究。 本文的特色在于: 1.提出了将细胞神经网络应用到二值图像上的算法,在二值图像的基础上,提出了基于CNN的灰度图像边缘提取算法。仿真结果表明:CNN提取的结果比较整齐有序,对边缘提取的连续性较好。 2.提出了细胞神经网络的一种高效数字实现方案,采用比特串行的分布式算法来实现胞元的状态更新。采用该架构实现的细胞神经网络减少了硬件资源的占用以及总线的位宽。与细胞神经网络的模拟实现方式相比较,数字实现方案由于采用了分布式算法可以占用更小的面积,从而提供更高的运行速度。 3.用Verilog对CNN进行描述,并由FPGA搭建实验平台进行实现,实验结果表明:该模型能较好的对图像进行实时边缘提取处理。对CNN的Verilog描述为CNN的硬件实现研究又向前迈进了一步,在数字图像中,用FPGA搭建的CNN可以大大的提高图像的实时处理速度。本文来源:电子产品世界 作者:王思睿 王

    时间:2019-03-26 关键词: 系统 图像 cnn 设计教程

  • 手持设备中的FM功能设计与实现

    手持设备中的FM功能设计与实现

    介绍如何在嵌入式系统中实现调频收音功能,重点阐述NXP公司的FM芯片TEA5760的工作原理、硬软件设计及要点,并给出了测试结果。该方案具有高性能、低成本、体积小、控制方便等优点,适合应用于手机等便携式设备中。  随着手机、PDA、MP3播放器等便携式设备得到广泛应用,将调频收音功能集成到其中也受到了消费者的青眯。本文利用芯片TEA5760设计并实现了集成于手持设备的调频收音功能。 1 TEA5760工作原理  NXP公司推出的TEA5760收音机芯片,具有高性能、低成本、外围器件少等优点,I2C总线控制简单。TEA5760工作原理框图如图1所示。500)this.width=500" border=0>图1 TEA5760工作原理框图  低噪放大器的输入阻抗和外接的LC调频信号输入电路组成了一个76~108 MHz的带通滤波器。低噪放大器的增益受自动增益电路AGC控制,AGC的作用是稳定接收信号幅度,抑制邻近电台信号产生的交叉调制部分。放大后的FM信号进入正交混频(IQ_MIXER)与本振信号进行混频,产生中频(IF)信号。与传统超外差式收音机固定中频为 10.7 MHz不同,其固定中频为225 kHz,有助于降低芯片功耗和成本。然后,对中频信号进行放大限幅等信号处理,抑制干扰信号,消除寄生调幅。中频信号经过解调器解调得到立体声调制信号,最后经过静噪处理进行立体声解调,还原出被调制的立体声音频信号输出。其中,本振信号由锁相环(PLL)频率合成数字调频系统产生,CPU通过I2C总线对可编程分频器的分频系统进行调节,使压控振荡器(VCO)输出本振频率变化(150~217 MHz),从而达到数字化调台的目的。 2 硬件设计 2.1 系统简介  系统采用VIA Telecom公司的CDMA手机平台,在该平台上实现“Camera+MP3+FM”功能,系统原理框图如图2所示。500)this.width=500" border=0>图2 系统原理框图  系统基带芯片以ARM7TDMI为控制核心,辅以2个DSP核处理调制解调功能和音频编解码功能。芯片内嵌MP3解码器,通过I2S接口输出解码后数字信号至音频DAC WM8976。WM8976内置输出功率为900 mW外放功放和40 mW耳机功放,可直接驱动手机外部扬声器和耳机。FM部分则通过耳机线作天线,RF信号通过耳机线进入TEA5760,基带芯片通过I2C总线向 TEA5760写控制字来实现手动或自动调台,并从TEA5760的状态字读取信息以实现电台存储。输出的R、L音频信号比较微弱,无法直接驱动耳机,通过WM8976的模拟输入通道AUXR、AUXL,可通过对音频DAC的控制,实现该信号切换至扬声器或耳机,实现了对信号的功率放大。同时,因为 TEA5760本身不带音量控制功能,而WM8976可调节音量,这样也可实现对FM音频音量进行调节。Camera则由Mtekvision公司的 MV3019实现对130万像素图像的JPEG编解码,显示屏为120×160像素260K色TFT LCD,外扩512 Mb NAND Flash则用于对图片和MP3歌曲的存放。电源管理部分PMU负责对整个系统供电的LDO,DC/DC以及锂电池的充电进行管理。 2.2 硬件设计  调频收音部分电路原理图如图3所示。500)this.width=500" border=0>图3 调频收音部分电路原理图  由系统分析可知,该部分由基带IC、收音芯片TEA5760和音频DAC芯片WM8976组成。射频信号从耳机地线引入,进入LC输入回路组成的76~108 MHz的带通滤波器。其中,电感L2采用高精度、高Q值、低噪声电感(Murata公司的LQW15ANR12J00),从而使输入回路具有良好的选择性和较高的传输系数。图中,耳机地线经过LC并联电路接地,起隔离作用,这样FM信号可以损耗很小地进入芯片。供电由LDO 3.0 V提供,因与系统其他部分共用,在设计中用磁珠隔离。系统时钟由BBIC的CG_CK端输出,即为32.768 kHz,2个10 kΩ分压电阻用于减小输入TEA5760的时钟电压幅度。在本振回路中,电感L1采用高精度、高Q值、低噪声电感(Murata公司的 LQW15AN47NJ00)。基带IC通过I2C接口对TEA5760进行控制,GPIO[23]连接BUSEN用于控制总线的使能。由于在设计中使用查询方式,中断线INTX未接。TEA5760 VAFL、VAFR输出的左右声道音频信号,经过隔直电容输入WM8976的模拟通道AUXL、AUXR,最后输出至耳机与扬声器。  由于牵涉到高频电路等特殊性,在设计中尤为注意:  ① 电路对整个参考时钟的要求比较高,频偏为±20×10-6,幅度为1.15~1.95 V,否则VCO等部分无法正常工作,从而导致搜台失败。  ② 在多层板设计中,调频收音部分电路下方不要走高速线;特别是在VCO电路部分,如果无法回避则需要有地层隔离,避免干扰。  ③ 系统设计布局中,尽量远离DC/DC电源等干扰性比较强的电路。在收音工作时,尽量关闭其他工作电源,使对其影响降到最低。  ④ 与芯片引脚相连的分立器件尽量靠近引脚,参考时钟到芯片的距离尽量短而粗。  ⑤ 耳机旁的隔离电感应该在电路板上紧靠耳机接口放置以增加接收的灵敏度,并且电感的直流阻抗应当尽量小,以降低音频的功率损耗。  3 软件设计  平台采用Nucleus Plus操作系统,调频收音功能的实现主要体现在对TEA5760驱动程序的设计,然后再由应用层来调用。驱动程序主要完成预置 NxpFmPreset(void)、自动搜索NxpFmAutosearch(void)以及手动搜索NxpFmHandsearch(void)等几个功能函数的设计。芯片内部带有6字节的控制寄存器和16字节的状态寄存器,基带IC通过I2C总线向TEA5760写控制字来实现手动或自动调台等操作,同时读TEA5760的状态字并实现台存储。  其中自动搜索主要包括搜索频率的设定、信号强度level的读取、中频计数器的读取、有效频道的判别等过程,其工作流程如图4所示。 设定起始频率为Blandlimitlow,取step为100 kHz,根据频率锁相环转换计算公式推出PLL值。500)this.width=500" border=0> 式中: NDEC为PLL十进制数值;FRF为想要调的电台的频率;FIF为中频频率225 kHz;FREFS为参考频率32.768 kHz。然后,通过设置控制寄存器设定信号强度阈值SSL_threshold、Auto向上搜索模式等;等待自动调谐完成标志位FRRF置位,并通过查询位BLF判断是否已频率越界,若在频率范围内则通过读取中频计数器的值来判断是否为有效电台;最后需要对频道进行High/Low Injection的优化选择。手动搜索则相当于自动搜索的一个步进频率的搜索过程。500)this.width=500" border=0>图4 自动搜索工作流程  在软件设计时需要注意的是:  ① 芯片I2C通信协议不支持sub address,当需要读取/更改比较靠后的状态/命令字节时,前面的字节都必须一并读取/写入。  ② 在自动搜台中采用比较优化的算法,需要先把信号强度阈值设定为最高,全程搜索并保存;然后,降低信号强度阈值至中等,并且再次全程搜索并保存(同时需要去掉上次已收到的相同电台);最后,降低信号强度阈值至最低,再次重复搜索。  4 测试结果  经过对平台FM功能模块的指标测试,在SNR=26 dB、最大频偏为22.5 kHz条件下,接收灵敏度为1.5 μVemf,立体声隔离度为35 dB,单声道信噪比为55 dB,立体声信噪比为50 dB,工作电流约14 mA。本文采用TEA5760在手机平台上实现了调频收音功能,该方案外围器件少,控制简单,性价比较高,在便携式设备中有一定的推广价值。  参考文献  [1] Philips Semiconductors. TEA5760UK Preliminary IC Specification. Version 2.6,   2006.  [2] VIA Telecom. CBP6.0 Specification.Version12D, 2006.  [3] Wolfson microelectronics. WM8976 Specification.Version3.0, 2006.  [4] 叶泽刚,孙龙杰,杨波. 便携调频收音机的设计[J]. 电声技术,2006(5):41-  43.  [5] 李杰,刘福华. 数字式调频收音机设计[J]. 电声技术,2003(6):37-40.鲍军民(硕士、工程师),主要研究方向为嵌入式系统、无线终端。

    时间:2019-03-25 关键词: 设备 fm 功能设计 设计教程

  • NI将图形化系统设计用于肿瘤治疗———NI将图形化系统设计用于肿瘤治疗

    NI将图形化系统设计用于肿瘤治疗———NI将图形化系统设计用于肿瘤治疗

       产品:  CompactRIO, LabVIEW, FPGA模块, 实时模块    挑战:  在严格的规则条例范围内保持设计过程的情况下,为通过FDA认证的等级II医疗设备进行设计、原型并发布用户界面和控制系统,用于以更为缓和近乎无痛的方式对乳腺肿瘤进行治疗。    解决方案:  使用NI CompactRIO平台、NI LabVIEW实时模块和LabVIEW FPGA模块开发灵活的可靠性高的GUI图形化用户界面和控制系统,在上市时间的巨大压力下,开发能够大大减少接收肿瘤治疗的病人在精神和身体上承受的不适感的设备。    "NI在达到我们的目标中起到了重要作用。由于使用了来自NI的图形化系统设计平台,我们的产品设计、原型和最终的发布时间计划都能够顺利完成。"   Sanarus是一家医疗设备的新兴企业,我们为能够改变医生治疗良性肿瘤方式的潜在革命性产品制定了计划。医生使用这种设备能够通过冷冻杀死肿瘤,以一种对病人几乎无痛的方式,摘除肿瘤,这与过去使用的快速的手术解决方法或是“等着看”的方法相比有着巨大的变化。利用便于执行的设计与开发计划,我们希望能够开拓将对乳腺癌治疗产生巨大影响产品的市场。   最后,Visica2治疗系统(V2)是一种将会在医生办公室或是诊所使用的仪器。整个过程包含局部麻醉和几乎无痛的实时超声波向导。整个治疗将持续10到20分钟,通过一个细小无需缝合的切口对目标组织进行冰冻和破坏。   上市时间压力  我们的任务要求在四个月的时间内,开发一个能够工作的V2系统原型,以便满足产品发布的计划。除了要满足投资者的需求之外,我们还要满足市场需求,尽快制造V2系统。   为设备编写固件和设计自定义电路板是十分费时的,任何在固件或是软件层次的错误都会导致计划推迟,从而将威胁到整个项目的进展。由于V2是一种医疗设备,它不能够包含任何将会影响系统性能的软件或是固件的问题。如果设备无法通过510(k)提交所需的全部测试,我们的整个计划就会失败,而V2可能无法上市。基于这些需求,我们需要一个用于V2系统的完全可靠的发布方案。   加速商业硬件的开发  Sanarus邀请了一位NI现场工程师一同讨论可能的解决方案。我们很快认识到CompactRIO是我们所需要的一种可行的解决方案,因为它能够综合编程性和集成I/O开发。我们使用CompactRIO设计了原型,证明了V2系统能够在短时间内进行可靠的开发。通过比较使用CompactRIO系统和我们自己的定制硬件,列出了一张利弊表格。使用CompactRIO的优势是十分明显的:定制解决方案可能需要数月进行开发,而使用NI的解决方案只需要数周。   此外,对于定制固件而言,“最新标准”的变化将会需要编写新的复杂版本,而使用CompactRIO平台,我们只需要根据需要,花费最少的精力修改代码。在决定使用可触屏PC,而不是使用按钮和LED作为系统的用户界面之后,我们使用了用于Windows图形化编程环境的LabVIEW为PanelPC开发了用户界面。我们还能够使用LabVIEW共享变量,方便地管理GUI和CompactRIO实时控制器之间的通信。我们还在不对开发计划造成任何延迟的情况下,利用系统的灵活性,满足了新特性的需求。   因为NI已经事先对模块进行了认证,我们知道CompactRIO也会通过EMC认证。我们无需担心原型系统会因为无法通过EMC认证而需要重新设计。   最终的V2系统由一个运行Windows版LabVIEW的PanelPC组成。它对用户界面进行操作,使用LabVIEW共享变量将指令发送到CompactRIO系统中。LabVIEW实时系统用于在CompactRIO实时控制器上实现状态机。在PID中,LabVIEW实时模块调节回路,控制探针头部的温度。这是通过为冷却所需的液氮泵以及简单的电阻加热组件提供控制算法来完成的。LabVIEW FPGA用于管理控制这些设备所需的I/O信号之间的接口。   通过长期研究,我们的方法在破坏常见肿瘤方面是十分高效的,V2现在已经在美国的制定中心得到了应用。使用NI产品,我们快速有效地为V2开发了包含友好图形用户界面的嵌入式控制系统,同时还维持了系统的质量,最终确保了客户病人的安全。   NI在达到我们的目标中起到了重要作用。由于使用了来自NI的图形化系统设计平台,我们的产品设计、原型和最终的发布时间计划都能够顺利完成。   我们使用LabVIEW完成了控制器设计和编程,并比使用我们过去的方法更快地对机器进行了原型和发布。实际上,我们的CEO认为CompactRIO在Visica2治疗系统项目的成功中起到了关键作用。图1:Sanarus使用商业CompactRIO平台快速完成了能够投入工作的原型开发。

    时间:2019-03-25 关键词: 系统 ni 图形化 肿瘤 设计教程

  • 硬件抗干扰设计

    无刷直流电机无位置传感器控制系统,包括功率驱动电路,反电动势过零点模拟检测系统,以及dsp数字控制部分。为了提高模拟检测电路的精度,获得最为精确的反电动势过零点信息,进行正确的换相,需要将这三部分电路合理地进行模块化,从而避免不同功能电路之间的元器件相互混接,并采用正确的接地和布局方式。否则,不同电路间会存在相互的串扰与耦合,如图1所示。  按干扰的传播路径,可分为由于共同阻抗产生的传导干扰和辐射干扰两类。所谓传导干扰,是指通过导线传播到敏感器件的干扰。高频干扰噪声和有用信号的频带不同,可以通过在导线上增加滤波器的方法切断高频干扰噪声的传播,也可以加光电隔离电路来解决。电源噪声的危害最大,要特别注意处理。所谓辐射干扰,是指通过空间辐射传播到敏感器件的干扰。一般的解决方法是增加干扰源与敏感器件的距离,用地线把它们隔离或在敏感器件上加屏蔽罩。  电机功率驱动电路每次进行pwm斩波调制时,都会产生很大的开关噪声和电磁干扰,这样功率器件一方面会通过电路间的共模阻抗和耦合电容对模拟检测电路产生干扰,功率电路中的瞬态电流也会在信号回路上建立起电压;同时作图1 无位置传感器控制系统的干扰耦合方式  为发射源,也会对以dsp为主的数字控制电路产生不良的辐射干扰。模拟检测电路如存在较大的共模干扰,会给不导通相端电压带来不准确的干扰,以至于会产生错误的比较信号,这就无法再采用本节所提出的无位置传感器控制方法,如图2所示。因此,必须解决不同电路间的共模干扰问题。 dsp主控制器的正常工作如受到较大的电磁干扰,可能致使在dsp中运行的程序跑飞,会导致电机换相失误,停止运行等后果。  图2 不导通相端电压瞬态波形  为保证无位置传感器控制方法能够有效实现,必须采用硬件抗干扰措施。抗干扰设计主要应当从三个方面考虑:抑制干扰源,切断干扰传播路径,提高敏感器件的抗干扰性能。  首先,在无刷直流电机的一个pwm斩波调制过程中,电机两相绕组中电流上升时,由于系统地线共阻抗的存在,会产生一个附加的共模噪声加载在模拟检测电路上。因此,如果要将电源电压的一半值与不导通相端电压进行比较,进而获得反电动势的过零信号时,应当在电机速度较大时进行。这是因为此时反电动势很大,频率很高,且上升速度很快,会使得这个共模噪声对过零点检测的影响减小到最低。同时,应当将功率电路地与模拟检测电路地单点共地,并在印制电路板上尽量增大接地面积以减少地线阻抗。加大电路板元器件之间的距离,模拟检测电路之间进行铺地操作,以减小地线阻抗。数字地与模拟地之间应当通过磁珠来连接。  为了抑制干扰源,就还要尽可能地减小干扰源的du/dt和di/dt,这是抗干扰设计中最优先考虑和最基本的原则。减小干扰源的du/dt主要是通过在干扰源两端并联电容来实现的,而减小干扰源的du/dt则是在干扰源电路回路中串联电感或电阻以及增加续流二极管来实现的。  在实际电路设计中,有许多抑制干扰源的噪声,可以在电路板上的每个芯片上并接高频电容,-方面减小芯片对电源的影响,另一方面小电容也起到了稳压的作用。在布线过程中,要求高频电容的连线尽量靠近电源端并尽量粗短,否则等于增大了电容的等效串联电阻,会影响滤波效果。布线时避免90°的折线,以减少高频噪声发射。  其次,针对于数字控制系统的辐射干扰,可以使用屏蔽金属罩,与功率电路地相接以屏蔽功率管开关对外产生的电磁干扰,并且功率电路要单独接地;针对高频工作的数字控制系统,应当适当增加去耦电容;制作芯片电路引线时,避免形成天线接收回路,布线时尽量减少回路环的面积,以降低感应噪声;电源线和地线要尽量粗。除减小压降外,更重要的是降低耦合噪声。  对于与模拟检测电路相关的dsp输人与输出信号,可以通过光电隔离元件加载到模拟检测电路上去;对于dsp闲置的i/o口,不要悬空,要接地或接电源;使用dsp内部的看门狗模块电路,可大幅度提高整个系统的抗干扰性能;充分考虑dsp供电电源对各芯片的影响,dsp供电电路的电源加滤波电路,以减小电源噪声对dsp或其他数字控制系统芯片的干扰。注意晶振布线,晶振与dsp引脚尽量靠近,用地线网格把时钟区隔离起来,晶振外壳接地并固定。将电路板的数字控制电路、模拟检测电路以及功率驱动电路合理分区,如强信号与弱信号以及数字信号与模拟信号都要尽量分开布局。尽可能把干扰源与dsp控制芯片远离。大功率器件的地线要单独接地,以减小相互干扰。  最后,由于功率开关管寄生电容与无刷直流电机绕组发生作

    时间:2019-03-25 关键词: 硬件 抗干扰 设计教程

  • 网络交换机设计原理

    网络交换机设计原理

    随着计算机性能的提高及通信量的聚增,传统局域网已经越来越超出了自身负荷,交换式以太网技术应运而生,大大提高了局域网的性能。网络交换机能显著的增加带宽,可以建立地理位置相对分散的网络。局域网交换机的每个端口可并行、安全、实时传输信息,而且性能稳定、结构灵活、易于安装、便于管理,能很好地满足企业网和电信运营商宽带接入的需求。1 网络交换机的硬件设计 随着人们对网络应用中的安全性和高带宽的需求,网络交换机的用途越来越广。本交换机采用了AL101芯片的ROX总线,将3个8口交换芯片连接起来,组成了1个24端口交换机,满足了用户对多交换端口的需求。1.1 电路性能要求 交换机的高速PCB电路板,在EMC和ESD上都有比较高的要求。它采用了75MHz、50MHz的高速时钟,需要晶振的精度小于50PPM,同时时钟需要通过时钟分配电路送给不同的芯片,它需要分配的时钟之间的相位差小于2ns。 交换机有24个10/100M自适应端口,每个端口都能达到线速交换。根据用户需要可对端口进行10/100M速率、全/半双工、流量控制、静态MAC地址、镜像、VLAN等设置。1.2 交换机的原理框图 本交换机的交换技术采用存储-转发方式,主要由接口单元、交换单元、管理单元、灯显示单元和电源接口单元五部分组成。其组成的方框图如图1所示。 RJ45接口收到以太网帧结构的数据包后,经过变压器隔离和阻抗匹配后送到PHY(物理接口芯片),在此芯片中完成模拟信号到RMII接口的数字信号的变换,并获得链路状态、冲突、信息是否超长,速率等信息。 数据进入交换芯片(由三个芯片组成,通过ROX总线形成一个环路,可以完成数据在三个芯片之间的交换),交换芯片将获得数据的目的地址和源地址,并对以太网帧进行差错校验。交换芯片将源地址保存在自己的MAC地址表中,然后将目的地址与MAC地址表中的地址相匹配,以获取数据将转发的相应端口。如果目的端口在同一个交换芯片中,则从SGRAM中取出数据转发到相应的端口;如果目的端口不在同一个交换芯片中,数据则通过ROX总线传输到相应的交换芯片,然后转发出去;如果在MAC地址表中没有找到相应的目的地址,就将帧转发到除源端口之外的其它属于同一VLAN的所有端口或者某一个上连端口(与交换芯片寄存器的设置有关)。灯的显示由PHY给出,通过灯的显示可以观察每个端口的工作速率、连接和数据收发等情况。 交换芯片在每次开机或复位期间,首先读取外接EEPROM的内容来对交换芯片寄存器进行初始化配置。而交换芯片寄存器的内容可以通过PC的管理程序或PC的超级终端进行读写,以此来控制或读取交换机的工作配置。2 网络交换机的软件设计 整个网络交换机系统的软件包括单片机的控制软件、EEPROM配置数据和PC机的管理程序。 单片机的控制软件主要完成对寄存器的读写和与PC之间的通信。通过这个管理单元,可以将交换机配成各种工作模式,以满足不同用户的需求。 交换芯片通过I2C总线连接EEPROM(24C02),用于保存配置数据。在设备开机或者复位时,设备将从EEPROM读出这些数据,用于系统初始化。 PC机的管理程序是用户将PC机的串口与系统设备连接,通过PC机的管理程序界面,很容易地对系统进行配置。2.1 单片机控制的软件设计 管理单元由单片机和串口组成,通过PC来配置EEPROM或交换芯片的寄存器。单片机主要完成对寄存器的读写和与PC之间的通信,串口起到一个与PC的连接作用,微制控器与串口之间还有一个电平转换芯片,完成微控制器与PC之间信号的转换。通过管理单元,可以将交换机配成各种工作模式,以满足不同用户的需求,如:10/100M速率设置、全/半双工设置、流量控制、静态MAC地址设置,镜像设置,广播风暴控制,VLAN设置等。单片机的软件流程如图2所示。

    时间:2019-03-25 关键词: 网络 原理 交换机 设计教程

  • 低价位USB3.0系统的可靠性设计方案

    低价位USB3.0系统的可靠性设计方案

      USB是当今最成功的PC接口,安装数量超过60亿,在PC和接口设备上的普及率接近100%。虽然高速USB的480Mbps数据传输速度可满足许多消费者现有的需求,但是与日俱增需求(如高清视频和更快速的数码影音文件的下载)推动了SuperSpeed USB(3.0)的发展。  一般接口的新一代规格,其数据传输速度通常要增加两倍,而USB3.0的带宽却增加了十倍。此外,USB3.0规格不再使用简单的主从式、封包广播式的数据传输架构,而是使用更加复杂的双向封包交换架构。  USB3.0系统设计师面临的最主要挑战是解决5Gbps信号传输速度所带来的问题,设计师必须解决包括系统对信号衰减和抖动增加的敏感度等问题。此外,USB3.0对USB2.0接口的向下兼容性让问题更复杂,因为USB2.0原本是为较低传输速率而设计。  产品设计师碰到最大的问题也许是达到消费者延续对上一代USB产品的低价期待。USB3.0使用了双倍数据率技术,将传输速率增加到最高5Gbps,因而需要高速信号完整性的解决方案。在最长可到3米的线缆、多个接口和PCB板上的长途线路上传送高速信号,产品设计师必须谨慎处理信号衰减和抖动问题。     图1:显示了发送器端的开眼图和接收器端的闭合眼图。  信号裕度预算  与低速信号相比,高速度信号的质量损失更加多,由PCB线路、连接器和线缆所造成的信号损耗累计起来将快速损害信号质量。根据信号裕度的要求,USB3.0容许的通道损耗(由发送器眼图到接收器的眼图)在2.5GHz下为6~9dB。此外,SuperSpeed一般有-3.5dB的去加重,这样全部的信号损耗预算为9.5~12.5dB。  为满足兼容性要求,USB3.0信号必须可以通过3米长的线缆,并保持信号眼图开口有足够的宽度。但这只是部分的路径,因为在兼容性测试中测量的是接收器经过均衡化处理过后的信号。举例来说,在一般的笔记本电脑架构中,USB控制芯片到连接器的距离大约是10英寸,因此信号实际上可能另外经过大约半米的路径和数个连接器。  在一般的笔记本电脑至外围设备的应用中,信号会经过长于12英寸的PCB线路(10英寸线路在笔记本电脑中,2英寸在接口设备中),这将导致3.552dB的线路损耗(12英寸x0.296dB/英寸,使用9/10/9 FR4走线,2.5GHz信号速度,不包括任何PCB导通孔)。加上每一个连接器产生的-1dB损耗,通过两个连接器产生的损耗一共是2dB,因此留给线缆的信号损耗预算只剩下5.948~8.948dB。有遮蔽差分信号对线缆、2.50GHz速度的信号衰减大约是在34AWG的4.4dB/m到26AWG的1.9dB/m范围内。表1列出了根据这些数字计算出的能符合USB3.0规范的SDP线缆的最大长度。表1中第三列到最后一列显示,如果不使用信号调节产品,即便高质量的28AWG线缆,也无法达到USB3.0规范要求的3米长度。  产品制造商可以选择使用高质量的26AWG SDP线缆来通过认证测试,但是这种线缆非常贵,如果随产品出货,线缆的成本会大幅增加产品的成本。此外,即使随产品出货这种线缆,也无法保证使用者不会混用到其它低质量的线缆。虽然在产品上可以强调必须使用适当的线缆,但USB产品的使用者已经习惯了在连接产品时不需担心线缆的质量。这里的关键问题,是当由于使用低质量的线缆连接产品而造成产品效能低的时候,使用者会直觉地认为是产品的问题而不是线缆的问题。这可能会造成较高的产品退货率,并且大幅减少采用USB3.0规格产品的早期利润。另一个影响新科技采用率的重要因素是使用的困难度,如果使用者感觉USB3.0技术很难使用,将严重影响市场的成长。     图2:与图1相同,但在每个连接器端都有转接驱动器。缩短(drop)“信号通道”。显示了发送器端的开眼图和接收器端的闭合眼图。  使用信号调节技术恢复信号质量  当信号质量由于抖动(抖动)和衰减而下降时,可以采用信号调节器件恢复信号质量。信号调节器件也被称做转接驱动器(redriver),因为信号在被传送之前重新被驱动(redriven)。转接驱动器可以放在发送器和接收器之间,可以恢复、调节、再发送接收到的信号。  如果放在接收器之前,转接驱动器可以有效打开信号眼图的开口,从而将信号质量恢复到可以接收的范围内。转接驱动器可以调节信号、使用信号均衡的功能减少信号衰减和抖动,因此可以在更长的距离和通过多个连接器的情况下提供干净的信号传送通道。信号可以恢复原有的强度再次传送,就像是将信号通道拆成数个段落,并且在每个段落恢复信号的质量。转接驱动器也允许产品设计师依照特定的应用类型调整最佳的信号均衡效果,因此可以确保设备可以通过最严格的USB3.0认证要求。  信号调节功能可以增加信号裕度,让产品设计工程师有更多的空间来扩展信号传送距离,或更灵活地设计信号在PCB上传送的路径,特别是在可能要求使用较少层的PCB以达到更好的信号与接地隔离,或是有更大的机会一次设计就能通过验证情况下。经过改善的信号质量不但可以给设计工程师带来信号链上更多的灵活度和选择,也可以因较低的比特误码率而增加产品稳定性,减少传送错误,从而增加实际有效的信息吞吐量且让系统工作更有效。  在设备需要经常被连接和移除的消费应用中,自适应信号均衡功能有最好的效果,因为使用不同长度的线缆加上可以插拔的周边设备内部的信号布线,使整体的信号通路可随时改变。例如,针对3米线缆优化的信号均衡参数,应用在没有线缆的USB移动存储上时会损害信号的完整性。转接驱动器通过持续的再适应(retraining)可以确保针对真正的信号路径进行最佳化的调节。  相反,如果信号的路径静止不变,转接驱动器就不需要使用再适应功能。在这种环境中,例如从来不需要移除任何线缆的服务器中,再适应功能有可能造成负面影响。在一个类似这种稳定的应用中,可配置的信号均衡功能是最好的选择。     表1:满足USB3.0规范的最大线缆长度。  高信号质量推动成本的降低  转接驱动器在接收器增加6dB的信号均衡度,可以大幅增加信号在SDP线缆的传送距离,因此可以帮助解决线缆方面的困扰。如果在发送器也放置转接驱动器,总共可以增加12dB的信号均衡度,可以确保信号在超过3米的34AWG线缆中传送,并通过认证测试(表1)。  增加信号均衡度可以让信号在较长且便宜的线缆中传送,可以让消费者使用低价、有弹性、美观和较细的线缆,而无需为减少信号损耗而购买较粗且昂贵的高质量线缆。因此,如果考虑线缆的成本,使用转接驱动器不但可确保产品按照预期工作,还可以降低产品的整体成本。虽然使用转接驱动器会增加一个板上元件,但转接驱动器只占极小的PCB面积(4平方毫米),这在便携式设备中非常重要。  静电释放(ESD)是使用转接驱动器的另一个考虑。为降低系统的成本,USB接口很有可能被集成到主要的芯片组中,这样不但USB接口控制器件对ESD没有防备,而且整个芯片组都有可能被损坏,造成整个系统无法使用。因为转接驱动器芯片位于连接器与发送器/接收器之间,所以可以隔绝内置USB接口的芯片组。如果有ESD事件发生,转接驱动器可以保护系统的控制芯片,在最坏的情况下只损失单个USB接口,让系统的其他功能正常工作。  转接驱动器必须有认知通讯协议的能力才能高效率地发挥信号平衡功能。由于转接驱动器没有设备身份识别ID,所以无法像USB终端设备一样中止信息传递。如果转接驱动器可以辨识通讯协议,便可支持接收器侦测和电气闲置等功能,而不仅是回复和传送信号。理想情况下,转接驱动器将支持USB3.0规范定义的连续时间线性均衡技术,该技术与发送器期望远端终端设备用来均衡信号的技术是相同的。最后,转接驱动器必须在不被察觉的情况下工作,否则转接驱动器之后的根设备(root device)将不会被辨认,即使这种情况在实验室中可以工作,但在实际应用中则不行。  双向信号调节  实现消费应用是使用者期待USB3.0的价格于USB2.0一样。USB2.0的一个重要设计考虑是能以很便宜的价格进行生产,因此许多制造厂商会错误地认为可以用同样的方式生产USB3.0设备。此外,必须降低成本的压力将使制造商考虑使用低质量线缆,或是让接收器解决信号调节问题等快捷方式。因为市场对低价的集线器和周边设备的期待,将有制造商生产这些产品,并且使用高质量的线缆达到通过认证测试所需要的结果。但是,一般的使用者却希望使用任何的USB线缆,系统都能稳定工作。  在这种情况下,有责任心的制造厂商不得不面对市场上充斥着次级产品的问题:这些产品有价格上的优势,但是当连接到只有接收器有信号调节功能的设备时,可能不能稳定地工作。也就是说,这些设备可以稳定地接收信号,但是当向这些次级产品传送信号时却出现性能明显降低甚至出错。举例来说,一个外接硬盘因为不良的信号质量,不断发出接收器错误的信息,使用者会认为这是硬盘的问题,而不是用在其它产品时看起来没有问题的低质量线缆或是集线器设备的问题,这将导致退货增加,损失赢利。  在每一个外接的连接器上都装一个接收用的转接驱动器,可以确保信号在进入和离开时都可以得到正确恢复。此外,如果也对传送出去的信号做调节处理,就算其它设备没有在接收器做信号调节,产品设计工程师也可以确保设备通过任何长度的线缆,并与其它设备互通。  市面上的转接驱动器产品分单通道和双通道两种。双通道转接驱动器在接收和传送信号通道都具有信号调节的功能,因此可以确保与没有接收信号调节功能的低质量设备的连接。单通道转接驱动器具有可以分开调节接收和传送信号路径的灵活性。  另一个使用转接驱动器产品时的特点是电源电压的灵活性。例如,服务器通常使用1.2V电压,而PC使用3.3V电压,一个可以选择前面任一个电压的转接驱动器产品可以满足两个市场,因此可以用更大的整体出货量来压低价格。,此外,其内置的LDO功能则可以节省一个外接的LDO元件。  有关时钟和信号交换的问题  USB控制器芯片、器件、终端设备、集线器和内置USB接口的处理器都需要一个准确可靠的时钟源。时钟信号在保持良好的SuperSpeed USB信号质量方面扮演着非常重要的角色,因为当时钟速度增加时,可用的抖动预算就减少了。  把时钟技术看成一种陈旧的技术是一个常见误解。事实上,时钟技术(尤其是在高速度时)是极精密的技术。由于高速度时钟比较昂贵,比较节省成本的方法是把较低速度的时钟信号以数倍增加。但是,把低速度的时钟信号数倍增加到高速度时,所产生的抖动也会以同样倍数放大,从而占用了有限的信号裕度。产品设计师的挑战是平衡输入速度(等同价钱)和产生的抖动,因此时钟缓冲器只能容许非常低的抖动,这样当时钟信号倍增时,不会产生过大的抖动。  同样,USB交换器必须提供平滑转换。比如,交换器可以减少扩展坞等实际应用中使用的信号接口,降低成本。通过保持低电阻和低阻抗,交换器可以保持低的输入信号损耗,不让信号的瑕疵反馈到发送器,从而保持信号完整性。  使用USB管理智能以节省耗电  许多消费型USB3.0终端设备使用电池,因此USB3.0具有几个新的省电模式,包括闲置(idle)、睡眠和暂停(suspend)模式。产品设计师可以利用这些新功能,关闭转接驱动器信号电路以延长产品工作时间。  USB接口是双通道,传送和接收通道可以单独开关。发送器的转接驱动器的电源管理比较简单,当没有信号传送时可以直接进入睡眠模式。USB有热插拔的能力,管理接收器较为复杂,因为随时都有可能接收信号,转接驱动器必须具有支持复杂前端信号侦测能力的机制,才能保持器件的透明性。  当有连接到其它设备时,转接驱动器可以更频繁地利用电气闲置阈值电压(electrical idle threshold)来检查是否有信号传输。当信号在阈值电压下,表示没有信号输入,可以进入深层睡眠模式。这个阈值电压一般是100mV,但如果想要增加通过长距离线缆传送的低电压信号的敏感度,可以将它调节到更低的60mV。例如,数码电视的USB接口可能连接其它非常远的电子装置,因此需要较高的敏感度来侦测信号。服务器应用中的USB3.0接口,因为使用较长的PCB布线,比较低的阈值电压也是较好的选择。  USB3.0  熟悉PCI Express Gen 2的产品设计师,可能会比熟悉USB2.0更容易上手USB3.0设计,因为USB3.0和PCI Express Gen 2使用相似的链接初始化、封包结构和错误修复方式。此外,这两种通讯协议使用完全相同的发送和接收模块和单元,包括加扰码、8b/10b编码、串行器/解串器等。  USB3.0和PCI Express Gen 2的相似之处会大大减少PCI Express Gen 2的应用,特别是因为USB3.0的信号传输量和不需要再次转译通讯协议到USB的特性。举例来说,USB3.0已经设计在扩充坞里,因为USB3.0不像PCI Express Gen 2信号需要再次转换(需要使用HBA 或是PCI-USB控制器)。使用USB3.0扩充坞就将有集线器扇出信号的功能,因此可简化整体架构并且减少成本。  USB是当今最普遍的消费电子产品通讯协议,与PCI Express相比占有强大的优势。因为USB3.0连接器和控制器必须向下支持USB2.0设备,从PCI Express Gen 2平台转向USB3.0的供应商可以立即进入这个庞大的市场。向下支持USB2.0协仪的确增加了设计USB3.0产品的难度,但由于USB2.0和USB3.0共享连接器,所以大多数难题都在芯片设计当中。  PCI Express Gen 2仍然在明确的芯片外接口占有一席之地,包括处理器的内部总线接口和其它的服务器、储存、嵌入式应用等。当然,这现存的优势的前提是PCI Express Gen 2仍是主要的内置接口。  预计USB3.0将和其它新的和旧的接口规格竞争,如HDMI、DisplayPort、PCI Express、DVI等连接监视器的接口。USB3.0有高的通道宽度和低的价格,当集成至芯片组之后,没有理由不会用来连接监视器。USB3.0不会完全取代HDMI和DisplayPort通讯协议,因为它们各自都有增加自己的应用范围。比如,HDMI因为具有反向通道能力而在监控摄像机市场具有影响力。但能预期的是,USB3.0将蚕食那些正在使用至少一个USB接口的其它通讯协议应用的市场占有率。  USB3.0在很多方面会改变电子市场的现状,但为要达到高性能和稳定性,必须使用信号调节产品来补偿PCB、连接器、以及最重要的线缆信号损耗。消费应用无法接受用来保持信号完整性的高价的高速度元件,但也不能忍受信号完整性问题带来的应用性能和可靠性下降。如果在发送器和接收器端使用转接驱动器恢复信号质量,工程师可以保持良好的信号裕度,以便用更长的线缆,或使PCB布线有更高的灵活性。他们也将确保产品的设计不仅可以通过严格的USB3.0认证测试,也可以使用低质量的线缆并与其它USB3.0设备具有很好的互操作性。

    时间:2019-03-22 关键词: 系统 设计方案 可靠性 低价位 设计教程

  • 基于微震监测技术的地下田野文物监控系统设计与实现

    基于微震监测技术的地下田野文物监控系统设计与实现

    摘 要: 针对地下田野文物被盗过程中洛阳铲、爆炸等行为特点,提出基于微震监测技术的地下田野文物监控系统。通过埋藏于地表的多个地震检波器,建立检波监测网,识别多种人为行为特点,区分是否是洛阳铲、爆炸等盗窃及损坏地下田野文物的行为,从而向控制中心发出报警信号,实现对地下田野文物监控的目的。关键词: 文物;监测;检波;微震 我国历史悠久,古墓葬、地下遗址等地下田野文物资源丰富。我国地下田野文物监管的现状是:地下田野文物分布点多、线长、面广,且所处位置大都较为偏僻,交通不便,地下田野文物管理人员数量少,巡查难度大,监管技术落后。这给不法分子盗窃文物等违法行为以可乘之机,盗窃行为时有发生。针对这种现状,本文利用微震监测技术实现了对地下田野文物保护系统的设计。通过在目标区域建立监控系统,完成对震动信号的采集、分析、判别,判断是否有盗掘行为的发生,实现对田野文物监控的目的。微震监测技术是微地震研究的一个应用领域,本设计是微震监测技术在文物监控领域的一个应用。1 系统设计总体概述 系统包含检波监测网、调理电路、工业控制计算机三部分,如图1所示。其中,检波监测网采集人为活动产生的震动参数,并可多节点定位,调理电路完成对原始信号的放大、变换、滤波等处理,信号采集PCI卡通过工控机的PCI插槽完成对工业控制计算机的数据传输,数据经工业控制计算机软件分析、处理、判别后做出识别,通过有线或者无线网络向远程控制中心发出报警信号,远程控制中心收到报警,采取相应措施。2 系统硬件设计2.1 检波监测网 检波监测点对目标区域实行监控,实质是监测目标区域内的各种震动信号。 检波监测网由N个检波监测点组成,检波监测点的个数可根据实际需要自行设定。本设计采用HK20DX-10S系列地震检波器作为检波监测设备。该系列地震检波器采用引线簧结构,具有体积小、重量轻、假频高、耦合好等特点。该系列检波器适合沼泽、浅海、丘陵、山地、戈壁等不同地表环境的工作。其技术指标如下:自然频率10±5%,开路阻尼系数0.3,闭路阻尼系数(并1 kΩ)0.7±5%,开路灵敏度0.28 V/(cm·s-1),闭路灵敏度(并1 kΩ)0.2±5%,线圈电阻395±5% Ω,并联电阻后直流电阻(并1 kΩ)283±5% Ω,失真度≤0.2%,假频≥400 Hz,悬体质量11 g,最大位移(P-P)1.5 mm,允许倾斜角度<10°。 该系列地震检波器假频大于400 Hz,具有很强的抗横向干扰能力,大幅度提高了检波器的通频带宽度及信噪比。采用引线簧焊接导电结构,保证检波器的高可靠性。检波器体积小,易于埋置,与大地的耦合性好,抗干扰能力强,有效提高了检波器的分辨率和信噪比。2.2 调理电路 调理电路对地震检波器采集到的电压信号进行滤波、放大,调整成适合工业控制计算机处理的信号,其单路设计如图2所示。 IN端是地震检波器信号采集端,OUT端是工业控制计算机端,R00、R01、C01可以根据滤波、放大需要进行相应设计,调理电路路数可以根据实际需要进行设计。2.3 工业控制计算机 本设计采用的工业计算机包括工业控制计算机核心、高速模拟量数据采集卡、网络模块等部分,系统框图如图1所示。2.3.1 工业控制计算机核心 本设计采用GT-6355工业控制计算机,英特尔凌动230处理器,主频1.6 GHz,主板采用英特尔945GC+ICH7芯片组,双通道内存接口,最多支持4 GB的DDR2 533/677 MHz内存,显示卡采用英特尔GMA950图形媒体加速器,最大共享内存224 MB,1个英特尔82573L PCI-E千兆网络控制器,2个SATA硬盘接口,1个RS-232接口,1个RS-232/422/485接口,6个USB2.0接口,PICMG1.0总线,支持PCI及ISA扩展设备,含PCI扩展单槽。该工业控制计算机性能稳定、资源丰富、使用方便,且能适应恶劣环境。2.3.2 高速模拟量数据采集卡 本设计采用PCI-1713型高速模拟量数据输入卡。该卡是一款PCI总线的隔离高速模拟量输入卡,提供32路差分模拟量输入或者组合输入通道,每个输入通道的增益可编程控制,可对不同通道使用不同增益,并采用单端和差分输入的不同组合方式来完成多通道采样。模拟量输入范围为:双极性时,±0.625 V,±1.25 V,±2.5 V,±5 V,±10 V;单极性时,0~1.25 V,0~2.5 V,0~5 V,0~10 V,最大输入过载电压±30 V;A/D转换器的采样频率可达100 kS/s、分辨率为12 bit;带有一个4 KB采样FIFO缓冲器,该特性提供了Windows下连续高速数据传输的可靠性;2 500 V(DC)的直流隔离保护,用于保护PC及外设免受输入线上高压电的损害;支持软件内部定时器触发或外部定时触发;工作温度-20 ℃~+70 ℃,能适应户外工作要求。 数据采集过程如图3所示。3 系统软件设计 软件系统采用Windows XP作为操作系统平台,符合用户的操作习惯。应用软件采用微软公司的开发工具Visual Studio 2005进行设计开发。3.1 软件结构设计 应用程序包括系统界面、操作日志、数据通信、数据库存储、历史数据查询等模块。软件结构如图4所示。 (1)系统界面。软件界面采用分级结构,每一个试验采用弹出子界面的方式单独处理,这样使软件更具模块化管理。软件的整体界面框架包括菜单栏、工具栏、按钮、编辑框、主窗口状态栏等部分。 (2)操作日志。操作日志记录了用户对设备进行操作的用户名、时间、指令等详细信息。日志信息保存在文本文件中,便于查询。 (3)数据通信模块。数据通信模块采用PCI通信模块、网口和USB等接口和外部设备进行通信。 (4)数据库存储。数据存储完成实时数据的数据库存储。本方案采用Access数据库, ADO是数据库应用程序开发的接口,具有使用简便、速度快、内存消耗少和占用磁盘空间少等优点。利用ADO技术实现Visual Studio 2005与数据库的接口,从而方便地实现Visual Studio 2005对Access数据库的访问。 (5)历史数据查询。历史数据查询模块完成历史数据信息的查询操作,通过观察历史数据,可以对系统的性能做出分析,可以了解设备的工作过程及结果。历史数据查询模块包括窗体代码设计和数据库查询代码设计。3.2 软件流程设计 软件流程如图5所示。 应用软件启动后,首先进行初始化工作,包括初始化接口、记录工作日志、打开数据库等任务。如果初始化失败,应用程序不能正常运行而退出;初始化成功后,开始监控。当关闭设备时,监控结束,否则一直循环进行。 本方案针对目前文物所在的环境特点划分成多个小区域, 利用传感器网络进行实时监测,对接收到的数据进行实时处理,对异常状况进行报警,并及时保存所采集的数据信息,为文物保护工作者进行文物保护方法的研究提供了重要依据。本方案所描述的系统具有简单、实时、高效等特点,对维护文物古迹的安全具有重要的意义。参考文献[1] 刘光林,刘泰生,高中录,等.地震检波器的发展方向[J]. 勘探地球物理进展,2003,26(3):178-185.[2] 李庶林.试论微震监测技术在地下工程中的应用[J].地下空间与工程学报,2009(1):122-128.[3] 李国栋,汉泽西.地震检波器频率响应特性的研究[J].石油仪器,2009,23(4):11-13.[4] 吴瑞文,梁志瑞.基于工控机与DSP的高速数据采集系统设计[J].电力科学与工程,2009,25(9):30-33.[5] 李希文,赵建,李智奇.传感器与信号调理技术[M].西安:西安电子科技大学出版社,2008:3-14.

    时间:2019-03-22 关键词: 文物 监控系统 地下 田野 设计教程

  • 基于SkyeModuleM8模块的UHF射频读卡器设计

    基于SkyeModuleM8模块的UHF射频读卡器设计

    目前,笔者已经采用M8模块设计出了射频读卡器,并通过选择合适的天线并将其应用在远距离人员考勤系统中。 通过读卡器对人员的非接触信息采集,然后把信息传到上位机,可以对人员进行有效的管理,用来浏览、查询、统计和修改数据库内的员工信息。该读卡器在实际应用中操作方便、运行可靠。 引言    射频识别技术RFID是二十世纪九十年代兴起的自动识别技术,是一项利用射频信号通过空间耦合(交变磁场或电磁场)实现无接触信息传递并通过所传递的信息达到识别目的的技术。它与早期的识别技术(条形码、磁卡等)相比,具有可非接触识别(识读距离可以从10cm至几十米)、存储能力大、可识别高速运动物体、抗恶劣环境、保密性强、可同时识别多个识别对象等突出特点,因此它可在更广泛的场合得到应用。  目前,工作频率为UHF的射频读卡器的设计方法主要有三种:采用离散高频元件设计、集成射频芯片设计及OEM方法来完成射频模块。采用离散高频元件设计读卡器,电路的设计和调试难度非常大,开发设备要求高。针对这种情况,许多芯片制造厂商陆续也开发了UHF集成芯片,如Melexis公司推出的低功耗FSK/FM/ASK收发器芯片TH71221就属于这类芯片,但并没有给出相应的开发评估板,开发起来还存在一定的困难。同时许多厂家推出了UHF射频识别模块,用户可以通过OEM方法生产自己的UHF读卡器,降低了开发难度,缩短开发周期。  射频识别系统  一个典型的射频识别系统主要由应用系统、射频读卡器和射频标签三部分组成(图1)。射频标签和射频读卡器分别属于信息载体和信息采集设备,而由它们所构成的射频识别系统归根到底是为应用系统服务的。射频读卡器与应用系统之间的应用程序接口API通常用一组可由应用系统开发工具(如VC++,VB,PB等)调用的标准接口函数来表示。  UHF射频读卡器的设计  射频读卡器主要分为两部分:控制模块与射频模块。在射频识别系统中,射频读卡器的任务是通过射频模块向标签发射读取信号,并接收标签的应答,对标签的对象标识信息进行解码,再通过控制模块将对象标识信息连带标签上的其他相关信息传输到应用系统计算机以供处理。在本设计中比较了众多的射频收发模块最终选用由Skyteck公司开发的Skymodule M8模块。  M8模块  M8模块提供了一个低功耗、高性能、高效率的UHF读卡器设计平台,它是一个多协议OEM模块,可以用来读写满足ISO18000-6 A/B、EPC Class 0/0+或1、EPC Class1 Gen2和其它协议的频率范围为860~960MHZ的UHF标签。还可以在现场通过升级固件程序来增加新的标签协议和兼容性。M8模块的射频输出功率可以通过程序在15mw~500mw之间范围内设定。在5V电压下,M8模块的智能电源管理可以使电流低于100μA(休眠模式),这样可以使设备用电池来驱动。为了简化对M8模块的操作,模块留有一个20针的接口。只需要根据具体应用来设计相关的控制模块,并通过导线与接口相连,就可以以指定的通讯方式与M8模块进行数据交互。与控制模块的接口包括UART (TTL)、I2C和SPI,还可以通过RS-232、USB接口直接与计算机通讯。M8模块内置有便携式天线,还具有一个50Ω的输出阻抗,用来与外部天线相连,模块的读卡距离与外部天线有着直接关系。其外观图如图2所示。  控制模块设计  由图1可知,控制模块主要包括两部分:以微控制器(如单片机)为核心的控制单元和通讯接口单元。  控制单元的主要功能就是对射频模块功能进行配置并与之通信取得射频模块所获得的射频标签信息,将获取的标签信息通过通讯接口上传给上位计算机,同时也可以接收上位机对射频读卡器的配置指令。还有,射频读卡器还需要留有一个可以直接与计算机通讯的接口,有利于上位机软件的设计与开发。因此,需要根据控制单元的功能要求来选择控制单元微控制器,并实现各种通信接口。在此,控制单元是一个以AT89S53为核心的单片机系统,该单片机片内含有12K Bytes的Flash Memory和256Bytes×8的RAM,3个16位定时器/计数器,9个中断源,可编程串行UART通道,SPI接口。  通讯接口单元又可以分为两部分:芯片级总线接口单元(M8模块支持I2C、SPI、UART等)和现场总线级接口单元(RS232、RS485、CAN总线等)。控制单元通过芯片级总线接口单元来对射频模块进行配置和读取射频模块所捕获的射频标签信息。  在本设计中控制模块上需要留有一个接口,一方面与单片机的SPI引脚相连,另一方面通过导线与M8模块通讯,这样就实现了控制模块与M8模块的通讯。为了将所采集的标签信息传输给上位计算机,可以使控制模块与计算机之间通过串口通讯。控制模块的电路原理图如图3所示。  软件设计  本设计中单片机软件主要分为两部分:单片机与M8模块之间的SPI通讯和单片机与上位计算机的串口通讯。Skyteck公司已经为M8模块制定了专门的通讯协议,单片机只需要按照通讯协议格式就可以通过SPI接口与M8模块进行通讯,读取标签信息或对M8模块进行配置。为了实现单片机与计算机之间的通讯,也需要制定两者之间的通讯协议。这样,单片机就可以把获得的标签信息按照通讯协议的格式传输给计算机。用户则可以根据具体应用,开发出相应计算机软件来对标签信息进行管理。  结语  目前,笔者已经采用M8模块设计出了射频读卡器,并通过选择合适的天线并将其应用在远距离人员考勤系统中。通过读卡器对人员的非接触信息采集,然后把信息传到上位机,可以对人员进行有效的管理,用来浏览、查询、统计和修改数据库内的员工信息。该读卡器在实际应用中操作方便、运行可靠。

    时间:2019-03-22 关键词: 射频 uhf 模块 读卡器 设计教程

  • 基于FM1712的通用射频卡读写模块设计

    基于FM1712的通用射频卡读写模块设计

      射频卡(非接触IC卡)是最近几年发展起来的一项新技术,与传统的接触式IC卡磁卡相比较,利用射频识别技术(radio frequency identifica-tion)开发的非接触式IC卡成功解决了无源和免接触等难题,是电子器件领域的一大突破。其高度安全保密性以及使用简单等特点,使之在各领域的应用异军突起。   引言   本文介绍的非接触射频卡读写器就是基于单片机AT89C51CC01 (笔者应设计需要选择带独立CAN控制器的MCU)与复旦微电子股份有限公司的FM1712嵌入式读写芯片开发的。它能完成对Mifare卡的所有读写及控制操作,并可方便地嵌入到其它的系统(例如:门禁,公交,考勤等)中而成为用户系统的一部分。    1 FM1712芯片简介    FM1712系列是复旦微电子股份有限公司设计的非接触卡读卡机专用芯片。它采用0.6微米CMOS EEPROM工艺制造,可分别支持13.56 MHz频率下的typeA、typeB非接触式通信协议,以及Mifare标准的加密算法,并可兼容Philips的RC500、RC530、RC531读卡机芯片。  FM1712内部的发射器不需要增加有源电路就可以驱动近距离天线(可达10 cm),而其接收部分则提供了一个坚固而有效的解调和解码电路,以用于接收ISO14443兼容的应答信号。数字部分还可以处理ISO14443帧和错误检测奇偶CRC。FM1712芯片只需少量的外围电路就可以工作,它支持6种微处理器接口,其数字电路具有TTL和CMOS两种电压工作模式。    2 系统设计    图1所示是基于FM1712的通用射频读写系统的结构框图。该系统由AT89C51CC01、键盘、EEPROM、FM1712、LCD,以及485通信模块组成。MCU负责控制FM1712对Mifare卡(也就是应答器PICC)的读写操作,再根据得到的数据对LCD、EEPROM进行相应的操作。  MCU与PC机通过CAN总线进行通信。使用时,即使PC机与MCU之间通信发生异常,MCU也可以独立工作。在与PC机通信恢复之后,MCU还可以将备份在EEP-ROM中的信息再传给PC机。AT89C5lCC01是一款单片封装的微控制器,它采用高性能的处理器结构,其指令执行时间只需2至4个时钟周期。EEPROM采用的FM24C64L是一款以I2C为操作方式的存储芯片。LCD则选择内置HD61202U控制器的点阵式液晶LM12864,因为LM12864是并口操作方式,因此使用起来比较方便。整个系统采用12 V电源供电,再由稳压芯片稳压成3.6 V。   3 工作原理    射频卡的电气部分由天线和1个高速(106KB/s)RF口、1个控制单元和1个8 KB的EEPROM组成。其中EEPROM分为16个扇区,每个扇区为4块,每块16个字节,以块为存取单位,每个扇区有独立的一组密码以进行访问控制。每张卡都有一个唯一的32位序列号。该RF卡无电源,自带高频天线,内含加密控制逻辑和通讯逻辑电路。  信息存储在Mifare卡里,读写器与Mifare卡通过各自的天线建立二者之间的非接触信息传输通道。系统数据存储在无源Mifare,也就是PICC(应答器)中。图2为系统工作原理,可以看出,PCD(读写器)的主要任务是传输能量给PICC,并建立与之的通信。  PICC是由一个电子数据作载体,通常由单个微型芯片以及用作天线的大面积线圈等组成;而PCD则可产生高频强电磁场,这种磁场能穿过线圈横截面和线圈周围的空间。因为FM1712提供的频率为13.56 MHz,其波长比PCD的天线和PICC之间的距离大好多倍,故可以把PICC到天线之间的电磁场当作简单的交变磁场来对待。  首先让PCD天线线圈发射磁场的一小部分磁力线穿过PICC的天线线圈,接着将PICC天线线圈和电容器C构成的振荡回路调频到PCD的发射频率。回路的谐振可使PICC线圈的电压达到最大值,将该电压整流后作为数据载体(微型芯片)的电源。这样,在PICC启动之后,可与PCD之间进行数据通信。如上所述可以看出。PCD的性能与天线的参数有着直接的关系。在对天线的性能进行优化之后,PCD的读卡距离可以达到10 cm。     4 读写器的天线设计    由于FM1712的频率是13.56 MHz,属于短波段,因此可以采用小环天线。小环天线有方型、圆形、椭圆型、三角型等。本系统采用方型天线。天线是非接触式lC卡读写器的一个重要组成部分,在读写器和非接触式IC卡通信中,天线主要用于产生能发射和接收射频信号磁通量,而磁通量用于给读写器提供电源并在读写器和卡片之间传送信息。  根据互感原理可知,半径越大、匝数越多,读写器上的天线和卡上天线的互感系数就越大。根据国际标准要求,卡和读写器的通信距离为10 cm。天线可等效成R、L、C并联回路(见系统工作原理图),故在设计天线时要注意天线的品质因数。国际标准ISO14443规定:无论TYPEA或TYPEB非接触式IC卡,其读写器和卡之间的数据传输速度为106 KB/s,载波的频率f0=13.56 MHz,因此,每一位数据的维持时间T0=106/104k=9.44μs。  TYPEA类射频智能卡读写器到射频卡的信号编码是修正米勒编码,传送每一位数都会具有3μs的载波中断,因此,该信号的带宽近似为B=1/T=1/3μs=333.333 kHz。这样,天线的品质因数应为:Q=f0/B=13.56 MHz/333.333kHz=35。由于天线的传输带宽与品质因数成反比关系,因此,过高的品质因数会导致带宽缩小,从而减弱读写器的调制边带。导致读写器无法与卡通信。  5 硬件接口电路设计    图3所示是该读卡器的硬件接口电路。由图3可以看出,MCU与FM1712是通过SPI总线通信的。本系统采用中断(INT1)工作模式,即MCU利用FM1712提供的中断信息对其进行控制。需要注意的是,FM1712复位后必须进行一次初始化程序以视始化SPI接口模式,这样还可以同步进行MCU和FM1712的启动工作。另外,根据系统的需要,也可以采用查询方式对FM1712进行操作。     6 读写器对卡的操作    FM1712内部有8个寄存器页,每页有8个寄存器,每个寄存器有8位数据。这些寄存器是统一编址的(从0x00到0x3F),MCU通过SPI接口与FM1712通信来对这些寄存器进行设置。如MCU需要让FM1712执行某个命令(Transceive),就可以把此命令的代码(1E)写入Command寄存器。必须注意的是,MCU对卡片的操作不是简单的一条指令所能完成的,其中必须有对FM1712内部硬件寄存器的设置。其操作如图4所示。以下是对卡的操作定义。    (1) 初始化:包括对MCU的初始化和对各硬件寄存器设定初始值、打开RF场以及看门狗复位等操作;同时要初始化FM1712的SPI接口和定时器。设置定时器控制寄存器,并打开TX1、TX2。   (2) Request (请求):当一张Mifare卡片处在卡片读写器的天线工作范围之内时,程序员可控1制读写器向卡片发出REQUEST all(或REQUESTstd)命令,以启动卡片的ATR将卡片Block0中的卡片类型(TagType)号共2个字节传送给读写器,从而建立卡片与读写器的第一步通信联络。如果不进行复位请求操作,读写器对卡片的其它操作将不能进行。  (3) Anticollision Loop(防冲突机制):如果有多张Mifare卡片处在卡片读写器的天线工作范围之内,PCD将首先与每一张卡片进行通信,以取得每一张卡片的系列号。由于每一张Mifare卡片都具有其唯一的序列号而决不会相同,因此,PCD可根据卡片的序列号来保证一次只对一张卡进行操作。该操作后,PCD得到PICC的返回值即为卡的序列号。  (4) Select Tag(选择卡片):完成上述步骤之后,PCD必须对卡片进行选择操作。执行操作后,返回卡上的SIZE字节。  (5) Authentication(三次相互验证):经过上述步骤并在确认已经选择了一张卡片时,读写器在对卡进行读写操作之前,还必须对卡片上已经设置的密码进行认证。如果匹配,才允许进一步进行读写操作。  (6) 读写操作:对卡的最后操作就是读、写、增值、减值、存储和传送等操作。在每一个加值和减值操作后都必须跟随一条Transfer传送指令。这样才能真正地将数据结果传送到卡片上。如果没有传送指令,数据结果仍将保持在数据缓冲寄存器中。  (7) 若循环询问是Request All指令,那么,在处理完一张卡片后,还要判断是否还有未处理完的卡片。  7 结束语  IC卡以其高度的信息集成及安全性已经融入当今信息技术的主流之中。本文介绍的读写器所用的读卡芯片FM1712是一款优秀的新型国产芯片,经实验证明,基于该芯片设计的Mifare卡读写器,工作十分稳定。此外,在此读写器的基础上,只要稍加改动还能开发成不同的射频识别应用系统,因而具有很好的市场前景。

    时间:2019-03-22 关键词: 射频 模块 卡读写 设计教程

  • 山东力创-水表设计方案———山东力创-水表设计方案

    山东力创-水表设计方案———山东力创-水表设计方案

    一、功能简述 1.正反转识别 2.瞬时流量测量 3.脉冲当量设定 4.液晶显示累积流量、瞬时流量、当前时间 5.按键控制显示,调节脉冲当量,调节时间 6.低电压检测、掉电保护 7.数据存储二、技术指标 满足各类水表相关标准三、原理框图 水表包括流速采集、微控制器、电源管理、按键、数据存储和液晶显示几部分组成四、效果图五、实现方案1.流速采集MCU与LC9723定时(Δt时间段)通讯,既得Δt时间段内的平均瞬时流量值Fi,即可得瞬时流速。根据各流量点的当量ki(或叫做流量系数)校正瞬时流量,可得到精确的瞬时流量kiFi。2.累积流量瞬时值的数字累加和即为累积流量,其计算公式为式中W为累积流量,ki为流量系数,Fi为瞬时流量。3.电源管理本设计采用低功耗设计,内部设有电源电压监视和掉电保护电路,保证水表在掉电时能正确的将数据存入存储器。4.液晶显示由液晶通过按键循环显示当前的流速,当前累积流量,当前时间等数据5.数据存储MCU把累积流量数存入数据存储器,包括历史月份累积流量,历史几天的累积流量6.按键按键采取五按键方式,只有一个按键露出表外,其余按键为嵌入式按键。按键的功能有,控制液晶显示屏显示不同的数据、调节转速当量、调节RTC等。7.流量曲线校正基表的误差曲线如上图所示,图中的粗线为误差统计平均值,曲线的方程为y=y(x),为了精确表达曲线方程,我们采取多段线拟合的方法描述即y=kix+bi,由于描述一条直线只需要两点即可,所以在程序中用分立的点来逼近误差曲线。在不同的流速区间有不同的k值和b值。为了把水表的误差校正到最小,把测得的实际值加上校正值得到校正后的值,即y=y测量+y校正=y测量+kix+bi。校正后的误差如图所示,可以看到,误差仅与基表误差曲线的分散性有关,而且其量程比拓宽。8.正反转识别叶片采用宽度不一的两片金属片相继通过LC9723探头,从而产生的脉冲信号的占空比不一来区别正反转的。原理如下由此产生的反转脉冲信号如下正转脉冲信号为在每一个脉冲的上升沿,LC9723会输出一个脉冲宽度为20us的窄脉冲,当叶轮正转时窄脉冲的出现是等时间间隔的,当反转时,窄脉冲的出现是不等时间间隔的,因此正反转的识别变得极其容易。另外,该水表还具有脉冲唤醒功能。六、程序流程

    时间:2019-03-21 关键词: 设计方案 山东 水表 设计教程

  • 基于LPC2478与ADS7843的电阻触摸屏设计方案

    基于LPC2478与ADS7843的电阻触摸屏设计方案

    触摸屏具有坚固耐用、反应速度快、节省空间、易于交流等许多优点,相比键盘输入,触摸屏技术更简单、直观、快捷,且具有丰富多彩的表现能力。设计触摸屏时,最重要的问题是准确定位触摸点的坐标位置。 本文详细介绍了利用工业级芯片LPC2478与ADS7843设计四线电阻触摸屏的实际方案。1 硬件设计1.1 硬件选择 LPC2478芯片内部集成了LCD接口,它的工作范围为-40~+80℃,其宽温的特点特别适合工业领域。ADS7843芯片是一款专为触摸采样设计的芯片,12位可编程精度。外部参考电压范围从1 V~Vcc均可,Vcc最高电压为5 V,高速低功耗使得ADS7843非常适用于电阻触摸屏的手持设备。1.2 硬件电路 笔者设计了ADS7843的硬件接口电路(如图1所示)。该电路中采取了利用LPC2478的GPIO管脚模拟SPI时序的方式,将DCLK,CS,DIN,BUS-Y,DOUT接到LPC2478的5个GPIO引脚上。将ADS7843的引脚接到LPC2478的中断1上的方式。采用的四线电阻触摸屏,分别接到ADS7843的X+,Y+,X-,Y-引脚上。1.3 采集方式 ADS7843有2种参考电压模式:单端模式和差分模式。在单端模式中,参考输入电压选取的是Vcc和GND。由于内部的开关电阻压降影响转换结果带来误差,所以转换器内部的低阻开关对转换精度有一定影响。差分模式参考输入由未选中的输入通道Y+,Y-,X+,X-提供参考电源和地。不管内部开关电阻如何变化,其转换结果总与触摸屏的电阻成比例,克服了内部开关电阻的影响,但当转换频率很高时则增加了功耗,需要考虑低功耗设计。笔者基于采样精度的原因在程序中采用了差分方式。 ADS7843的引脚是一个PIN中断引脚,在触摸显示屏时可产生一个低电平,触发LPC2478的中断,采用下降沿触发的方式。一次点击触摸屏的过程捕获图2的电平变化过程。对于采用中断方式采集电平变化不是很适合,同时无法捕获触摸屏上的滑动过程,所以笔者使用了循环采集方式。 循环采集方式:主要是通过LPC2478定时采集ADS7843的方式,在笔者的程序中定时器的时间间隔设置为50 ms。该方式由于加大了CPU的负荷,所以不太适合速度较慢的MCS51单片机,但比较适合LPC2478的处理器。每次采集的数据要与上次数据进行对比,以判断是否为新的数据。 研究中主要利用LPC2478与ADS7843进行显示和外部输入,无其他大量计算,也不对设备进行实时控制。所以比较中断方式与循环方式的优缺点,主要为了对一些屏幕上滑动动作可以较好进行响应,最后采用了循环采集方式。1.4 ADS7843采集流程 采用12位差分模式的采集方式,程序中的控制字分别为0xg0(x坐标)和0xD0(y坐标)。根据ADS7843的时序图,笔者采集程序的工作流程:经过8个时钟周期发送完毕控制字后,在DCLK的下降沿连续读取12次,从而读取触摸屏上的AD采样数值。由于笔者采用的循环采集方式,采集进来的数据不一定是经过人对屏的触摸产生的数据。在笔者使用系统中,LPC2478液晶屏采用的是夏普LQ043T3DX02 LCD屏,采集到数据如果x轴数据为4 095(y轴数据采集到数据多数为O,但有的时间可能不为0)。说明采集到数据时并没有人触摸屏幕,该数据可以直接丢弃。 在实际中不仅仅关心ADS7843对当前触摸点电压值A/D转换值,更关心触摸点与LCD坐标的关系。可通过下列转换公式进行转换:式中:x,y为LCD坐标中的坐标;xAD,yAD为ADS7843采集到AD值;Tchscr_XMax,Tchscr_XMin,Tchscr_YMax,TchScr_YMin为触摸屏返回x,y坐标的范围。2 结语 本文介绍的利用芯片LPC2478与ADS7843设计四线电阻触摸屏的实际方案实现了具体功能。实际应用表明,采用LPC2478设计的触摸屏具有较强的可靠性以及环境适应性。

    时间:2019-03-21 关键词: 触摸屏 设计方案 电阻 设计教程

  • 基于AD6620的正交解调器设计

    ic36  近年来,人们对数字正交解调进行了一系列的研究,提出了不少方法,其中,数字混频正交变换法与模拟解调原理一致,是一种比较理想的解调法,同其他方法相比,其精度更高,误差更小。  ad6620是美国adi公司生产的数字下变频信号处理器,采用数字混频正交变换完成数字解调功能,在通信、雷达等电子设备中得到了很好的应用。本文将ad6620成功地应用到超声频谱多普勒成像中,完成了其硬件设计和软件编程。  频谱多谱勒系统中的正交解调部件  超声频谱多普勒系统分为正交解调,距离选通和频谱分析3个部件,它们都受一个cpu控制,需要与该cpu通讯。其中,正交解调部件由一个数字下变频器ad6620实现,它的原理框图如图1所示。  接收到的回波信号放大后可表示为:x(t)=a(t)cos[w0t+φ(t)]  把x(t)分成两路分别与2cosw0t与-2sinw0t相乘,并用低通滤波器滤除其高频成份,可得上通道的输出为:va’(t)= a(t)·cos[w0t+φ(t)]×2cosw0t      = a(t)·cosφ(t)+a(t)·cos(2w0t+φ(t)]  低通滤波后的输出为:va(t)=a(t)·cosφ(t)  同时可得下通道的输出为:vb(t)=a(t)·sinφ(t)  将va(t)和vb(t)合成复值信号v(t)=va(t)+jvb(t),就可以进行后面的距离选通、频谱分析等处理。  数字下变频器 ad6620  ad6620主要有以下特征:16位线性比特补码输入(另加3比特指数输入);单信道实数输入模式最大输入数据率高达67msps,双信道实数输入模式与单信道复数输入模式最大输入数据率高达33.5msps;具有可编程抽取fir滤波器与增益控制,抽取率在2-16384之间可编程,具有并行、串行两种输出模式,并行模式为16位补码输出。  ad6620主要由4个内部信号处理单元组成,频谱变换单元、二阶固定系数梳状滤波抽取滤波器(cic2)单元、五阶固定系数梳状滤波抽取滤波器(cic5)单元和一个系数可编程的ram系数抽取滤波器(rcf)单元。  方案设计  算法设计  在ad6620中,输入信号为14位的数字信号,它分别与两路32位解调信号cos(2πnf0/fs)和-sin(2πnf0/fs)相乘得到上下两路输出,分别为va’和vb’,保留结果的高18位,然后经过两级级联cic滤波器抽取滤波,输出经过低通滤波,最后得到两路16位输出信号vs和vb。  低通滤波器的设计要综合考虑信号的能量和信噪比,通带增宽可以增强信号能量,但也会增大误差,阻带的截止频率和衰减必须能够有效地抑制高次谐波和其他高频噪声的干扰。本文采用的滤波器的通带截止频率为400khz,阻带截止频率为1.2mhz,阻带衰减大于50db。  在本系统中,cic2、cic5和rcf的抽取率分别为2,4、1。它们的传递函数分别为:  值得注意的是:以上传递函数所对应的采样率是不同的,假设ad6620输入数据的采样率为25mhz,则hcic2对应的采样率为25mhz,hcic5对应的采样率为12.5mhz,hrcf对应的采样率为3.125mhz, 若要得到它们级联后总的频率特性,需要将它们的采样率统一折算到25mhz。折算后的传递函数为:  硬件接口  与cpu接口  cpu采用mcf5206,与cpu接口包括3位地址线cpu_addr[2..0]、8位数据线cpu_db[7..0]、片选线/cpu_cs、读信号cpu-rd和写信号cpu_wr,其中,cpu的地址线需要先在pld中完成译码后产生3位地址线再送给ad6620,pld选用altera公司的acex 1k系列的ep1k100qc208-3芯片,由于cpu的工作电压为5.0v,而ad6620的工作电压为3.3v,因此cpu的控制信号必须经过电平转换电路才与ad6620相连,本文采用pi74lcx245作为电平转换芯片,它还具有控制数据流动方向的功能。方向控制信号由cpu的r/#w和片选信号组成。  与距离选通部件的接口  输出16位数据data[5.0]作为距离选通部件的输入,输出dv的高电平表示输出数据有效,低电平表示输出数据无效;输出i/q在输出数据有效时,其高电平表示输出i数据,低电平表示输出q数据,输出的i、q两路数据分时共用16位数据线,利用dv、i/q和时钟将两路数据分开,这部分电路在pld中实现。  软件设计  ad6620工作参数的配置  ad6620的初始化可以由外部控制单元通过ad6620的微处理器接口进行,完成工作模式,nco参数、滤波器参数等设置,外部控制单元还可以通过微处理器接口对ad6620内部寄存器进行动态读写,实现对ad6620动态实时控制,外部控制单元根据ad6620的输出结

    时间:2019-03-21 关键词: 解调器 正交 设计教程

  • 基于语音识别技术和蓝牙技术的数字化家庭综合设计

    语音识别技术是让机器通过识别和理解过程把语音信号转变为相应的文本或命令,其识别过程与人对语音识别处理过程基本上是一致的,包括语音特征提取、声学模型与模式匹配(识别算法)、语言模型与语言处理三个部分。 语音识别系统根据口音辨识主要有以下2种: (1) 特定发音人识别SD (Speaker Dependent) (2) 非特定发音人识别SI( Speaker Independent) 蓝牙技术(Bluetooth Technology)是一种短距 离无线通信技术,它工作在免费的ISM频段(2.4GHz),采用跳频/时分复用技术,能实现点对多点的通信。通过蓝牙无线传输的方式可以将一定范围内的数据设备或语音设备连接起来组成微微网,使嵌有蓝牙模块的电子设备之间能实现方便快捷的通信。它的传输距离为10cm~10m,如果增加功率或是加上某些外设便可达到100m的传输距离,并且可穿透不同物质以及在物质间扩散。蓝牙采用无线接口来代替有线电缆连接,具有很强的移植性,适用于多种场合,它功耗低、成本低、对人体危害小,而且应用简单、容易实现,所以易于推广,成为构建数字化家庭的理想技术。 设计方案 本系统中主控端采用SPCE061A单片机芯片完成语音识别和控制功能。BlueCore2 External芯片完成命令的发送。 总体上来说,本系统主控端分为两个主要的方面,一个是语音识别模块,另一个是蓝牙无线通信模块。 语音识别模块部分采用了凌阳科技公司的SPCE061A单片机芯片来完成,该芯片是一款16位结构的微控制器,工作电压 VDD为2.4~3.6V(CPU), VDDH为2.4~5.5V(I/O),CPU时钟 最高可达49.152MHz;内置2K字SRAM、32K FLASH;可编程音频处理;系统处于备用状态下(时钟 处于停止状态),耗电仅为2μA@3.6V;32位通用可编程输入/输出端口;14个中断源可来自定时 器A / B时基,2个外部时钟源输入,键唤醒;具备触键唤醒的功能;使用凌阳音频编码SACM-S480方式(压缩比为80:3);3 2768Hz实时时钟;单通道声音模?数转换器;声音模?数转换器输入通道内置麦克风放大器 和自动增益控制(AGC )功能;具有低电压复位(LVR)功能和低电压监测(LVD)功能;内置在线仿真电路ICE(In- Circuit Emulator)接口;具有保密能力;具有WatchDog功能。 蓝牙部分采用了CSR公司提供的单芯片解决方案。主控芯片为BlueCore2 External,有如下特点:1.8V低电压供电,0.18μm CMOS工艺,VFBGA封装,芯片面积仅6*6mm;支持蓝牙V1.2规范;芯片内部集成 了完善的DSP蓝牙基带控制器,集成了通用的2.4GHz蓝牙射频终端以及蓝牙信号自检电路,无须外部PA,仅需非常简单的外围电路;内嵌32kB RAM和16位精简指令集微处理器,最多可外接8Mbit的FLASH用于存储蓝牙协议栈及蓝牙应用程序。 系统工作过程 由于本系统采用了特定发音人识别SD语音识别系统,所以首先要对语音命令进行训练。语音训练的过程其实就是语音特征模型的建立过程,首先录入一条语音样本,然后对样本进行采样、量化、滤除噪音,对语音信号进行线性预测分析,最终把语音信号用一个模型来表示,模型参数描述语音信号的波形和频谱信息。然后再录入一遍语音样本,建模,对两次的语音样本的参数进行匹配检验,如果满足匹配条件,语音样本录入成功。 语音样本录入成功以后,当开始识别时,其实也就是对发出的语音命令进行建模,然后和语音样本的模型参数进行匹配检验。找到相匹配的语音样本,返回识别结果。 SPCE061A单片机芯片完成语音命令的识别后,利用BSR_GetResult( )函数获取识别结果。由于SPCE06 1A单片机芯片内置2K字SRAM和32K FLASH,所以可共存储3组命令,每组5条语音样本,每次将一组语音样本调入内存,将输入语音命令与该语音样本比较产生识别结果,所以识别结果会返回是哪一组命令的第几条语音样本,然后根据识别结果来触发相应的命令。当长时间没有语音命令,该芯片将进入休眠状态以减少功耗。 SPCE061A单片机将识别结果通过I/O口传递给蓝牙模块,这里单片机SPCE061A有32个可编程I/O,但是蓝牙模块只有10个I/O口可以使用,因此将单片机的10个I/O口与蓝牙的相应I/O口连接,由于单片机和蓝牙模块的I/O口均可编程,则理论上可以产生1024种命令。 蓝牙部分的开发基于蓝牙串口应用框架(Serial Port Profile ,SPP),采用了完全嵌入式模式,选择BlueCore Virtual Machine Stack,应用软件在集成开发环境BlueLab中开发完成。 Bluelab开发工具包中,蓝牙控制器应用程序直接对连接管理(CM)进行操作,在BlueCore Virtual Machine Stack的基础上,实现串口应用框架(SPP),完成对远端蓝牙设备的查询、鉴权、连接和控制信息发送过程。 Bluelab提供的虚拟机调度程序分配给控制器应用程序和连接管理器(CM)不同的任务号,任务间采用消息队列机制异步的发送消息进行通信。 应用程序通知连接管理器(CM)完成查询、配对、连接等功能。PIO扫描程序完成控制信息的识别,通过与远端设备建立的ACL链路将控制信息发送出去。受控设备收到蓝牙控制器的命令信息,从而完成蓝牙控制器对受控设备的无线控制。 受控设备部分通过蓝牙将命令接收过来,发送给设备的控制部分,设备执行完命令后通过蓝牙部分发送给主控设备一个完成信息,主控设备接收到完成信息后播放相应的提示语音。 语音提示音储存在SPCE061A单片机的片内FLASH里,由于存储空间所限,又要保证语音质量,采用的语音提示音为SACM_S480格式,此格式的音频文件压缩后的编码率为4.8Kbit/s、SACM_S480语音压缩比为80:3,可以用凌阳科技公司提供的专业软件对录制的提示音进行压缩。 测试结果: 在语音识别部分录入15条命令,分三组,每组五条,具体如下: 第一组:开始、电视、微波炉、灯、热水器; 第二组:中央一套、中央二套、中央三套、中央四套、中央五套; 第三组:高功率、中高功率、中功率(焙烤、煨烧、文火)、中低功率(解冻)、低功率(保温)。 由于电器的相关功能没有跟进,所以并不能将这些完全实现,只能在接收部分安置相应的发光二极管表示命令发送状态。 同时设想当电器功能完成以后,会给控制部分发送一个回馈信号,比如微波炉食品加热完毕,将会给控制器发送一个信号,控制部分将播放语音信息提示微波炉功能完成。因此,模拟电器部分在接到控制器控制信号一段时间后人为回馈一个完成信号。 将BlueCore2-External 芯片的蓝牙发射功率级别设为Class2。控制部分与受控端蓝牙模块均使用蓝牙模块微带天线,控制距离可达10米,控制器与受控端蓝牙模块均使用1.6dB的天线,控制距离可达30m。 将BlueCore2-External 芯片的蓝牙发 射功率级别设为Class1。控制部分与受控端蓝牙模块均使用蓝牙模块微带天线,控制距离可达60m,控制器与受控端蓝牙模块均使 用1.6dB的天线,控制距离可达150m。 总结: 测试结果表明,语音模块语音识别正确率可达95%以上,配有语音提示,使得操作没有出现错误。蓝牙模块在命令的无线传输上也可以满足实际距离等方面的需求。 本系统可以改进的地方: 1 .本系统采用凌阳科技公司的SPCE061A单片机芯片,该芯片只有2K字内置SRAM和32K内置FLASH,凌阳科技公司最近刚推出SPCE061A的改进版,这款芯片的内置SRAM已扩充到4K,使得每组的命令数可增加。 2 .本系统的蓝牙部分暂时使用一对七模式,该模式主控端只能控制7个受控端,但是可以采用另外的蓝牙系统提供微微网技术。微微网是由一组具有同一跳频序列、在时序上同步的蓝牙设备组成,包括两种节点:主节点和从节点。一个微微网中只能有1个主节点,最多可以有7个活动的和255个休眠的从节点。这些休眠的从节点在信道上不活动,但是保持与主节点的同步,不用连接建立过程就可以变成活动状态,这就使得这个系统最多可以接入262个设备。 根据以上讨论,可以发现本设计足以满足低成本数字化家庭的语音控制需求。

    时间:2019-03-21 关键词: 蓝牙技术 语音识别 技术 家庭 设计教程

  • 基于XC164CS和BTS7741G的中央门锁控制设计

    基于XC164CS和BTS7741G的中央门锁控制设计

    如今已有越来越多的汽车采用电子车门控制系统,中央门锁是车门控制系统的重要组成部分。本文结合车门控制模块设计的项目实践,重点介绍了中央门锁部分的硬件和软件设计,对智能功率芯片BTS7741G的工作特性及故障检测特性进行了分析,并给出了实验结果。 车门控制模块的整体设计 汽车车门控制系统随着半导体技术的发展而发展,由于传统的继电器、熔断器控制方式存在种种弊端,所以迫切需要引入新的控制方式来改善车门控制的现状,本设计是基于16位嵌入式系统的车辆门控系统解决方案。图1 系统结构框图 如图1所示,车门控制模块主要由以下几部分组成:电源电路、电动车窗驱动电路、后视镜驱动电路、加热器驱动电路、中央门锁驱动电路、车灯驱动电路、CAN总线接口电路、RS232接口电路及按键接口电路等。微控制器XC164CS用于控制所有功率器件的开关动作,同时对系统状态进行定时监控,提供合适的反馈信号以及周期性地显示诊断信息,并通过车载网络(如CAN)实现信息交换。由于选用的功率器件已经提供了完善的保护功能,本设计避免了采用过多的功率元件,减小了模块体积,并提高了模块的电磁兼容性。 中央门锁控制硬件设计 1智能功率芯片的选择 现有的中央门锁多采用继电器驱动方式。但是,继电器驱动有诸多缺点:功率继电器励磁线圈驱动电流较大,需消耗较大功率且接口电路复杂;继电器的使用使控制器体积增大,重量增加;继电器开关频率相对较低,触点易抖动,很难满足车辆在带电情况下行驶对机械震动的要求。此外,触点抖动会影响继电器的寿命,且EMI严重,难以有效实现对车灯的过热、过压、短路等故障的诊断及保护,需配合熔断器使用,以防止过流。但熔断器一旦动作(即熔断),电路将彻底切断,需手动更换熔断器。 智能功率芯片BTS7741G适合于汽车电子苛刻的应用环境。它的两个高边开关和两个低边开关具有欠压保护、对地短路保护、对电源短路保护、热关断冷却后重启等多种智能保护功能,同时两个高边开关还包含故障诊断电路,通过故障反馈引脚ST可以诊断出开路故障、短路故障等故障状态,适合用于中央门锁的控制。 BTS7741G内含四个MOS管,两个高边开关和两个低边开关,可以灵活配置输出方式,用作H桥或者用作单独的开关均可。高边开关导通电阻为110mΩ,低边开关导通电阻为100mΩ,工作电压可达40V。 2 中央门锁控制驱动电路设计 BTS7741G与微控制器连接电路如图2所示。BTS7741G用作H桥,驱动中央门锁正转或反转。驱动过程靠时间来控制,电机运行一定时间(本设计取值为0.25s)产生一定的位移,实现锁定或开锁。电机运行时间在程序中可变。无主动制动过程,通过上管续流实现电机制动。两次中央门锁开关动作之间至少要有 0.5s时间间隔,保证MOS管可靠关断。图2 BTS7741G与微控制器连接电路 上电后门锁的状态是未知的,因此微控制器首先关闭门锁。中央门锁的电机驱动不采用PWM调压方式。SH2外接 1kΩ上拉电阻,由+12V电源供电,可实现在关断状态下的开路故障检测。 BTS7741G对地短路实验 虽然BTS7741G的两个高边开关和两个低边开关都具有完备的短路保护功能,但是故障反馈引脚ST却只能反馈两个高边开关的短路故障状态。所以,本设计针对BTS7741G的高边开关做了对地短路实验。实验分为先短路后上电和先上电后短路两种情况。 BTS7741G的对地短路实验条件为+12.45V电池电压,+5V电源供电, 1.5m短路导线(R=0.12Ω)。如图3所示,其中VST为ST引脚对地的电压、VIN是IH1引脚对地的电压、VOUT是OUT引脚对地电压,IL为发生对地短路故障时,流过BTS7741G的短路电流。 1 先短路后上电条件下的对地短路实验图3 BTS7741G先短路后上电短路实验波形图前半段图4 BTS7741G先短路后上电短路实验波形图后半段图5 BTS7741G先上电后短路短路实验波形图前半段图6 BTS7741G先上电后短路短路实验波形图后半段 如图3所示,在开关按下的瞬间,由于开关自身的机械结构导致了大量毛刺;瞬间浪涌电流为10A(25℃,BTS7741G的短路电流峰值典型值为10A);输出端电压VOUT一直为低电平;ST故障诊断引脚在短路发生后1.4ms左右被拉低,意味着BTS7741G在此时诊断出了故障。此后,BTS7741G内部会周期性的关断MOS管,所以短路电流IL被周期性的钳制为0A,有效抑制了短路电流导致的芯片持续发热,从而保护芯片不会因为短路而损坏;ST引脚的电平也会随着短路电流的变化而周期性的被拉为低电平。如图4所示,当芯片完全冷却后,BTS7741G可以重新启动,继续正常工作。 2 先上电后短路条件下的对地短路实验 如图5所示,在开关按下的瞬间,瞬间浪涌电流为25A,远远高于25℃时BTS7741G的短路电流峰值典型值10A。但这个25A的浪涌电流仅持续不到30μs的时间立即降为10A,所以对芯片损坏不大;输出端电压VOUT在短路瞬间被拉低为低电平;ST故障诊断引脚在短路发生后1.6ms左右被拉低,意味着BTS7741G在此时诊断出了故障。此后,BTS7741G内部会周期性的关断MOS管,类似于先短路后上电短路实验,短路电流IL被周期性的钳制为0A,ST引脚的电平也随着短路电流的变化而周期性的被拉为低电平。如图6所示,当短路现象消失后,BTS7741G可以重新启动,输出电压VOUT为高电平,芯片没有受到短路状况的任何影响,继续正常工作,充分显示了BTS7741G完善的短路保护功能。 门锁部分的软件设计 门锁软件的算法就是在适当的状态中控制适当的桥臂导通或者关断。在门锁开启或者关闭时需要上下各一个桥臂导通,在开启或者关断之后需要进行续流,这时就只需要关断下桥臂,而让上桥臂导通一段时间即可。其具体的控制算法可以参考图7所示的门锁的状态流图。图7 门锁控制状态流图 表1给出了门锁的几种工作状态。 各个工作状态之间的转换并不是都由控制命令ubCmdLatch来触发激活的。从LATCH_CLOSED到LATCH_OPENING和从LATCH_OPENED到LATCH_CLOSING这两次转换是由ubCmdLatch来触发的,其意义就是在得到开启或者关闭的命令后,门锁从静止的状态开始变化到运动的状态,也就是门锁从关闭的静止状态开始开启,或者在打开后开始关闭。在PASSAT B5电动车门中使用了电动门锁,门锁开启或者闭合都是由电机带动锁插销前后移动来实现的。而BTS7741G内部就是一个简单的H桥电路,因此就是通过程序控制H桥在合适的时间开启适当的上下桥臂,达到控制门锁电机正反转的目的。在LATCH_OPENING 和LATCH_CLOSING这两个状态中就编写了控制一对上下桥臂管导通的命令。而在状态LATCH_CLOSED和 LATCH_OPENED中,四个管子都不导通。 其余各个状态之间的转换都不是由控制命令触发的,有些是通过定时,有些则是通过错误的检测。故障检测功能通过监视ST引脚输出电平实现。在正常状态下,ST引脚输出高电平;当发生故障时,ST引脚输出为低电平。具体的状态切换可以从图7中清楚的看到。例如,从状态LATCH_OPENING到LATCH_OPEN_FREE就是计时到门锁开启时间(LATCH_OPENING_TIME)结束,而如果检测到开路故障或过载故障,门锁会一直保持在LATCH_CLOSED或者LATCH_OPENED状态下。 通过对智能功率芯片BTS7741G的工作特性及故障检测特性的研究与分析,对该芯片的安全性给与了肯定,确保了本设计的正确性和可靠性。

    时间:2019-03-20 关键词: 门锁 中央 设计教程 xc164cs bts7741g

  • 256×32大容量中文矩阵系统的设计

    来源:电子技术应用 作者:解放军广州通信学院 黄再银 摘要:介绍了基于模块式结构的256×32大容量中文矩阵系统的设计方法,叙述了系统的主要功能,讨论了max4358的性能特点及使用方法,同时概括了软、硬件设计时应注意的几个问题。 关键词:矩阵系统 模块式结构 汉字叠加 max4358 近年来,视频监控系统已广泛应用于工业、商业、金融、交通这、公安、军事及住宅小区等社会生活的各个方面,矩阵系统作为视频监控系统的核心正发挥着越来越重要的应用。通常一个矩阵系统应包括以下基本功能:视频信号切换、字符信号叠加、***接口以控制云台和摄像机镜头的动作、报警器接口对预设的报警点进行报警、通过rs-232与pc机串行通信以及控制音频箱进行视音频监控等功能。对国内用户来说,字符叠加应为全中文,以方便不懂英文的操作人员。矩阵系统的发展方向应是多功能、大容量、可联网以及可进行远程切换。对目前国内用户来说,容量为256×32的矩阵系统已基本满足需要,即使将来个别用户需要更大容量的矩阵系统,也可以通过将两台或多台256×32的矩阵系统级联来实现。另外,为了适应不同的用户对矩阵系统容量的要求,所设计的矩阵系统应是模块化和即插即用(pnp)型的,即所设计的256×32矩阵系统应可方便地变为256×16、128×32、128×16等不同容量的组合。一般而言矩阵系统的容量达到64×16即为大容量矩阵。矩阵容量越大,所需技术水平越高,设计难度也越大。 1 系统组成及主要功能 1.1 系统组成 系统组成方框图如图1所示。 1.2 主要功能 (1)输入视频信号是多可达256路,输出视频信号为32路。任一路视频输出信号可叠加汉字字符、时间日期、设备符等提示符,系统运行状态一目了然。系统可与音频扩展箱相连,以满足视音频监控的需要。 (2)系统最多可接16个键盘;通过***,系统可控制云台、摄像机等的动作,最多可接256个***。采用rs-485双绞线串行通信方式,通信距离长达几公里。 (3)报警探头通过报警器与系统连接。系统最多可接16台报警器,每台报警器控制16个报警控探头,因而系统最多可控制256个报警探头,最多可存储512个报警记录。 (4)可通过rs-232与pc机中行通讯,pc机可采集报警记录及传送系统所需的相关资料。 (5)多台矩阵系统之间可级连,实现联网功能,并可实行远程切换。 2 各部分的硬件结构 2.1 主板 主板方框图如图2所示。 (1)由于该系统功能很多,程序超过32k,因而选用内部flash rom为64kb的8位单片机msu2964。该单片机的主要特点为:内部ram为256字节,工作电压为4.5v~5.5v,具有空闲和掉电两种工作模式;可在16/25/40mhz三种时钟频率下工作,有8位无符号乘法和除法指令,其余与80c51系列单片机兼容。msu2964具有乘除法指令,给软件编程带来了很大的方便;另外64kb的flash rom也为以后的软件升级留下了余地。 (2)由于msu2964无看门狗功能,为了防止系统死机,需要外加看门狗电路。 另外,为了避免电源电压降低时,cpu错误地执行指令导致系统参数被非法修改等情况,需要给系统增加电源监控电路,使cpu在电源电压低于某一值时停止工作,处于复位状态,待电压恢复正常后,cpu再脱离复位状态,进入正常工作状态;在系统上电时,还需给cpu提供可靠的复位信号,这些功能均由max813来完成。max813的主

    时间:2019-03-19 关键词: 系统 大容量 矩阵 中文 设计教程

首页  上一页  1 2 3 4 5 6 7 8 9 10 下一页 尾页
发布文章

技术子站

更多

项目外包