当前位置:首页 > IPM
  • 泰利特与德国公司联手 M2M技术提高电网效能

    泰利特与德国公司联手 M2M技术提高电网效能

      机器对机器(M2M)模块与服务之领先供应商泰利特无线解决方案(Telit Wireless SoluTIons),日前宣布与IPM SYSTEM InternaTIonal GmbH合作,此德国公司专精于可再生能源领域,积极透过泰利特的M2M模块提升效率,达成智能电网连接力达到最佳化的太阳能光伏板效能。   Intelligent Power Management System(IPM SYSTEM)的光电专业解决方案为一与智能电网兼容的系统,其可透过调节与控制来提升太阳能板系统之效率、透明度、弹性及安全性。该解决方案可与现存或新系统搭配使用,因此可透过符合成本效益的方式回溯集成于太阳能发电系统。该解决方案针对各别独立太阳能模块提供创新和智能型可变切换方式,不同于一般的串行切换方式,可使效率提高21%。   太阳能系统透过机器对机器通讯系统进行监测及控制,代表PV系统的状态可以随时验证或界定预期的能源供应量。透过M2M通讯也可侦测故障或效能损耗,并且成为建构未来智能电网、要求完整通讯网络及设备管理,以用于发电、传输和分配能源的智能型电源网络的基础。Telekom Deutschland的SIM卡以及泰利特的无线模块已开始用于IPM SYSTEM的M2M数据传输。   IPM SYSTEM InternaTIonal总经理Klaus Wiedemann指出:「我们的解决方案所提供的更高效率潜力,为永续能源揭开了全新的局面。从成本效益的角度来看,IPM SYSTEM尤其能对有效利用太阳能带来重要贡献。特别是在智能电网中,解决方案的核心更是M2M通讯,其可透过泰利特的无线模块达到最佳发挥。   IPM SYSTEM运用泰利特的GSM/GPRS模块GE865,其尺寸只有22 x 22 x 3 mm,是目前世界上最小的四频BGA(球闸阵列)模块。由于BGA技术不需与其它系统连接,因此使其成为将尺寸视为关键因素之应用的理想方案,如PDA或车载资通讯系统终端。」   泰利特无线解决方案营销长Dominikus Hierl表示:「能源领域是我们的核心策略目标市场之一,我们看到此领域对于M2M解决方案具有极高的需求。IPM SYSTEM加入我们的客户阵容,代表我们已成功地在此领域取得潮流指标。透过运用GE865无线模块,我们很高兴能为实现新一代自动化太阳能发电系统做出具体贡献。」

    时间:2020-09-07 关键词: 物联网 m2m ipm

  • 汽车电机控制解决方案-IPM

    汽车电机控制解决方案-IPM

    随着汽车的逐年增长,汽车电动部分的控制也随之而升,诸如汽车高压辅助电机、压缩机、油泵、水泵、涡轮增压器、各种风扇等。虽然传统的分立式也能满足需求,但是集成度不高,参数选型繁琐,预驱和驱动相结合,总体设计较为复杂,ZLG 基于ON的智能功率模块推出了适用于汽车三相650V 30A/40A/50A IPM电机控制解决方案,如图1所示。与普通的IGBT相比,IPM在系统性能及可靠性方面得到进一步的提升。 图 1 电机控制解决方案 一、方案芯片介绍 下图是ON适用于汽车650V智能功率模块,它分为30A、40A、50A电流等级,本文主要针对50A的版本作介绍。IPM是一款先进的汽车SPM模块,为混合动力汽车和电动汽车提供全功能,高性能的逆变器输出。模块集成了内置IGBT优化的栅极驱动,可最大限度地降低EMI和损耗,同时还提供多种模块内保护功能,包括欠压锁定,过流关断,驱动IC热监控和故障报告。内置的高速HVIC仅需要一个电源电压,并将输入的逻辑电平栅极输入转换为正确驱动模块内部IGBT所需的高电压、高电流的驱动信号,内部结构如图2所示。 图 2 IPM内部框图 二、IPM具有以下特征: ·采用汽车SPM 27引脚DIP封装; ·车规级芯片(AEC-Q100/101和LV 324); ·650 V / 50 A三相IGBT逆变器,带有集成栅极驱动器和保护; ·具有稳定的EMI性能; ·使用AIN DBC基板的出色热阻,散热效率更高; ·内置LVIC温度传感器,节约BOM成本; ·散热板隔离额定值:2500 Vrms / 1 min; ·无铅且符合RoHS标准; 三、电机控制解决方案设计 方案采用ON反激式拓扑结构,高压、低压隔离,预驱和IGBT集成于IPM内,结合MCU实现过温、过压/欠压、过流等保护功能,方案框图如图3所示。除此之外,有专门的可视化在线调试监控软件,能快速调整和优化电机参数,汽车数字与电机控制库,为您提供产品级、高性能的解决方案。 图 3 方案框图 四、解决方案具有以下特征: ·反激式开关电源,实现高压、低压隔离; ·高压过压/欠压检测; ·高压过流、短路保护功能; ·IPM内部线性温度传感器; ·IPM错误输出; ·电压、电流采样,实现软硬件共同保护器件安全; ·隔离CAN通信功能,完整CAN协议接口,支持CAN调速; ·改进的FOC算法,减少启动时间和提高最高转速; ·电机停止的斜坡降速策略。

    时间:2020-07-16 关键词: 芯片 电机 ipm

  • 三菱电机携多款代表业界流行趋势的功率器件亮相PCIM亚洲展

    三菱电机携多款代表业界流行趋势的功率器件亮相PCIM亚洲展

    6月26日至28日,PCIM亚洲展于上海世博展览馆举行。三菱电机半导体大中国区携多款代表业界流行趋势的功率器件产品(IGBT、IPM、DIPIPM、HVIGBT和EV-PM等)及相关解决方案在展会上亮相。27日下午,三菱电机于上海东锦江希尔顿逸林酒店召开媒体发布会,三菱电机半导体首席技术官Dr.Gourab Majumdar在会上分享了三菱电机对功率元器件的理解以及新产品介绍,大中国区三菱电机半导体总经理楠·真一、大中国区三菱电机半导体技术总监宋高升、大中国区三菱电机半导体市场总监钱宇峰、三菱电机敏捷功率半导体(合肥)有限公司技术服务中心总监商明、大中国区三菱电机半导体公关宣传主管闵丽豪出席发布会并解答媒体提问。 需求为导向,携多款新产品亮相PCIM亚洲展 一直以来,三菱电机以改善生产效率、提高品质产品以及满足环境发展需要为目标,在自动化领域不断进行研发生产,以精雕细琢的产品匹配中国工业自动化转型升级的发展需求。 在本次PCIM亚洲展上,三菱电机半导体大中国区共展出19款代表业界流行趋势的功率器件产品,产品应用覆盖变频家电、工业、新能源、轨道牵引、电动汽车五大领域。根据不同的市场需求,三菱电机在本次展会上展出了包括表面贴装型IPM、新封装大功率IGBT模块等多款最新产品。 27日下午的媒体发布会上,三菱电机半导体首席技术官Dr.Gourab Majumdar对几款新发布产品进行了详尽介绍,同时也向媒体分享了三菱电机对功率元器件的理解。 (三菱电机半导体首席技术官Dr.Gourab Majumdar) 表面贴装型IPM适用于家用变频空调风扇、变频冰箱、变频洗碗机等电机驱动系统,具有三大特性:第一,通过表面贴装,使系统安装变得更容易;第二,该产品通过内置控制IC以及最佳的引脚布局,在实现系统的小型化并使基板布线简化方面具有积极意义;第三,通过内置保护功能,该产品可以帮助提高系统的设计自由度。 表面贴装型IPM作为一种智能功率模块,成为三菱电机的主推产品。“下一步,我们需要考虑的是如何将更多的元器件集成到IPM模块中去,让客户使用更方便。”Dr.Gourab Majumdar说。据介绍,该产品计划于9月1号正式发售。 三菱电机集团整体业务中,工业自动化和能源与电力系统两个板块在2017年市场销售额中占比和超过50%。功率元器件隶属于三菱电机电子元器件事业部,占比不大,但却是支撑集团旗下产品的其中一个重要的核心部件。功率元器件行业的核心正是IGBT芯片。 Dr.Gourab Majumdar表示,今年功率元器件行业内的应用主要是第七代IGBT和第七代二极管。目前,三菱电机在功率元器件行业的量产供应也以第七代IGBT芯片为主。同时,针对不同的市场应用,三菱电机也有了新的封装标准。 在工业应用方面,三菱电机第七代IGBT首次采用SLC封装技术,使得模块的应用寿命大幅延长;在新能源发电特别是风力发电领域,今年推出基于LV100封装的新型IGBT模块,有利于提升风电变流器的功率密度和性能价格比;在轨道牵引应用领域,三菱电机推出X系列,用标准的封装进行芯片的升级。“同样的芯片我们用新的封装HV100,封装不一样,芯片的特性会更好一些,尺寸更小一点,电流密度更高,今后利用这个标准封装,这个也是想做行业一个新的标准。”Dr.Gourab Majumdar说,在电动汽车领域,J1系列Pin-fin模块具有封装小、内部杂散电感低的特性。 据三菱电机预测,2020-2022年,功率元器件行业将呈现出大幅增长态势。为积极应对这一变化,三菱电机表示,计划于2022年左右投资功率元器件12英寸产线(目前量产以8英寸为主的IGBT芯片)。现阶段,三菱电机功率器件产品仍以单晶硅功率器件产品为主。对于今后市场拓展,三菱电机将更多的目光投向碳化硅产品。 聚焦行业趋势,推动碳化硅技术发展 作为下一代功率半导体的核心技术方向,SiC(碳化硅)与传统IGBT模块相比,最主要优势是开关损耗大幅减小。三菱电机早在1994年就着手开展对这一技术的研究,弹指一挥间,24年过去,三菱电机现已成功研发出第一代和第二代碳化硅芯片,并实现量产。此外,Dr.Gourab Majumdar表示,“三菱电机正在努力向第三代转化。” 为何三菱电机执着于对SiC技术的研发与产品储备?Dr.Gourab Majumdar作出技术性解读,和单晶硅相比,碳化硅具有耐高温(单晶硅最高耐温170℃,而碳化硅可承受200℃)、低功耗(和单晶硅相比,能耗降低70%)、高可靠性应用等优点。而作为一款本身具有节能功能的功率元器件,碳化硅自然更有优势,并且可以开拓新市场。据介绍,三菱电机的6英寸碳化硅产线设在日本九州岛熊本,计划于2019年实现量产。 目前,基于碳化硅功率器件逆变设备的应用领域正在不断扩大。尽管受制于成本因素,碳化硅功率器件市场渗透率很低,但随着技术进步,碳化硅成本将快速下降,未来将成为功率半导体市场主流产品。 对于碳化硅功率器件的应用前景,Dr.Gourab Majumdar坦言,“目前,市场正处于从单晶硅转换到碳化硅的转换期,我们非常期待这个市场能够更快成熟,三菱电机也将在这一领域有更多的表现,提供更丰富、更优质的产品给客户。”

    时间:2020-07-02 关键词: 三菱 功率器件 ipm

  • 安森美开发出7款高集成度三相IPM

    导读:日前,业内高性能硅方案的领先供应商安森美半导体开发出7款高集成度的三相智能功率模块(IPM),此7款IPM所具备的高集成度特性能够在提升白家电控制电路能效的同时并降低噪声。安森美的7款IPM产品主要包括:STK551U362A-E、STK554U362A-E、STK554U362C-E、STK551U392A-E、STK554U392A-E及STK551U3A2A-E.该7款IPM新器件主要由功率器件及最大电压600(V)的门极驱动器构成,逆变器最大工作电压是450V.其中,STK544UC62K-E、STK551U362A-E、STK554U362A-E及STK554U362C-E的最大输出电流10安培(A);STK551U392A-E及STK554U392A-E的最大输出电流15A;STK551U3A2A-E的最大输出电流20A.此外,这7款IPM能以达20千赫兹(kHz)的开关频率工作,加上采用安森美半导体的绝缘金属基板(IMST)技术使这些IPM提供高能效及低噪声,在配以更小的外部元件,使电源系统控制板能够减小物理尺寸并降低组装的复杂程度,以便有效的缩短设计时间。值得一提的是,安森美的此7款IPM器件还拥有如:预驱动器、输出段功率器件,带有启动二极管、欠压保护及过流保护功能等所有电源段功能。

    时间:2018-10-23 关键词: 安森美 电源技术解析 集成度 ipm

  • 基于DSP与IPM的变频调速系统设计

    基于DSP与IPM的变频调速系统设计

    变频调速技术广泛应用于工业领域。随着电力电子控制技术及元器件的不断发展,变频调速系统的集成度、智能化程度越来越高,硬件构成也越来越紧凑、简单。DSP(数字信号处理器)+IPM(智能功率模块)就是变频调速系统最新的发展方向之一。在DSP+IPM构成的变频调速系统中,充分利用了DSP高速运算、配置丰富及IPM控制信号接口简单、保护完善的特点,使得系统元器件数大为减少、结构紧凑,而性能及可靠性却大为提高,缩短了产品开发周期,提高了产品的竞争力。笔者为某设备所做的一个变频调速子系统就采用了DSP+IPM的结构。下面介绍该系统的硬件设计方法。硬件设计DSP和IPM该系统工况为24小时连续工作制。要求受上位机控制,控制两路电机的启动、停止、转速及加速度,同时将掉电及故障信号反馈给上位机。系统要求结构紧凑、体积小、保护功能完善、稳定可靠。系统输入电压为3Φ 200VAC。控制的两路电机功率分别为180W。根据以上要求,我们采用了DSP+IPM的硬件结构。因为系统要求实时控制两路电机的运行,我们选用了TI公司的专为电机控制设计的TMS320L2407A型DSP。该DSP采用了高性能静态CMOS技术,时钟频率可达40MHZ,指令周期仅为25ns,可实现3.3V低功耗设计,满足实时控制要求。尤其值得一提的是该DSP具有用于电机控制的专用外围配置―两个事件管理模块EVA和EVB,每个模块包括:两个16位通用定时器;8个16位PWM通道;三个外部事件的时间标记捕获单元;可编程的死区时间以防止直通故障;在片位置编码器接口电路;同步A./D转换器等,可方便地实现对两路电机的控制。另外,该型DSP还有多达40个可单独编程的复合通用输入/输出引脚、多达5个外部中断等配置,对实际应用带来很大方便。因为该系统输入电压为3Φ 200VAC,控制的两路电机功率均为180W,考虑适当裕量,我们选用了三菱公司第三代DIP-IPM PS21563(10A/600V)。三菱DIP-IPM是面向AC100~200V级小容量电机变频驱动、采用传递型封装结构、将功率电路和驱动保护电路集成于一体的小型智能功率模块,具有以下特点:·3相AC变频输出电路搭载三菱第5代平面型IGBT和CSTBT(Carrier Stored Trench-gate Bipolar Transistor:具有载流子蓄积层的沟槽型门极构造双极晶体管)功率芯片,实现更低损耗。·采用自举电路结构,可实现单电源驱动。·内置有IGBT驱动电路,具有过载保护、控制电源欠压保护功能。P侧具有UV(控制电源欠压)保护功能,但不输出故障信号F。N侧具有UV及SC(过载)保护功能,同时输出故障信号F。·内置专用HVIC(高压600VIC),无需隔离绝缘电路(如光耦),可由DSP或3V级单片机直接驱动。·输入接口电路采用高电平驱动逻辑,消除了旧产品低电平驱动方式对电源投入和切断时的时序要求,增强了模块自保护能力。系统输入为3Φ 200VAC,经三相全桥整流为约270VDC供给IPM,并由270V进行DC/DC转换产生辅助电源,为DSP、上位机及IPM模块提供控制电源。上位机接受主系统控制,对DSP发出2路电机起停、4级加速度及8级速度的控制信号,DSP根据上位机的控制信号产生两组6路脉冲分别控制两个IPM模块,从而控制两路电机的起停、加速度及转速。两路电机的转速通过轴编码器反馈回上位机。IPM的故障信号反馈给DSP,DSP将故障信号及掉电信号反馈回上位机。系统框图如图1所示。 图1 系统原理框图自举电路一般逆变电路中,因上臂3个IGBT的触发脉冲的参考地是悬浮的,故上臂触发脉冲需3组相互隔离的电源供电。下臂3个IGBT的触发脉冲是共参考地的,只需一组供电电源。故共需多达4组相互隔离的电源。而三菱公司的DIP-IPM采用自举电路结构,可方便地实现单电源驱动。具体工作原理如下:当DIP-IPM起动时,先给下臂IGBT发出足够的充电脉冲数或足够宽的单个脉冲,开通下臂(N侧)的IGBT,使下臂的供电电源通过IPM的内部充电路径使上臂的3个自举电容完全充电,从而给上臂的3个IGBT的触发脉冲供电。然后才开始发出PWM控制脉冲。自举电路充电路径及工作时序图如图2所示。 图2 自举电路充电路径及工作时序图自举电容C1的容值计算公式为C1=IBS X T1/△V,式中T1为上臂IGBT的最大通态(ON)脉宽,IBS为IC的驱动电流(考虑温度和频率特性),△V为允许的放电电压。注意,用该式计算出的自举电容容值应是最小值,实际选择时应增加一定裕量。自举电阻R2的阻值选择应满足下述条件:时间常数R2 X C1能使放电电压(△V)在下臂IGBT的最小导通脉宽(T2)内被充电到C1上。即 R2={(VD-VDB) X T2}/(C1 X △V),式中VD为电源电压,VDB为自举电容C1上电压。自举二极管选择:对3Φ 200VAC电路,若电源输入电压波动范围取±30%,则三相全桥整流后直流电压VD=200 X 1.3 X1.35=351(V),取最小裕量为1.5,则自举二极管耐压应为351 X1.5=526.5(V),取600V。故自举二极管额定电压最小应为600V,因为PWM载波频率较高(最大为20KHZ),推荐选用快恢复二极管(反向恢复时间小于100nS)。硬件设计要点根据笔者设计该系统的经验,硬件设计应注意以下方面,以提高系统抗干扰性,使之在强干扰的现场工业环境中能可靠稳定运行。·虽然DIP-IPM模块可由DSP直接驱动,但实际调试时发现,在上电及对DSP进行flash编程过程中,DSP的引脚有时会出现不确定状态,产生干扰脉冲导致IPM的上、下臂IGBT直通引起短路保护动作。故我们在DSP到IPM的两组触发脉冲通道中分别加了一个八通道、双电源3态门转换收发芯片74LVC4245,该芯片的输出使能端由一个简单的逻辑门电路控制,如图3所示。以确保在上电及对DSP进行flash编程时不会有干扰脉冲误触发IPM。 图3 控制触发脉冲通道通、断的逻辑门电路·为防止信号振荡,应在各输入端加RC退耦电路。对两组触发脉冲来说,RC电路一来可滤掉干扰脉冲,二来还可限制输入脉冲的最小脉宽。RC容量的选择要和PWM的载波频率匹配,使得既能滤掉干扰信号,又不对触发脉冲造成畸变。因为DIP-IPM输入部分IC内置2.5KΩ(min)下拉电阻,故RC中R阻值的选择应注意使分压后的信号值满足DIP-IPM的输入电平阈值要求。·DIP-IPM还有一个很实用的功能:短路保护。在本系统的软件调试过程中,该功能多次发挥作用,可靠地保护了模块,使本系统样机调试过程中IPM模块无一损坏。但要使该功能可靠发挥作用,应注意以下两点:1)外部电流检测电阻的信号回路必须设置RC滤波电路,以免短路保护误动作。RC时间常数的选择要考虑IGBT的硬中断能力,一般推荐为1.5~2μS,最大不超过6μS。时间常数过短可能引起短路保护误动作,过长则可能超出IPM模块的耐受能力,不能有效保护IPM模块。2)外部电流检测电阻应为无感电阻,该电阻及其信号引线到IPM模块对应引脚的布线应尽可能短,以免由引线电感干扰引起短路保护误动作。·PCB布板时应注意采取以下抗干扰措施:1)强电(功率部分)和弱电(控制部分)从区域上分开。2)数字地(控制地)和模拟地(功率地)分开布局,只能在一点相接。一定要注意避免功率地线上的电流流经控制地线,以免引入地线干扰。3)PCB上IPM模块相邻触发脉冲引脚间可开槽,避免相互干扰。4)电流检测电阻及其信号线、触发脉冲信号及所有电容到IPM模块的布线要尽可能短,尽量降低其引线电感引起的干扰。结语:该系统已批量生产上千台,投入现场连续运行三年多。实际运行表明,该系统运行稳定,工作良好。可以预计,DSP+IPM模式将是紧凑型变频调速系统的发展方向之一。

    时间:2018-09-25 关键词: DSP 硬件 嵌入式处理器 变频调速 ipm

  • 问专家--智能功率模块(IPM)如何应用于汽车中

    安森美半导体应用专家在此解答您的设计问题。这视频将向您介绍智能功率模块(IPM)如何应用于汽车中。安森美半导体用于汽车的智能功率模块,是一个创新的3相电机驱动器模块,由于无线路板(PCB-less)的设计,显著减少电机控制的空间、重量和成本。

    时间:2018-08-30 关键词: 安森美 电源技术解析 智能功率模块 电机驱动 ipm

  • 基于STM32单片机的大扭矩永磁同步电机驱动系统

    基于STM32单片机的大扭矩永磁同步电机驱动系统

    0 引言大扭矩永磁同步电机直接驱动由于去掉了复杂的机械传动机构,从而消除了机械结构带来的效率低、维护频繁、噪声与转动惯量大等不利因素,具有效率高、 振动与噪声小、精度高、响应快、使用维修方便等一系列突出优点[1]。近年来,随着电力电子技术、永磁材料、电机设计与制造技术、传感技术、控制理论等的 发展,大扭矩永磁同步电机在数控机床、矿山机械、港口机械等高性能系统中得到了越来越广泛的应用[2 - 3]。交流电机控制系统广泛采用单片机、DSP、FPGA为控制系统核心。STM32 是一种基于ARM 公司Cortex-M3 内核的新型32 位闪存微控制器,采用了高性能、高代码密度的Thumb-2 指令集和紧耦合嵌套向量中断控制器,拥有丰富的外围接口,具有高性能、低成本、低功耗等优点[4]。本文针对一种港口机械用大扭矩永磁同步电机驱动系统, 采用STM32 + IPM 硬件构架设计了高性能、低成本的控制系统。1 大扭矩永磁同步电机矢量控制原理忽略电机的铁心饱和、涡流及磁滞损耗,不计漏磁通的影响,大扭矩永磁同步电机的电压、磁链、转矩方程分别为式中,ψd、ψq、ud、uq、id、iq、Ld、Lq分别为永磁同步电机d、q 轴的磁链、电压、电流和电感,Rs为电枢绕组电阻,ωr为转子角速度,ψf为永磁体产生的与转子交链的磁链,Te为电磁转矩,Pn为电机磁极对数。由式( 3) ,控制id = 0 使定子电流矢量位于q轴,此时转矩Te和iq呈线性关系,实现电磁转矩的解耦控制。如图1 所示,本文的永磁同步电机采用速度、电流双闭环控制,图中ω* 为给定速度指令,ω 为速度反馈,将速度误差输入速度控制器,输出交轴电流指令i*q,通过电流PI 控制器和坐标变换,再利用SVPWM 产生IPM 开关信号。图1 大扭矩永磁同步电机控制原理框图2 系统设计图2 所示为该系统结构框图, 本文采用STM32F103VCH6 主控芯片、PM800HSA120 智能功率模块为系统核心,硬件控制系统主要有: 处理器模块; 检测模块,主要包括霍尔电流检测、旋转变压器接口电路; 主电路,主要由整流、软启动、滤波、制动电路,以及PM800HSA120 及其驱动、保护、吸收电路组成; 开关电源及其他模块,主要由多路DC /DC 转换、直流母线电压保护、温度检测保护等电路组成。图2 大扭矩永磁同步电机硬件系统结构框图2. 1 硬件系统设计2. 1. 1 处理器模块STM32F103VCH6 是基于ARM 公司Cortex-M3 内核的新型32 位闪存微控制器,拥有三级流水线和分支预测功能,最高工作频率为72 MHz,可以满足本系统处理速度和实时性的需求,有两个高性能的12位的16 通道A/D 转换器、两个16 位专为电机驱动设计的内嵌死区控制6-PWM 定时器,片上还集成有SPI、USB 2. 0 等丰富的外设和接口[5]。如图2 所示,本系统充分利用了STM32 的片上资源,利用它来接收、处理电流、位置等反馈信号,接收、处理各种出错保护信号,执行电机控制算法等。2. 1. 2 检测模块检测模块主要包括电流检测电路和位置检测电路。其中电流检测采用莱姆电流型霍尔传感器LT308-S7,其具有抗干扰能力强、灵敏度高、线性度好、温漂小等优点。为了减小在电流较弱时的检测误差,本文设计了如图3 所示的增益可调的电流检测电路,传感器输出的电流信号经过精密电阻采样后转换为电压信号Vi,经过电压跟随电路、三级放大电路和肖特基二极管钳位电路,输 出电压Vo( Vo= 3nVi /20 + 1. 5,n 为放大倍数) 到STM32 的A/D 模块进行处理。其中开关芯片DG403 由STM32 控制,用于调整电流检测电路增益,小电流选择大增益,大电流反之。由于大扭矩电机额定电流可达232 A,若检测电路增益不可调,则当电流较弱时检测电路的放大增益相对较小,电流的检测精度会降低,而采用增益可调的检测电路可以在电流较弱时提高增益,从而 减小检测误差,提高电流检测的分辨率。表1 为DG403 控制信号与电流检测电路增益放大倍数的对应关系。表1 DG403 控制信号与增益放大倍数对应表考虑港口机械存在较强振动和冲击[6],本文利用旋转变压器YS 210XFDW9574A 进行位置检测。其解码电路如图4 所示,采用AD2S99 芯片为旋转变压器提供激励信号,AD2S90 芯片作为旋转变压器/数字转换器( RDC) 。AD2S90 以同步串行方式( SPI) 与控制芯片STM32 之间进行通讯,AD2S99 的励磁信号源的频率可以通过SEL1、SEL2、FBIAS 引脚进行设置,此处激磁频率设为10 KHz,通过AD2S99 内部处理后产生的输出信号SYNREF 与AD2S90 的REF 脚相连,可以补偿旋转变压器一次侧到二次侧的相位偏差,保证它的转换精度。图3 电流检测电路图4 旋转变压器解码电路图5 所示为旋转变压器激励调理电路,旋转变压器激励信号由AD2S99 提供,激励调理电路对激励信号进行放大、滤波,激励调理电路的外部电源采用± 15 V 双电源供电,保证电路静态工作点调零; Ci1为耦合电容,隔直通交; Cf1为补偿相位用;NPN 和PNP 三极管构成推挽电路,用以消除交越失真。图5 旋转变压器激励调理电路2. 1. 3 主电路主电路的整流电路采用了DD600N12 整流模块; 软启动电路采用CM600HU-24F 型号IGBT 功率开关取代继电器以提高系统可靠性,当电容器组充电到母线额定电压的80% 时,将IGBT 接入电路; 滤波电路选择16 个6800 μF 电解电容; 制动电路选择CM400HU-24F 型号IGBT 作为开关元件。考虑大电流功率器件的干扰、散热及经济性等因素,选择6 个独立单元的IPM 模块PM800HSA120的逆变电路方案。PM800HSA120 内部集成有驱动和保护电路,具有过压、欠压和温度保护功能,额定电流800 A,反偏电压1200 V,工作频率可达20 kHz。为了进一步提高IPM 的抗干扰性和可靠性,本文对其驱动电路和保护电路进行了加强设计和一些额外处理。如图6 所示,对IPM 的驱动信号进行了差分处理,将控制芯片STM32 发出的六路驱动信号利用差分驱动芯片变为12 路信号,再在IPM 驱动板上利用差分接收芯片还原为6 路驱动信号,然后经过高速光耦的隔离驱动再送给IPM,如图7 所示,以抑制共模干扰信号,增强了IPM 驱动信号的抗干扰性。图7( a) 所示为W 相的隔离驱动电路; 三相上桥臂采用隔离电源供电,三相下桥臂由一路15 V 供电,图7 ( b) 所示为W 相上桥臂隔离电源电路。IPM 的故障信号处理电路如图8 所示,出错信号先经过光耦隔离、滤波,然后经过反相施密特触发器,一方面将电压信号反向,另一方面对出错信号进行波形整形,对干扰信号有一定的抑制作用。最后再将处理过的IPM 出错信号输入控制芯片STM32 做出相应处理。图8 IPM 出错信号处理电路由于IPM 的开关频率较高,而在功率回路中存在寄生电感,在IPM 开关过程中会产生很高的浪涌电压,造成对器件的冲击,影响器件的性能及使用寿命。为此设计了如图9 所示的IPM 缓冲电路,以降低IPM 开通和关断过程的电压和电流尖峰,从而降低器件开关损耗,保护器件安全运行。其中,选择超快恢复二极管RM25HG-24S 作为缓冲二极管,其耐压1200 V,最大反向恢复时间300 ns; 综合考虑本系统驱动电流频率及IPM 本身性能,将IPM 工作频率选为8 KHz,取直流母线寄生电感50 nH,根据计算及试验,最终选择缓冲电容Cs = 3 μF,缓冲电阻Rs = 12 Ω。图9 IPM 缓冲电路2. 2 系统软件设计系统软件主要由主程序和中断服务程序构成,其中主程序完成各种软硬件的初始化、电机初始位置检测和电机启动等,中断服务程序包括PWM 中断子程序和外部中断保护子程序等。其中PWM 中断子程序是控制系统核心,主要完成对转子电流和速度的采集与处理、PID 调节、电压矢量的计算与选择、PWM 发生等。外部中断子程序主要包括母线电压过、欠压保护、启动保护和温度保护等。当IPM 有出错信号时,STM32 控制高级控制定时器的TIM1_BKIN 信号禁止PWM 输出,保证系统的安全,图10为PWM 中断服务程序流程图。图10 PWM 中断服务程序3 实验结果如图11 所示,为本文所设计永磁同步电机控制系统的STM32 控制板及IPM 驱动板实物。对一台额定功率132 kW、额定电流232 A、输入电压380 V的大扭矩永磁同步电机进行了单元及系统实验。图12 所示为W 相上下桥臂的PWM 波形,测试PWM频率为8 KHz ( 周期125 μs) ; 图13 所示为电机空载运行时W 相的电流波形,表明控制系统的软硬件模块均可有效运行。图11 控制电路4 结语本文提出了一种基于STM32 的大扭矩永磁同步电机的控制系统,设计了STM32 处理器模块、增益可调的电流检测电路、旋转变压器接口电路、IPM驱动保护电路等,采用矢量控制方法,实现了永磁同步电机速度和转矩控制,并进行了试验验 证,为大扭矩永磁同步电机驱动控制提供了一种稳定可靠、高性价比的方案。............................................................与非深度解读系列:半导体公司“大学计划”的追问和真相大环境的不景气是就业环境恶化的元凶,但是也让我们不禁追问半导体公司的大学计划对于学子们的真正意义。厂商们的大学计划都在做些什么?那么多的联合实验室有得到充分利用吗?大学计划的直接体验者--老师和学生们是否真正从中受益…….【专栏作者:高扬】本土IC公司调查笔记全球经济不景气的大环境下一些本土IC公司的创新能力、管理能力、抗风险能力、盈利能力,甚至公司创立的动机都受到一些质疑。一方面官方的消息总是告诉我们中国的半导体产业得到了长足的进步;而街巷小道中又不绝流传多少本土IC公司倒闭,多少公司靠欺骗,根本没有核心竞争力….真相只有一个,也许会随《本土IC公司调查笔记》慢慢开启…【专栏作者:岳浩】电子屌丝的技术人生系列在这个系列里,每个故事都会向你展示一个普通工程师的经历,他们的青葱岁月和技术年华,和我们每个人的的生活都有交集。对自己、对公司、对产业、对现在、对未来、对技术、对市场、对产品、对管理的看法,以及他们的经历或正在经历的事情,我们可以看到自己的影子,也看清未来的样子……【专栏作者:任亚运】细说电子分销江湖的那些事对于从事电子分销行业的同仁们来说这是一个最坏的年代,也是一个最好的年代,我们即面临国际分销巨头在管理、资金、货源等方面对我们造成的冲击,又迎来本土集成电路的崛起,个性化服务盛行的机遇,通过这个系列,我想以“第一现场”的经历带大家一起了解国内集成电路分销的那些年、那些事,以及哪些感慨…..【专栏作者:张立恒】

    时间:2018-06-18 关键词: 电机控制 STM32 永磁同步电机 驱动开发 ipm

  • 安森美半导体全面的IPM方案满足工业、汽车和消费应用的不同需求

    智能功率模块(IPM),是指集成驱动和保护电路到单个封装的模块化方案,较分立方案减少占板空间,提升系统可靠性,简化设计和加速产品面市时间。安森美半导体凭借领先的硅和封装技术,提供同类最佳的 IPM,产品阵容覆盖20 W到10 KW不同功率等级,应用于工业、汽车和消费等应用,具有显著的能效、尺寸、成本、可靠性等优势。 IPM技术趋势 根据具体应用需求,IPM可采用各种不同的晶圆技术如平面MOSFET、超结、场截止IGBT、碳化硅(SiC)、氮化镓(GaN)等,以及封装技术如扁平无引脚(QFN)、全塑(Full pack)、陶瓷基板、AI2O3、氮化铝(AIN)、绝缘金属基板技术(IMST)、直接键合铜(DBC)、单列直插(SIP)、二合一(PFC + 变频器INVERTER)等,以尽量减小热阻,降低导通损耗和开关损耗,同时确保高集成度、高开关速度、高能效、高可靠性和出色的EMI性能。 600 V及1200 V高功率的工业IPM方案 工业IPM主要应用于工业压缩机、泵、可变频驱动、电动工具等。预计此类市场未来3年的复合年增率(CAGR)为5.1%,增长较快,这主要归结于人工成本的不断上涨导致企业实现自动化的需求日趋强烈,而各项能源法规及测试标准如ErP、IEC、GB3等对能效的要求日趋严格。 安森美半导体是市场上能同时提供600 V及1200 V高功率IPM方案的数一数二的供应商,主要系列有SPM45、SPM3、SPM2、SIP系列。除了现有的第三、四代场截止IGBT技术,还即将推出采用SiC、GaN的模块。 SPM3系列主要应用于高功率空调、工业变频器、工业泵和工业风扇等,这些模块集成了内置 IGBT 已优化的门极驱动,使用 Al2O3陶瓷基板实现极低热阻,从而优化EMI性能和最小化损耗,同时提供欠压锁定、过流关断和故障报告等多种保护特性。内置高速 HVIC 仅需要单电源电压并将收到的逻辑电平门极输入信号转换为高电压、高电流驱动信号,从而有效驱动模块的内部 IGBT。其中1200 V系列主要针对要求小型化的3相变频器应用,目前已量产的如FSBB10CH120D,额定输出为10 A,后续将推出额定输出为15 A、20 A的型号。而600 V系列则涵盖更宽广的功率范围,目前可从15 A至30 A,如FSBB15CH60D(15 A)、FSBB20CH60D(20 A)、FNB33060T(30 A),同样封装的IPM已经扩展达到50 A。 相对于SPM3系列,SPM2 系列封装占位更大,热阻更小,功率范围更广。其中1200 V系列包括FNA21012A(10 A)、FNA22512A(25 A)、FNA23512A(35 A),满足小型化要求和高压趋势。而600 V系列如FNA23060(30 A)、FNA25060(50 A)、FNA27560(75 A)则更适合对可靠性要求较高、对体积不那么敏感的应用。 而紧凑的单列直插式封装(SIP) IPM系列则将控制、驱动和输出放到单边,有利于节省空间和提升散热性。 汽车IPM实现高功率密度和加速应用上市 随着新的燃油经济性标准和日趋严格的环境法规的推出,电动汽车(EV)/混合动力汽车(HEV)迎来高速发展,汽车功能电子化趋势日益增强,汽车电子市场未来3年CAGR预计将达19%,增长潜力巨大。 安森美半导体针对汽车市场提供的中压IPM(电池电压400VV供电)包括:(1)集成门极驱动器、微控制器(MCU)、功率硅和外围元件的无传感器驱动方案;(2)实现高性能、低噪声及高可靠性的无PCB方案;(3)标准产品和定制的IPM,用于电动水泵、电动油泵、电动燃油泵和电动冷却风扇等等。 为了应对汽车电子更精密、更高性能和能效的趋势,安森美半导体作为全球前10大汽车半导体供应商,提供行业最紧凑的IPM模块APM 27系列,用于 混合动力和电动汽车中控制空调(A/C)压缩机和其它高压辅助电机。如该系列目前已量产的650 V、50 A FAM65V05DF1独特地集成IGBT、续流二极管和门极驱动器在一个12 cm2的汽车级占位封装中,比由多种分立元件组装的方案小达40%,同时提高应用的性能和能效,降低成本。该器件大大简化和缩短用于A/C压缩机和油泵的高压汽车辅助变频器的电源段的设计流程,使设计人员可以专注于创新,加速面市。 图1: 行业最紧凑的汽车IPM模块FAM65V05DF1 消费IPM方案具备同类最佳硅系列和封装技术 IPM由于其小尺寸、高能效和高可靠性等优势,在白家电如空调、洗衣机、冰箱、风扇电机、烘干机、洗碗机等应用中已相当受欢迎。 1. 用于400 W以下消费应用的IPM 对于功率在400 W以下的应用,由于量大,属于成本敏感的市场,要求紧凑、高能效,安森美半导体利用同类最佳的硅系列及封装技术,提供SPM8、SPM55、SPM5等IPM系列,满足市场趋势和不同应用需求。 SPM8 系列采用第三代沟槽场截止技术,内置丰富的保护特性,且可实现紧凑的尺寸,主要适用于冰箱及空调风扇。目前量产的有600 V、5 A的FNB80560T和600 V、10 A的FNB81060T。 紧凑型IPM STK5C4U332J-E、STK5Q4U352J-E、STK5Q4U362J-E采用绝缘金属基板(IMS)或DBC,实现低热阻和高功率密度,尤其适合洗衣机应用。 SPM5 系列如下表所示,从50 W至200 W不等,主要针对空调风扇、洗碗机等应用。其中SF型号具备极低导通电阻,B型号优化用于载波频率超过15 kHz的应用,而A型号则为常规版本。 表1:SPM 5 系列IPM 2.用于400 W至4 KW消费应用的IPM 对于功率等级更高的应用, EMI性能及热性能极为关键,同时又需要兼顾高集成度。安森美半导体提供单个占位封装SPM45、SPM3系列和高集成度封装二合一PFC系列的IPM,具有稳固的EMI性能及优化的导通特性,出色的Rth(j-c)及通过DBC、陶瓷基板实现优异的绝缘性能,并采用第三代、第四代场截止技术用于快速PFC方案。 SPM45系列将低损耗短路额定 IGBT 与优化后的门极驱动器集成到单个完全隔离的封装中,内置热敏电阻可实现温度监测,高低端集成欠压闭锁功能、及过流保护输入进一步增强了系统的可靠性,尤其适用于1HP至3HP空调。其中FNA、FNB系列分别针对低频和高频应用,FNC则为经济型系列,客户可根据应用的具体需求选择适合的型号。 表2:SPM45系列IPM 二合一PFC IPM STK57FU394AG-E (15 A) 和STK5MFU3C1A-E (30 A)在单个、紧凑的封装内集成一个PFC转换器、3相逆变输出段、预驱动电路和保护,用于1HP至3HP空调。内置防跨导电路,减小由噪声引起系统故障的可能,以及为逆变器及PFC段提供过流保护。欠压锁定确保在异常情况下IGBT门极关断,外部可访问的嵌入式热敏电阻用于绝缘金属基板的高精度温度监测。高度集成的封装有助于减少元件、节省空间和成本,简化和加速设计。 此外,针对白家电厂家,安森美半导体还提供PFCM系列IPM。该系列IPM高度集成桥二极管、功率器件到单个封装中,可节省更多的空间,便于安装。内置 NTC 热敏电阻实现温度监控,热阻极低,采用无桥式PFC、单相升压PFC和两相交错式PFC三种不同的拓扑结构。 表3:PFCM系列IPM 总结 安森美半导体专注于高功率领域如空调(HVAC)、汽车、工业级等,通过领先的硅技术和优化的封装,针对每一应用提供适当的IPM方案,确保高集成度、高功率密度、出色的热性能、优化的导通损耗和开关损耗、优异的耐用性,尤其是封装具有更大爬电距离/间隙,适用于高电压应用。此外,针对消费领域,安森美半导体提供的器件和方案超越家电应用的低成本和高能效要求,帮助客户提高产品长期可靠性、品质和效率。

    时间:2017-02-13 关键词: 安森美半导体 智能功率模块 ipm

  • 安森美半导体全面的IPM方案满足工业、汽车和消费应用的不同需求

    安森美半导体全面的IPM方案满足工业、汽车和消费应用的不同需求

     智能功率模块(IPM),是指集成驱动和保护电路到单个封装的模块化方案,较分立方案减少占板空间,提升系统可靠性,简化设计和加速产品面市时间。安森美半导体凭借领先的硅和封装技术,提供同类最佳的 IPM,产品阵容覆盖20 W到10 KW不同功率等级,应用于工业、汽车和消费等应用,具有显著的能效、尺寸、成本、可靠性等优势。 IPM技术趋势 根据具体应用需求,IPM可采用各种不同的晶圆技术如平面MOSFET、超结、场截止IGBT、碳化硅(SiC)、氮化镓(GaN)等,以及封装技术如扁平无引脚(QFN)、全塑(Full pack)、陶瓷基板、AI2O3、氮化铝(AIN)、绝缘金属基板技术(IMST)、直接键合铜(DBC)、单列直插(SIP)、二合一(PFC + 变频器INVERTER)等,以尽量减小热阻,降低导通损耗和开关损耗,同时确保高集成度、高开关速度、高能效、高可靠性和出色的EMI性能。 600 V及1200 V高功率的工业IPM方案 工业IPM主要应用于工业压缩机、泵、可变频驱动、电动工具等。预计此类市场未来3年的复合年增率(CAGR)为5.1%,增长较快,这主要归结于人工成本的不断上涨导致企业实现自动化的需求日趋强烈,而各项能源法规及测试标准如ErP、IEC、GB3等对能效的要求日趋严格。 安森美半导体是市场上能同时提供600 V及1200 V高功率IPM方案的数一数二的供应商,主要系列有SPM45、SPM3、SPM2、SIP系列。除了现有的第三、四代场截止IGBT技术,还即将推出采用SiC、GaN的模块。 SPM3系列主要应用于高功率空调、工业变频器、工业泵和工业风扇等,这些模块集成了内置 IGBT 已优化的门极驱动,使用 Al2O3陶瓷基板实现极低热阻,从而优化EMI性能和最小化损耗,同时提供欠压锁定、过流关断和故障报告等多种保护特性。内置高速 HVIC 仅需要单电源电压并将收到的逻辑电平门极输入信号转换为高电压、高电流驱动信号,从而有效驱动模块的内部 IGBT。其中1200 V系列主要针对要求小型化的3相变频器应用,目前已量产的如FSBB10CH120D,额定输出为10 A,后续将推出额定输出为15 A、20 A的型号。而600 V系列则涵盖更宽广的功率范围,目前可从15 A至30 A,如FSBB15CH60D(15 A)、FSBB20CH60D(20 A)、FNB33060T(30 A),同样封装的IPM已经扩展达到50 A。 相对于SPM3系列,SPM2 系列封装占位更大,热阻更小,功率范围更广。其中1200 V系列包括FNA21012A(10 A)、FNA22512A(25 A)、FNA23512A(35 A),满足小型化要求和高压趋势。而600 V系列如FNA23060(30 A)、FNA25060(50 A)、FNA27560(75 A)则更适合对可靠性要求较高、对体积不那么敏感的应用。 而紧凑的单列直插式封装(SIP) IPM系列则将控制、驱动和输出放到单边,有利于节省空间和提升散热性。 汽车IPM实现高功率密度和加速应用上市 随着新的燃油经济性标准和日趋严格的环境法规的推出,电动汽车(EV)/混合动力汽车(HEV)迎来高速发展,汽车功能电子化趋势日益增强,汽车电子市场未来3年CAGR预计将达19%,增长潜力巨大。 安森美半导体针对汽车市场提供的中压IPM(电池电压400VV供电)包括:(1)集成门极驱动器、微控制器(MCU)、功率硅和外围元件的无传感器驱动方案;(2)实现高性能、低噪声及高可靠性的无PCB方案;(3)标准产品和定制的IPM,用于电动水泵、电动油泵、电动燃油泵和电动冷却风扇等等。 为了应对汽车电子更精密、更高性能和能效的趋势,安森美半导体作为全球前10大汽车半导体供应商,提供行业最紧凑的IPM模块APM 27系列,用于 混合动力和电动汽车中控制空调(A/C)压缩机和其它高压辅助电机。如该系列目前已量产的650 V、50 A FAM65V05DF1独特地集成IGBT、续流二极管和门极驱动器在一个12 cm2的汽车级占位封装中,比由多种分立元件组装的方案小达40%,同时提高应用的性能和能效,降低成本。该器件大大简化和缩短用于A/C压缩机和油泵的高压汽车辅助变频器的电源段的设计流程,使设计人员可以专注于创新,加速面市。     图1: 行业最紧凑的汽车IPM模块FAM65V05DF1 消费IPM方案具备同类最佳硅系列和封装技术 IPM由于其小尺寸、高能效和高可靠性等优势,在白家电如空调、洗衣机、冰箱、风扇电机、烘干机、洗碗机等应用中已相当受欢迎。 1. 用于400 W以下消费应用的IPM 对于功率在400 W以下的应用,由于量大,属于成本敏感的市场,要求紧凑、高能效,安森美半导体利用同类最佳的硅系列及封装技术,提供SPM8、SPM55、SPM5等IPM系列,满足市场趋势和不同应用需求。 SPM8 系列采用第三代沟槽场截止技术,内置丰富的保护特性,且可实现紧凑的尺寸,主要适用于冰箱及空调风扇。目前量产的有600 V、5 A的FNB80560T和600 V、10 A的FNB81060T。 紧凑型IPM STK5C4U332J-E、STK5Q4U352J-E、STK5Q4U362J-E采用绝缘金属基板(IMS)或DBC,实现低热阻和高功率密度,尤其适合洗衣机应用。 SPM5 系列如下表所示,从50 W至200 W不等,主要针对空调风扇、洗碗机等应用。其中SF型号具备极低导通电阻,B型号优化用于载波频率超过15 kHz的应用,而A型号则为常规版本。     表1:SPM 5 系列IPM 2.用于400 W至4 KW消费应用的IPM 对于功率等级更高的应用, EMI性能及热性能极为关键,同时又需要兼顾高集成度。安森美半导体提供单个占位封装SPM45、SPM3系列和高集成度封装二合一PFC系列的IPM,具有稳固的EMI性能及优化的导通特性,出色的Rth(j-c)及通过DBC、陶瓷基板实现优异的绝缘性能,并采用第三代、第四代场截止技术用于快速PFC方案。 SPM45系列将低损耗短路额定 IGBT 与优化后的门极驱动器集成到单个完全隔离的封装中,内置热敏电阻可实现温度监测,高低端集成欠压闭锁功能、及过流保护输入进一步增强了系统的可靠性,尤其适用于1HP至3HP空调。其中FNA、FNB系列分别针对低频和高频应用,FNC则为经济型系列,客户可根据应用的具体需求选择适合的型号。     表2:SPM45系列IPM 二合一PFC IPM STK57FU394AG-E (15 A) 和STK5MFU3C1A-E (30 A)在单个、紧凑的封装内集成一个PFC转换器、3相逆变输出段、预驱动电路和保护,用于1HP至3HP空调。内置防跨导电路,减小由噪声引起系统故障的可能,以及为逆变器及PFC段提供过流保护。欠压锁定确保在异常情况下IGBT门极关断,外部可访问的嵌入式热敏电阻用于绝缘金属基板的高精度温度监测。高度集成的封装有助于减少元件、节省空间和成本,简化和加速设计。 此外,针对白家电厂家,安森美半导体还提供PFCM系列IPM。该系列IPM高度集成桥二极管、功率器件到单个封装中,可节省更多的空间,便于安装。内置 NTC 热敏电阻实现温度监控,热阻极低,采用无桥式PFC、单相升压PFC和两相交错式PFC三种不同的拓扑结构。     表3:PFCM系列IPM 总结 安森美半导体专注于高功率领域如空调(HVAC)、汽车、工业级等,通过领先的硅技术和优化的封装,针对每一应用提供适当的IPM方案,确保高集成度、高功率密度、出色的热性能、优化的导通损耗和开关损耗、优异的耐用性,尤其是封装具有更大爬电距离/间隙,适用于高电压应用。此外,针对消费领域,安森美半导体提供的器件和方案超越家电应用的低成本和高能效要求,帮助客户提高产品长期可靠性、品质和效率。

    时间:2017-01-11 关键词: 安森美 工业 技术前沿 ipm

  • 安森美半导体应用于白家电的二合一智能功率模块(IPM)

    安森美半导体应用于白家电的二合一智能功率模块(IPM)

    当前消费电子产品技术日新月异,同时绿色、环保、节能的思想也逐渐深入人心,能效问题日益成为产品设计中关注的焦点,高效节能已是大势所趋。作为电子设计的关键元器件,半导体产品发挥着至关重要的作用。工程师通过对半导体器件的材料、结构、工艺等方面的不同设计,为各种应用需求提供相应的解决方案。 与我们日常生活密切相关的空调、电冰箱、洗衣机等白家电产品,在设计中需要考虑到尺寸、能效、成本及外观设计等因素。推动高能效创新的安森美半导体开发出紧凑的变频器智能功率模块(IPM),以及集成功率因数校正(PFC)转换器及三相变频器的“二合一”IPM,采用独特的绝缘金属基板技术(IMST®),可靠、性价比高,同时提供高能效和低噪声,极适合白家电产品应用。其二合一IPM STK57FU391A-E获得今日电子与21ic.com联合举办的中国第十二届年度TOP-10电源产品奖中的两个奖项:“Top 10电源产品奖”及“技术突破奖”,彰显安森美半导体推动高能效创新的实力。 安森美半导体独特的绝缘金属基板技术(IMST) 安森美半导体是全球首家开发出变频器IPM使用IMST技术的公司。IMST技术采用低热阻、高导热的绝缘材料将铜箔和金属基板即铝基板压合在一起,金属的高热传导率使功率输出电路、控制电路及模块外围电路能够贴装在同一基板上。此技术具有7大技术优势,包括:易于集成和减少元件数量以降低总成本、内置外围电路简化PCB设计以缩短终端产品的设计时间、提供更灵敏更高精度的温度检测以实现更可靠的散热保护、噪声抑制、降低浪涌电压、提升能效和降低能耗,以及单列直插式 (SIP) 型封装优势。 基于IMST的IPM模块 安森美半导体基于IMST技术的IPM模块,型号包含单分流电阻型和3分流电阻型(如表一所示),它将高压IC (HVIC)、高击穿电压及大电流IGBT、快速恢复二极管、门极电阻、用于驱动上边IGBT及IGBT门极电阻的启动二极管、用于检测发热的热敏电阻、用于过流保护的分流电阻等元器件高密度贴装封装在一起 (如图1所示),能驱动从10 A至50 A输出负载电流,提供低损耗、低噪声。   表1:安森美半导体IPM模块产品阵容。   图1:基于IMST技术的IPM模块集成多种元器件。 集成PFC及3相逆变的二合一IPM应用于变频空调 因应减小尺寸并提升能效的趋势,安森美半导体IPM已发展至下一代高能效二合一IPM,其 STK57F-3xx系列IPM将升压PFC转换器和3相变频器(STK551-xxx系列、STK554-xxx系列为压缩电机提供驱动,STK5C4Uxxx系列为风扇电机提供驱动)合二为一(参见图2),不仅提供高能效电路,还大幅减少元器件数量,节省PCB占用空间,缩短开发时间,降低组装成本,加快上市进程。   图2. 安森美半导体用于变频空调的二合一 IPM。 安森美半导体开发适用于更大电流、更高功率应用的交错式PFC二合一IPM。见图3,它在单个封装中集成交错式PFC转换器、三相变频器输出段、预驱动电路以及保护电路。交错式PFC是在原本单个较大功率PFC段的地方并行放置2个功率为一半的较小功率PFC段来替代。这两个较小的PFC段以180°的相移交替工作,它们在输入端或输出端累加时,每相电流纹波的主要部分将抵消。   图3. 交错式PFC二合一IPM。 高能效单相PFC应用途径包括:连续导电模式(CCM)升压PFC,交错式PFC和无桥交错式PFC。CCM升压PFC电路作为我们的基础电路,交错式PFC实际就是2个升压电路并联,MOS管交错导通。虽然和CCM升压PFC产生相同的二极管桥损耗,但是交错式PFC可分散电源从而提升能效,而无桥交错式PFC在交错式PFC结构的基础上去掉二极管整流桥,使得反应器尺寸减小40%,交流-直流转换损耗减少50%,参见图4。   图4. 高能效单相PFC应用途径。 二合一IPM vs.其它方案 以变频空调为例,当采用分立结构时,电路元器件总数量高达15个,所占PCB面积达121.2 cm2,而二合一IPM结构集成度更高,元器件总数量减少至6个,所占PCB面积减小至87.5 cm2。 同等工作条件下(以输入电压220 V,功率4 kW为例,见图5),二合一IPM结构比分立结构提供更高的工作频率,交错式PFC系统总损耗比分立结构减少28.1 W,而无桥交错式PFC将系统总损耗降低38%。成本方面,更小的尺寸更易于设计,便于采用模块化的方案,缩短设计周期,降低开发成本。集成度更高的二合一IPM结构可将升压线圈布设在电路板上,降低了组装成本,而且由于拓扑结构不同,普通的升压PFC二合一IPM、交错式PFC二合一IPM和无桥交错式PFC二合一IPM的磁芯尺寸依次缩小至分立结构的79%、33%和20%,系统总成本由分立结构的29.7美元依次缩减至28.7美元、28.6美元、28.3美元。   图5. 用于PFC系统的PFC总损耗及成本比较。 总结 安森美半导体创新的IMST技术可靠且性价比高,同时提供高能效和低噪声,而基于此技术更进一步的二合一IPM STK57FU/5MFU,由于在单个封装中集成PFC转换器和变频器,大幅减少元器件数量,减少PCB所占空间,降低组装成本,降低能耗并提升能效。其关键特性包括:内置过流保护和过压保护功能、内置热敏电阻可监测温度、能够使用内置IPM的启动电路来实现单电源驱动、内置防止上边/下边晶体管同时导通的电路,是白家电应用的理想方案。

    时间:2015-02-04 关键词: 安森美 电源技术解析 智能功率模块 ipm

  • 基于PWM控制器和IPM模块的变频电源设计

    摘要:采用智能型、高精度PWM控制器SA866和智能功率模块PS21255,设计了小功率变频电源。该系统硬件电路简单,器件减少,结构紧凑,具有较高的性价比和灵活的适应性,安全可靠。 叙词:变频器 IPM SPWM 逆变 Abstract:High performance and precision PWM controller SA866 and intelligent power module PS21255 are presented, and small power variable-frequency voltage is designedThis system has the merits of simple hardware, compacted configuration, high output-stability, good dynamic characteristic and high dependability. the design is reliable and stable Keyword:Variable-frequency regulator, IPM, PWM, Inverter 1前言 随着电力电子技术、微电子技术和控制理论的发展,逆变器的稳定性和可靠性大幅度提高,各种逆变器在各行业中应用十分广泛,变频调速技术发展日新月异。目前最常用的是采用正弦脉宽调制技术SPWM的变频电源,利用这种变频电源驱动的电力拖动系统,具有效率高、转矩波动小、噪声低、响应快、调速特性好、运行可靠、控制特性优良等优点。SPWM技术及其控制性能越来越完善,专用PWM集成电路相继问世,在变频电源和调速控制中应用越来越广,使系统电路简单,控制调节方便,具有很高的智能性。 常用的电力电子全控型功率半导体器件有晶闸管、功率场效应管、双极型晶体管等。功率场效应管具有开关速度高、电压控制实现简单等优点,但是器件导通时压降较大,且电压、电流容量相对较小;双极型晶体管的优缺点则正好与功率场效应管的优缺点相反。绝缘栅一双极型晶体管(简称IGBT)是功率场效应管与双极型晶体管所形成的复合器件,综合了两者的优点,广泛应用于各种大中型电力电子装置中。各种分立型功率器件需要设计专门的驱动电路才能实现使器件工作在开关状态并获得较低的动静态损耗的效果。而随着功率器件工作频率不断提高,分立元件固有的引线电感、寄生电容等对器件造成了更大的电应力,主要表现为过电压、过电流尖峰。因此在电源设计中采用智能功率模块(IPM),将功率器件、驱动电路和各种保护电路集成到同一模块内,较好地解决了寄生电感和电容的影响。IPM模块对电源电路和驱动电路的引线设计进行了优化处理,所以浪涌电压、门极振荡、噪声干扰等问题得到有效控制,能够实现更快的开关速度,降低系统的复杂性并提高系统的可靠性。 2 变频电源的系统结构 变频电源的主电路采用交一直一交电压型变频电路,主要由整流、滤波、逆变组成。整流部分采用单相桥式整流模块,实现AC/DC的转换;滤波环节采用滤波电容来稳定直流电压;逆变部分采用智能功率模块DIP-IPM,实现DC/AC的转换。变频电源的控制回路用来调节电源系统输出信号的频率和幅值,实现变压变频。为保证系统安全可靠,设置了过压欠压检测保护电路、光耦隔离驱动电路、辅助电源转换电路等。 根据控制电路的参数设置,SPWM 电路产生SPWM控制信号,经过光耦隔离驱动电路,控制智能功率模块IPM开关器件。当系统出现短路、过流、过压、欠压、过热等故障时,封锁SPWM 输出信号,关断IPM 的输出。 3 SPWM调制技术 SA866是专用于交流异步电机SPWM控制的集成电路。它除了根据设定参数产生合乎要求的SPWM脉冲外,还集成了多种保护功能,并可在紧急情况下,如短路和过载时快速关断SPWM脉冲,保护逆变器和电机。其最大特点是可以独立运行,无须微处理器控制。它的输出频率以及加速减速频率都可由外接电位器在线连续调节。所有须定义的参数如载波频率、死区时间、最小脉宽、调制波形、V/f曲线等均存储在外接的廉价EEPROM中,上电时自动读入SA866中。SA866有6种工作模式,与微处理器配合使用,基本做到了低价格多功能。 SA866管脚排列如图2所示。 各管脚功能如下: (1)电源VDDD和VDDA分别为数字电源和模拟电源;VSSADC为A/D转换电源,它们接一个+5V的电源;VSSD和VSSA分别为数字电源和模拟电源的地;VREFIN为A/D转换参考电压(+2.5V)。 (2)串行接口SDA,SCL和CS用于从EEPROM获取数据,分别为数据,时钟和片选信号。 (3)控制及输出SETPOINT为频率给定端,该脚的输入电压将决定系统的工作频率;RACC和RDEC分别确定加速和减速的时间;RPHT、YPHT、BPHT和RPHB、YPHB、BPHB为桥臂脉冲信号输出,其中RPHT、YPHT和BPHT分别对应三相输出的上桥臂;RPHB、YPHB和BPHB分别对应三相输出的下桥臂;DIR控制三相顺序,该脚对应高低电平有两个方向的PWM波供用户选择,高电平时输出的相序为R—B—Y,低电平时输出的相序为R—Y—B。 [!--empirenews.page--] (4)工作状态选择SERIAL决定与SA866连接的是EEPROM还是微处理器,高电平表示与EEPROM连接;PAGE0和PAGE1决定采用的是EEPROM的哪一页参数。 (5)保护VMON为过电压信号输入端,减速过程中此端电平若大于2.5V,就启动过电压保护动作,将输出频率固定在当前值;IMON为过电流信号输入端,升速过程中,电平若大于2.5V,内部过流保护就动作,不再继续升速,直到过流信号消失;SETTRIP为紧急停机信号,可快速禁止PWM脉冲输出;TRIP端表示禁止输出状态,低电平有效,该信号只有在复位信号RESET下才能被解除。 4 逆变技术 在逆变部分,采用智能功率模块PS21255。与常规的IGBT模块相比,具有如下特点: (1)内含驱动电路IPM设定了内部IGBT的最佳驱动条件,驱动电路离IGBT较近,可以大大减少信号传输阻抗,且受外界干扰小,因此不需加反向偏压,同时,本模块采用自举电路,从而摆脱了控制电源不共地的限制,使用一个电源,即可实现方便的控制。 (2)内含各种保护使内部IGBT因故障损坏的几率大大降低,这些保护包括短路保护(SC),控制电路欠压保护(UV)等。 (3)内部报警输出(FO)信号送到控制PWM发生器,封锁脉冲输出,进而停止系统工作。 (4)散热效果好,采用陶瓷绝缘结构,扁平封装,可以直接安装在散热器上。 (5)端子布局合理,便于安装,强弱电的输出输入端分别安排在模块的两侧,做到尽量减少干扰。 IPM(PS21255)模块外部端子在布局上强弱电分开,P及N为直流输入端,P为正端,N为负端;U,V,W为逆变器三相输出端;UP,VP,WP为上桥臂U,V,W各相脉冲信号输入端;UN,VN,WN为下桥臂U,V,W各相脉冲信号输入端; FO为故障输出端(低电平有效)。 5 电源系统的控制 控制电路主要包括控制电源、SA866为核心的SPWM波发生器、隔离驱动及保护电路,如图3所示。 220V交流电经过整流滤波得到的直流电压作为PS21255的逆变直流电压输入,SA866产生三相互差120。的3对SPWM信号,通过光电隔离作用于PS21255控制输入端,在PS21255的输出端输出三相互差120。的SPWM波来驱动异步电机。通过改变输出频率,实现异步电机变频调速。PS21255具有过热、过(欠)压、过流和过热检测及保护电路。当任何一种故障发生时,它将封锁内部6只IGBT管,同时送出故障信号FO。 控制电源采用7805和7815提供直流稳压电源。 SA866AE通过10位数模转换器和外接正反方向脚,可实现转速的连续调节和正反向切换。SA866工作于模式N3,通过外部电路接SETPOINT实现频率的给定,RACC、RDEC接相应电路实现频率的加速和减速,SERIAL端悬空。所有的运行参数,包括载波频率、波形、最小脉冲宽度、死区脉宽和V/f曲线等都是通过外接的EEPROM编程。 系统采用外接EEPROM 方式,EEPROM选用Atmel公司生产的AT93LC46,它只须+5V电压即可工作,可重复擦写106 次。该芯片的封装为DIP一8,其中Vcc和Vss分别为5V电源输入的正负端,CLK为时钟信号输入端,DI为数据输入端,DO为数据输出端,ORG为内部数据的存储结构,可进行8位或16位选择,其相应的引脚分别与SA866AE的SDA、CS和SCL引脚相连。所有的可编程参数均存在EEPROM 中,PAGE0、PAGE1用来选择存储器93LC46的4个页面数据。系统在上电或复位后,通过串行口自动下载,从EEPROM将参数字读人SA866,并依据所设定的参数字产生相应的脉冲波形,以控制主电路中模块的开或关。 为了保证逆变系统安全可靠运行,在IPM主电路和控制电路之间设置了保护及隔离驱动电路。当IPM发生欠压、过流、过温、短路保护时,即UV、OC、OT、SC中任一故障时,其故障输出信号持续时间tfo为1.8ms(SC持续时间会长一些),此时间内IPM会封锁门极驱动,关断IPM。故障输出信号持续时间结束后,IPM内部自动复位,门极驱动通道开放。因此器件自身产生的故障信号是非保持性的,如果tfo结束后故障源仍旧没有排除,IPM就会重复自动保护过程,反复动作。过流、短路、过热保护动作都是非常恶劣的运行状况,应避免其反复动作,因此仅靠IPM内部保护电路还不能完全实现器件的自我保护。要使系统真正安全、可靠运行,需要辅助的外围保护电路。 由于输入电压和反馈能量都将直接反映在直流环节上,所以,整个系统的电压电流检测及保护取样均集中在直流环节。本设计中,在SPWM接口电路SA866前置一级带控制端的高速光耦6N137,使得SA866产生的SPWM信号经过隔离放大后驱动IPM的三相6路脉冲信号输入端。IPM的故障输出信号FO送入可控光耦6N137,经隔离后与SA866的SETTRIP端相连,当IPM故障报警时,信号FO快速向SA866发出保护高电平,快速切断SPWM的控制信号通道,关断IPM,实现了保护功能。 6 结束语 采用SA866产生SPWM信号,控制IPM模块的脉冲输入,使得逆变器输出频率可调的三相交流电源,实现异步电动机的变频调速。本系统设计的变频器,控制电路大为简化,降低了成本,提高了可靠性,减少了开发周期,具有较高的性价比和灵活的适应性,具有通用性。 参考资料 毛明,黄念慈,赵利华. 新型PWM产生器SA866及其在通用变额器上的应用,电源技术应用,2001(4). 周志敏,周纪海,纪爱华.变频电源实用技术,北京:中国电力出版社,2005. 刘凤君,现代逆变技术及应用.北京:电子工业出版社,2006. 马幼捷,邵宝福,周雪松等,智能功率模块驱动保护电路的研究与应用,电测与仪表,2007(4) 林平,胡长生, 刘晨阳,张仲. 三相PWM波形发生器SA866AE原理及应用.电力电子技术,2000(4).■

    时间:2012-05-20 关键词: 模块 控制器 变频器 电源 电源技术解析 设计 pwm 变频 逆变 spwm ipm

  • IR针对家电和轻工业应用推出µIPM功率模块

    21ic讯 国际整流器公司 (International Rectifier,简称IR) 推出一系列正在申请专利的高集成、超小型µIPM功率模块,适用于高效率家电和轻工业应用,包括制冷压缩机驱动器、加热和水循环泵、空调扇、洗碗机及自动化系统。µIPM系列通过采用创新的封装解决方案,开创了器件尺寸新基准,比现有的三相位电机控制功率IC减少了高达60%的占位面积。 全新µIPM系列采用超小型12x12x0.9mm PQFN封装,配备多种充分整合的三相位表面贴装电机控制电路解决方案。IR为相关市场率先引入全新的方法,采用PCB铜线帮助模块散热,从而通过较小的封装设计来减少成本,甚至省却对外置散热片的需要。此外,与传统双重内嵌式模块方案相比,标准QFN封装技术通过省却通孔第二通道组装和提升散热性能可以进一步简化装配过程。 IR亚太区销售副总裁潘大伟表示:“IR的µIPM产品凭借创新的封装解决方案,不仅比现有的领先方案减少高达60%的占位面积,而且有助于提高输出电流能力及系统效率。全新的µIPM系列易于使用,散热性能得到提升,整体系统尺寸也得以减少。有助于设计师与系统集成商设计出更具成本效益、先进的电机控制解决方案。” IR的µIPM系列采用通用引脚和封装尺寸,提供可扩展的功率解决方案。该产品系列配备专为变频驱动器而优化的、坚固耐用且高效率的高压FredFET MOSFET开关,配合IR最先进的高压驱动器IC,提供从2A至4A不等的额定电流,以及250V或500V的电压。  

    时间:2012-05-09 关键词: 模块 家电 应用 ir 功率 针对 推出 电源新品 µ 轻工业 ipm

  • 用于大功率工业应用的IPM——最大电流可达3600 A

    摘要:IPM系列以无底板SKiiP?技术为特色,无焊接压力系统和集成层压电源轨确保均衡的电流分布,栅极驱动器采用了可靠的数字信号传输。这些特点使SKiiP?4 IPM成为风能和太阳能、无轨电车、有轨电车和地铁、电梯以及工业驱动器所需要的具有最大可靠性的功率模块。本文对SKiiP?4 IPM的性能作了介绍。 叙词:IPM 无底板SKiiP?技术 无焊接压力系统 数字信号传输 Abstract:IPM Series features non base plate SKiiP technology, with its non-welding pressure system and integrated multi-layer power rails ensuring proportional current distribution, and with its grid drive applying reliable digital communication. These features ensure a most stable power module that is needed for wind power, solar power, trolleybuses, trams, subway, elevators and industrial drives. The article explains the performance of SKiiP4 IPM. Keyword:IPM, Non Base Plate SKiiP Technology, Non-welding Pressure System, Digital Communication 1  前言 近年来,业界对于高可靠、结构紧凑、功能强大且物美价廉的功率模块的呼声变得越来越响亮。诸如风力和太阳能电站、无轨电车、有轨电车、地铁以及其他大功率工业驱动器需要具有最大可靠性的功率模块。随着SKiiP?4 IPM的推出,赛米控对这一呼吁做出了响应。赛米控已建立的系统组件良好匹配的概念也是该解决方案所具有的特点:散热器、电力电子器件、栅极驱动器和保护机制。SKiiP?4是该领域一贯发展和改进的结果,结合了多年的实践经验和最先进封装技术的使用,以及可靠的数字信号传输技术。 新的IPM针对额定电流为3600A、最高Udc为1,700V的应用进行了优化。此外,它是第一款具有在一个散热器上并联有6个半桥特点的模块。因此,载流能力提高了50%,从而可以设计结构更为紧凑、功能更为强大的解决方案,如用于开关柜中。因而该新模块可在不降低可靠性的情况下,满足不断增长的更高功率密度设计的需求。在这方面,热循环能力和负载循环能力是关键。在牵引领域,例如,电车在夜间温度降至零度以下,而在启动时温度可高达100℃。此处所采用的最佳装配和连接技术,不再需要底板,因而保证了这种能力,即使在极端恶劣的外部环境条件下。通过改用烧结技术将功率部分的最终焊层去除掉,实现了最大的负载循环能力。 得益于IGBT4和CAL4技术,SKiiP?4 IPM提供大功率密度,使其成为一种强大且紧凑的模块。事实上,它是目前市场上最强大的IPM。 2  功率部分 新的IPM系列以无底板SKiiP?技术为特色,芯片和过去一样,是通过机械压力压置到陶瓷基板和散热器上。无焊接压力系统和集成层压电源轨确保均衡的电流分布。每个IGBT和二极管芯片分别连接到主端子。这样可使内部负载电阻和损耗保持最低。新的电源轨系统在功率模块中同时履行几个职能。一方面,它将DCB(直接铜键合)压在散热器上,由此在整个DCB表面上分布了大量的接触,确保了与散热器的均匀接触。另一方面,这些触点直接作为电流媒介。层状结构使得触点和硅片之间连接的电感和电阻小。这在并联的IGBT之间可提供良好的动态电流分布。 这种压力系统在模块内被动热聚集方面所提供的优势是不言而喻的。事实上,与传统的带基板功率模块相比,此设计的热循环能力增强5倍。导致这一结果的原因是功率模块包含不同的材料,如铜、陶瓷(如氧化铝)和硅,每种材料的热膨胀系数不同。在被动温度变化的情况下,不同的材料内均有不同程度的膨胀。这会在诸如连接陶瓷基板和底板的焊接层上产生疲劳现象。其结果是热阻大大增加,最终导致模块故障。 过去,焊料是将半导体芯片附着和互连到基板的首选材料。然而,焊锡合金因其熔点只有220℃,在实现更高芯片工作温度方面有局限。在SKiiP?4模块中,硅芯片和DCB基板之间的焊接层完全被烧结层所取代。有了这一连接技术,芯片首次被放置在银涂层上,并在其上施加压力,以在DCB和芯片之间建立一个永久的连接。这一薄银层的的热阻比焊接连接小且熔点较高,达960℃,这就是为什么可以避免过早材料疲劳的原因。银连接是坚固的,熔化温度比焊接连接高6倍(图2)。与采用焊接芯片的模块相比,半桥具有更高的负载循环能力。 优化组装和连接技术还需要正确选择IGBT和二极管。为了能够提供最高结温Tj.max=175℃,赛米控的SKiiP?4模块在1200V和1700V两个模块版本中使用了英飞凌的IGBT4技术。所用的二极管是赛米控开发的CAL4续流二极管,同样允许175°C的最高结温。 3  栅极驱动器概念 如果没有数字技术,今天的世界是无法想象的。在电力电子系统中,数字技术也被证明越来越受欢迎,并在越来越多的应用中发现用武之地。到目前为止,信号通过边沿触发信号传输方式来传输,即信号通过一个串联谐振电路发送至二次侧,信号由一个边沿存储器检测。与此相反,在数字化传输中,采用一个由0和1组成的永久性数据流。从电子角度来看,这意味着信号是清晰的。与模拟技术不同,数字化传输实现了高度的信号完整性。温度依赖性、参数的波动或电路缺乏长期稳定性,所有这些模拟系统的典型特征都可以排除。对于IGBT控制来说,数字传输技术的进一步优势是:无干扰、与温度无关以及对任何类型信号的强大传输能力,包括缓慢的传感器信号。 集成的栅极驱动器是新IPM系列的另一个关键因素所在。PCB板接收控制器整定的输入信号并通过完全隔离传输方式将其传送至高压侧,在这种情况下控制IGBT。信号以差分形式传输,这意味着信号进行了比较,并从一个当中减去另一个,得到的结果是不同的信号。通常情况下,两个脉冲变压器的输出可能会含有相同的干扰信号。通过将两个不同的输出电压相减,可以消除干扰信号。 脉冲由内部数字逻辑(FPGA)产生,有着确定的长度和形状,并被差分地评估。原边的一个强大的桥式电路产生电压信号,该信号经由变压器以电隔离信号传输方式传送至副边。在副边,信号由一个差分比较器接收,并传递至副边的FPGA用于进一步的信号处理。 栅极驱动器的主要功能是将多个开关信号转换成一个强大的开关信号。在短路、其他过载以及正常运行条件下,IGBT必须被安全地开关。因此,为实现最优开关而受控的IGBT开启和关闭,以及减少开关损耗是至关重要的 每个SKiiP?4 IPM有两个独立的驱动器板。驱动器板包括一个驱动器核和一个触点板。采用两个独立的驱动器板确保了最佳的热分布和变异性(图6)。内部保护功能,如欠压监控(原边和副边)、短脉冲抑制和短路监测,以及其他模拟信号的监测和输出,如电流、温度甚至直流环节电压。因此,该系统既能保护自己,而且还在同一时间向用户传递重要的应用参数。此外,也提供了一条具有CAN-Open特性的诊断通道,用于确保最优评估。 4  用于更高可靠性的可选老化测试 为了能够为客户提供具有最高可靠性的IPM,除了每个系统在离开生产地之前必须经过的标准功能测试之外,还提供一个可选的老化测试。该测试会持续60min到90min,在逆变器最糟的真实条件下测试基本功能和应力。测试的目的是,例如,检测每个独立IGBT单元统计意义上的过早故障并将这些从模块中去除。2008年,售出的SKiiP?3模块中约有80%进行了这一测试。客户可能会选择在1象限或4象限间运行,此项测试适合风冷或水冷系统。 5  结论 即使在极端应用条件下,SKiiP?4电力电子模块也满足最高的一体化,可靠性和电流密度的要求。这是因为无焊接压接技术被用于功率部分,再加上栅极驱动器采用了可靠的数字信号传输。SKiiP? IPM主要用在如下行业领域的标准工业级大功率逆变器中:风能和太阳能、牵引(无轨电车、有轨电车和地铁)、电梯以及工业驱动器。这些应用实例都是要求功率模块具有最高可靠性的明显例子。

    时间:2012-04-16 关键词: 工业 电流 最大 大功率 电源技术解析 应用 用于 ipm

  • 基于IPM模块的舵机控制电路设计

    摘要:为了实现水下自主式机器人的控制,设计了一种基于IPM模块的舵机控制电路。该电路将舵机控制信号与舵机位置反馈信号比较获得的直流偏置电压信号作为脉宽调制芯片UC1637的输入信号。UC1637根据输入直流偏置电压信号的变化输出不同占空比的PWM信号驱动IPM模块内部不同IGBT的通断,从而实现舵机的控制。该电路将IPM模块和脉宽调制芯片UC1637用于舵机控制,使该电路具有成本低廉和容易实现的优点。实验结果表明,该控制电路运行稳定,控制精度高,有很强的应用推广价值。 关键词:IPM模块;舵机;脉宽调制;PWM 0 引言     绝缘栅双级型晶体管IGBT是一种由双级型晶体管与MOSFET组和的器件,它既有MOSFET的栅极电压控制快速开关特性,又具有双级型晶体管大电流处理能力和低饱和压降的特点。IPM模块与IGBT模块相比,具有如下特点:内置驱动电路、过流保护、短路保护、控制电源欠压保护、过热保护及外部输出的警报。本文将日本三菱公司的IPM模块PM25RLA120和美国TI公司的电机控制芯片UC1637用于电动舵机控制。 1 设计原理     舵机控制原理框图如图1所示。     舵机是一种位置伺服的驱动器,其工作原理是:控制信号与舵机位置反馈信号比较,获得直流偏置电压,偏置电压进入信号调制芯片产生一个比较电平,经过PWM控制芯片UC1637后,输出一定占空比的PWM信号,用来驱动IPM电路中IGBT的通断,从而实现电动舵机位置的控制。 2 舵机控制系统电路 2.1 以UC1637为核心的控制电路     UC1637是TI公司针对直流电机控制设计的芯片,该芯片用来代替通常的驱动电路,内含三角波发生器、误差放大器、脉宽调制器、欠压保护、过流保护电路,提高了电机控制电路的集成度和系统的可靠性。舵机控制电路接收控制计算机发送的操舵信号,与舵机反馈信号比较,校正放大处理后,与一定频率幅值的三角波信号比较后的信号输入UC1637,在芯片内产生一个模拟误差电压信号,输出二路不同极性的PWM控制信号,达到控制舵机打出不同舵角的目的。UC1637控制电路如图2所示,MC2为三角波输出信号,M12为UC1637输入控制信号,A02,B02为输出控制信号,两路控制信号经过光电隔离后控制IPM模块不同的回路的通断控制舵机工作。 2.2 IPM模块驱动电路     IPM模块驱动电路是IPM模块内部电路和控制电路间的接口。良好的外部驱动电路对以IPM模块构成的系统运行效率、可靠性和安全性都有重要意义。器件本身含有驱动电路。所以只要提供满足驱动功率要求的PWM信号、驱动电路电源和防止干扰的电气隔离装置即可。IPM模块PM25RLA120的外围驱动电路如图3所示。     M25RLA120需要4路不共地的+15 V电源,M57140是三菱公司为其IPM系列产品专门配置的电压转换模块,为IPM模块提供4路不共地的+15 V电源。UC1637输出的PWM控制信号A02,B02经高速光耦HCPL-0466送到IPM模块的输入端,6路输入信号的电路结构均相同,这里控制的舵机为有要直流电机,因此图中只画出其中的4路输入信号,高速光耦起到电气隔离IPM与外部电路的作用。 3 结语     实际运行和调试结果表明,基于IPM模块的舵机控制电路具有集成度高、响应速度快、驱动能力强等优点,极大地提高舵机控制电路的可靠性并缩小控制系统的体积,降低产品成本,有着良好的应用前景。

    时间:2012-03-06 关键词: 模块 电路设计 舵机控制 ipm

  • 87C196MC与IPM模块组成的变频调速系统

    随着大功率开关器件制造技术和计算机技术的迅猛发展,交流电机的变频调速在一般工业领域以至许多民用领域中已得到广泛应用。在节能、减少维修、提高产品产量及产品质量等方面都取得了明显的经济效益。目前,高性能交流调速系统的研究和开发已引起各国学者的高度重视,而所用微处理器、功率器件及产生SPWM波的方法是影响变频器性能好坏的直接因素。 1 系统硬件电路设计 1.1 87C196MC及IPM简介 87C196MC 是Intel公司专门为三相异步电动机和直流无刷电动机控制而设计的16位单片机。它由C196内核、8KB EPROM、三相波形发生器WFG、A/D转换器、事件处理门阵列EPA、定时器和脉宽调制单元等组成。其中,三相波形发生器WFG是87C196MC的一大特色。WFG可以通过P6口直接输出用于逆变器驱动的6路SPWM信号,每个引脚的驱动电流可达20mA,在使用16MHz时,驱动信号的频率可达 8MHz。为防止同一桥臂上2个功率管发生直通造成短路,该发生器还可通过编程设置死区互销时间,在16MHz晶振时,死区时间范围为 0.125~125μs之间。一旦启动,WFG只要CPU在改变PWM波的占空比时加以干涉,大大减少了CPU的开销。三相波形发生器WFG的存在大大简化了用于产生PWM波形的软件和硬件,使系统得以大大简化。 智能功率模块IPM已经被广泛应用在变频器、数控机库、工业机器人等电能转换设备中。带有IGBT驱动电路和自诊断、保护功能完善的IPM的使用,使得电能转换设备体积更小、更可靠、更具智能化。本系统所选用的功率器件为7MBP50RA120。它内部含有组成1个三相H桥(逆变桥)和1个制动单元的7个 IGBT和7个快速功率二极管,并且含有相应的驱动电路。另外它的保护功能相当完善,内含过电流保护(OC)、短路保护(SC)、驱动电源欠电压保护(UV)、过热保护(OH)、报警输出(ALM)等。7MBP50RA120是富士电机推出的第4代R-系列智能功率模块IPM,它克服了在传统的 IGBT-IPM中,当工作温度迅速上升时IPM可能被击穿(这种击穿发生是因为提供温度保护的温控器安装在IGBT芯片的绝缘基板上)以及有时由于寄生电容或控制电路产生的寄生电感而引起的噪声使IGBT产生误动作的缺点,并且该系列的IPM所使用的元件数量比传统的IPM少得多(仅为5%),可靠性得到很大提高。 1.2 硬件电路 系统硬件电路采用交-直-交变频方式,如图1所示。三相工频电压经速流桥6RI30G-160整流后,再经2个电容器HCGF5A2W222Y平滑滤波后送至IPM模块7MBP50RA120的主电流输入端口P、N端。 16 位的87C196MC通过计算查表把存储在片内EPROM中的正弦波数据送至97C196MC的波形发生器。波形发生器产生的三相互补的SPWM信号经 WFG1~WFG3端输出、再经光耦隔离后送至IPM的驱动信号输入端VinU、VinV、VinW(上桥臂)和VinX、VinY、VinZ(下桥臂)。8个按键:功能键FUN、显示键DISPLAY、设定键SET、移位键MOVE、启动/停止键RUN/STOPS、正转/反转键FWD/REV、2 个增减键(↑)和(↓)直接与87C196MC的P0口相连。显示驱动芯片采用ICM7218B。频率给定电位器直接与P1.4/ACH12相连,用于手动给定设置频率。当设置频率给定为数字给定方式时,手动调节电位器给定不起作用。当IPM内部的故障检测电路检测到有故障时,其故障输出端ALM立即发出故障信号,此信号和调速系统控制保护电路中的其它过流、过压、欠压等故障信号一起经逻辑电路送至87C196MC的EXTINT端,以便87C196MC 及时实施对IPM驱动电路的封锁,保护IPM及其它电路不致损坏,并且在LED显示器上显示其故障来源。87C196MC的P6.6用于控制IPM的制动单元,以保证主电路的直流电压不致过高。 2 系统软件设计 系统软件由主程序、故障中断子程序、显示子程序、键盘服务程序、捕获/比较模块2中断、捕获/比较模块3中断、WFG中断、A/D采样中断子程序等构成。主程序中主要完成系统的初始化、并根据显示模块计算要显示的数据并送出显示、键盘扫描及服务处理、输入数据的码制变换等等;故障中断子程序中视故障性质完成自处理或故障报警、封锁触发脉冲、跳闸等;捕获/比较模块2作为软件定时器完成20ms的定时,作为键盘去抖动和盘管理的定时(如设定参数时,5s内不按下任何按键则认为设定该参数完毕等);捕获/比较模块3作为软件定时器实现1ms的定时,用于完成实际调制频率fop的计算及触发A/D采样,其中框图中的fmin、fop、fset、Δfmax分别为系统最低调制频率、实际调制频率、给定调制频率及允许的最大频率变化量;WFG中断程序中,根据fop查 V/F表,计算相位比较寄存器WG_COMPX的值。本系统中,调制方式采用异步调制,即载波频率fc=4.8kHz不变。为计算方便,建立的正弦函数表中数据的最大值sin90°的值为2 13,V/F表(即调制深度系数m值)中数据的最大值为417×2 3。图2给出捕获/比较模块3中断子程序框图,图3给出WFG中断子程序框图。 在图3中,θu、θv、θw分别为U相、V相、W相调制正弦波的相位,U_TEMP、V_TEMP、 W_TEMP的3个临时变量,它们的数值在该子程序后面最终被装入波形发生器的三个相位比较缓冲器WG_COMP1、WG_COMP2和WG_COMP3 之中。WG_RELOAD为重装载寄存器,其值在每次产生WFG中断时自动装入计数器比较寄存器。θstep为当前调制频率下相邻2个WFG中断的时间间隔所对应的正弦波角度,由于在下次WFG中断产生时硬件自动将本次计算的相位比较缓冲器WG_COMPX值装入相应的相位比较寄存器,使WFG产生双极型 SPWM波(WFG工作于工作方式0),因此在查正弦表时,U、V、W某一相的相位指针应该对应加上与θstep相对应的n个数据。 3 实验结果及结论 根据上述的软硬件设计方案,设计了一个变频调速系统,被控对象为上海南洋电机厂生产的变频调速电机 YT8P1326-4,额定功率为5.5kW,其负载电流波形如图4所示。实验结果表明:系统软、硬件设计合理,具有良好的静态和动态性能。这说明 87C196MC单片机与IPM在变频器应用方面具有一定的优势,能给变频器的软硬件设计带来极大的方便。  

    时间:2012-03-06 关键词: 196 c196 87c ipm

  • 基于IPM模块的舵机控制电路设计

    摘要:为了实现水下自主式机器人的控制,设计了一种基于IPM模块的舵机控制电路。该电路将舵机控制信号与舵机位置反馈信号比较获得的直流偏置电压信号作为脉宽调制芯片UC1637的输入信号。UC1637根据输入直流偏置电压信号的变化输出不同占空比的PWM信号驱动IPM模块内部不同IGBT的通断,从而实现舵机的控制。该电路将IPM模块和脉宽调制芯片UC1637用于舵机控制,使该电路具有成本低廉和容易实现的优点。实验结果表明,该控制电路运行稳定,控制精度高,有很强的应用推广价值。 关键词:IPM模块;舵机;脉宽调制;PWM 0 引言     绝缘栅双级型晶体管IGBT是一种由双级型晶体管与MOSFET组和的器件,它既有MOSFET的栅极电压控制快速开关特性,又具有双级型晶体管大电流处理能力和低饱和压降的特点。IPM模块与IGBT模块相比,具有如下特点:内置驱动电路、过流保护、短路保护、控制电源欠压保护、过热保护及外部输出的警报。本文将日本三菱公司的IPM模块PM25RLA120和美国TI公司的电机控制芯片UC1637用于电动舵机控制。 1 设计原理     舵机控制原理框图如图1所示。     舵机是一种位置伺服的驱动器,其工作原理是:控制信号与舵机位置反馈信号比较,获得直流偏置电压,偏置电压进入信号调制芯片产生一个比较电平,经过PWM控制芯片UC1637后,输出一定占空比的PWM信号,用来驱动IPM电路中IGBT的通断,从而实现电动舵机位置的控制。 2 舵机控制系统电路 2.1 以UC1637为核心的控制电路     UC1637是TI公司针对直流电机控制设计的芯片,该芯片用来代替通常的驱动电路,内含三角波发生器、误差放大器、脉宽调制器、欠压保护、过流保护电路,提高了电机控制电路的集成度和系统的可靠性。舵机控制电路接收控制计算机发送的操舵信号,与舵机反馈信号比较,校正放大处理后,与一定频率幅值的三角波信号比较后的信号输入UC1637,在芯片内产生一个模拟误差电压信号,输出二路不同极性的PWM控制信号,达到控制舵机打出不同舵角的目的。UC1637控制电路如图2所示,MC2为三角波输出信号,M12为UC1637输入控制信号,A02,B02为输出控制信号,两路控制信号经过光电隔离后控制IPM模块不同的回路的通断控制舵机工作。 [!--empirenews.page--] 2.2 IPM模块驱动电路     IPM模块驱动电路是IPM模块内部电路和控制电路间的接口。良好的外部驱动电路对以IPM模块构成的系统运行效率、可靠性和安全性都有重要意义。器件本身含有驱动电路。所以只要提供满足驱动功率要求的PWM信号、驱动电路电源和防止干扰的电气隔离装置即可。IPM模块PM25RLA120的外围驱动电路如图3所示。     M25RLA120需要4路不共地的+15 V电源,M57140是三菱公司为其IPM系列产品专门配置的电压转换模块,为IPM模块提供4路不共地的+15 V电源。UC1637输出的PWM控制信号A02,B02经高速光耦HCPL-0466送到IPM模块的输入端,6路输入信号的电路结构均相同,这里控制的舵机为有要直流电机,因此图中只画出其中的4路输入信号,高速光耦起到电气隔离IPM与外部电路的作用。 3 结语     实际运行和调试结果表明,基于IPM模块的舵机控制电路具有集成度高、响应速度快、驱动能力强等优点,极大地提高舵机控制电路的可靠性并缩小控制系统的体积,降低产品成本,有着良好的应用前景。

    时间:2012-03-04 关键词: 模块 电路设计 电源技术解析 基于 控制 ipm

  • 87C196MC与IPM模块组成的变频调速系统

    随着大功率开关器件制造技术和计算机技术的迅猛发展,交流电机的变频调速在一般工业领域以至许多民用领域中已得到广泛应用。在节能、减少维修、提高产品产量及产品质量等方面都取得了明显的经济效益。目前,高性能交流调速系统的研究和开发已引起各国学者的高度重视,而所用微处理器、功率器件及产生SPWM波的方法是影响变频器性能好坏的直接因素。 1 系统硬件电路设计 1.1 87C196MC及IPM简介 87C196MC 是Intel公司专门为三相异步电动机和直流无刷电动机控制而设计的16位单片机。它由C196内核、8KB EPROM、三相波形发生器WFG、A/D转换器、事件处理门阵列EPA、定时器和脉宽调制单元等组成。其中,三相波形发生器WFG是87C196MC的一大特色。WFG可以通过P6口直接输出用于逆变器驱动的6路SPWM信号,每个引脚的驱动电流可达20mA,在使用16MHz时,驱动信号的频率可达 8MHz。为防止同一桥臂上2个功率管发生直通造成短路,该发生器还可通过编程设置死区互销时间,在16MHz晶振时,死区时间范围为 0.125~125μs之间。一旦启动,WFG只要CPU在改变PWM波的占空比时加以干涉,大大减少了CPU的开销。三相波形发生器WFG的存在大大简化了用于产生PWM波形的软件和硬件,使系统得以大大简化。 智能功率模块IPM已经被广泛应用在变频器、数控机库、工业机器人等电能转换设备中。带有IGBT驱动电路和自诊断、保护功能完善的IPM的使用,使得电能转换设备体积更小、更可靠、更具智能化。本系统所选用的功率器件为7MBP50RA120。它内部含有组成1个三相H桥(逆变桥)和1个制动单元的7个 IGBT和7个快速功率二极管,并且含有相应的驱动电路。另外它的保护功能相当完善,内含过电流保护(OC)、短路保护(SC)、驱动电源欠电压保护(UV)、过热保护(OH)、报警输出(ALM)等。7MBP50RA120是富士电机推出的第4代R-系列智能功率模块IPM,它克服了在传统的 IGBT-IPM中,当工作温度迅速上升时IPM可能被击穿(这种击穿发生是因为提供温度保护的温控器安装在IGBT芯片的绝缘基板上)以及有时由于寄生电容或控制电路产生的寄生电感而引起的噪声使IGBT产生误动作的缺点,并且该系列的IPM所使用的元件数量比传统的IPM少得多(仅为5%),可靠性得到很大提高。 1.2 硬件电路 系统硬件电路采用交-直-交变频方式,如图1所示。三相工频电压经速流桥6RI30G-160整流后,再经2个电容器HCGF5A2W222Y平滑滤波后送至IPM模块7MBP50RA120的主电流输入端口P、N端。 [!--empirenews.page--] 16 位的87C196MC通过计算查表把存储在片内EPROM中的正弦波数据送至97C196MC的波形发生器。波形发生器产生的三相互补的SPWM信号经 WFG1~WFG3端输出、再经光耦隔离后送至IPM的驱动信号输入端VinU、VinV、VinW(上桥臂)和VinX、VinY、VinZ(下桥臂)。8个按键:功能键FUN、显示键DISPLAY、设定键SET、移位键MOVE、启动/停止键RUN/STOPS、正转/反转键FWD/REV、2 个增减键(↑)和(↓)直接与87C196MC的P0口相连。显示驱动芯片采用ICM7218B。频率给定电位器直接与P1.4/ACH12相连,用于手动给定设置频率。当设置频率给定为数字给定方式时,手动调节电位器给定不起作用。当IPM内部的故障检测电路检测到有故障时,其故障输出端ALM立即发出故障信号,此信号和调速系统控制保护电路中的其它过流、过压、欠压等故障信号一起经逻辑电路送至87C196MC的EXTINT端,以便87C196MC 及时实施对IPM驱动电路的封锁,保护IPM及其它电路不致损坏,并且在LED显示器上显示其故障来源。87C196MC的P6.6用于控制IPM的制动单元,以保证主电路的直流电压不致过高。 2 系统软件设计 系统软件由主程序、故障中断子程序、显示子程序、键盘服务程序、捕获/比较模块2中断、捕获/比较模块3中断、WFG中断、A/D采样中断子程序等构成。主程序中主要完成系统的初始化、并根据显示模块计算要显示的数据并送出显示、键盘扫描及服务处理、输入数据的码制变换等等;故障中断子程序中视故障性质完成自处理或故障报警、封锁触发脉冲、跳闸等;捕获/比较模块2作为软件定时器完成20ms的定时,作为键盘去抖动和盘管理的定时(如设定参数时,5s内不按下任何按键则认为设定该参数完毕等);捕获/比较模块3作为软件定时器实现1ms的定时,用于完成实际调制频率fop的计算及触发A/D采样,其中框图中的fmin、fop、fset、Δfmax分别为系统最低调制频率、实际调制频率、给定调制频率及允许的最大频率变化量;WFG中断程序中,根据fop查 V/F表,计算相位比较寄存器WG_COMPX的值。本系统中,调制方式采用异步调制,即载波频率fc=4.8kHz不变。为计算方便,建立的正弦函数表中数据的最大值sin90°的值为2 13,V/F表(即调制深度系数m值)中数据的最大值为417×2 3。图2给出捕获/比较模块3中断子程序框图,图3给出WFG中断子程序框图。 [!--empirenews.page--] 在图3中,θu、θv、θw分别为U相、V相、W相调制正弦波的相位,U_TEMP、V_TEMP、 W_TEMP的3个临时变量,它们的数值在该子程序后面最终被装入波形发生器的三个相位比较缓冲器WG_COMP1、WG_COMP2和WG_COMP3 之中。WG_RELOAD为重装载寄存器,其值在每次产生WFG中断时自动装入计数器比较寄存器。θstep为当前调制频率下相邻2个WFG中断的时间间隔所对应的正弦波角度,由于在下次WFG中断产生时硬件自动将本次计算的相位比较缓冲器WG_COMPX值装入相应的相位比较寄存器,使WFG产生双极型 SPWM波(WFG工作于工作方式0),因此在查正弦表时,U、V、W某一相的相位指针应该对应加上与θstep相对应的n个数据。 3 实验结果及结论 根据上述的软硬件设计方案,设计了一个变频调速系统,被控对象为上海南洋电机厂生产的变频调速电机 YT8P1326-4,额定功率为5.5kW,其负载电流波形如图4所示。实验结果表明:系统软、硬件设计合理,具有良好的静态和动态性能。这说明 87C196MC单片机与IPM在变频器应用方面具有一定的优势,能给变频器的软硬件设计带来极大的方便。  

    时间:2012-03-04 关键词: 系统 模块 电源技术解析 变频调速 组成 87c196mc ipm

  • 87C196MC与IPM模块组成的变频调速系统

    随着大功率开关器件制造技术和计算机技术的迅猛发展,交流电机的变频调速在一般工业领域以至许多民用领域中已得到广泛应用。在节能、减少维修、提高产品产量及产品质量等方面都取得了明显的经济效益。目前,高性能交流调速系统的研究和开发已引起各国学者的高度重视,而所用微处理器、功率器件及产生SPWM波的方法是影响变频器性能好坏的直接因素。 1 系统硬件电路设计 1.1 87C196MC及IPM简介 87C196MC 是Intel公司专门为三相异步电动机和直流无刷电动机控制而设计的16位单片机。它由C196内核、8KB EPROM、三相波形发生器WFG、A/D转换器、事件处理门阵列EPA、定时器和脉宽调制单元等组成。其中,三相波形发生器WFG是87C196MC的一大特色。WFG可以通过P6口直接输出用于逆变器驱动的6路SPWM信号,每个引脚的驱动电流可达20mA,在使用16MHz时,驱动信号的频率可达 8MHz。为防止同一桥臂上2个功率管发生直通造成短路,该发生器还可通过编程设置死区互销时间,在16MHz晶振时,死区时间范围为 0.125~125μs之间。一旦启动,WFG只要CPU在改变PWM波的占空比时加以干涉,大大减少了CPU的开销。三相波形发生器WFG的存在大大简化了用于产生PWM波形的软件和硬件,使系统得以大大简化。 智能功率模块IPM已经被广泛应用在变频器、数控机库、工业机器人等电能转换设备中。带有IGBT驱动电路和自诊断、保护功能完善的IPM的使用,使得电能转换设备体积更小、更可靠、更具智能化。本系统所选用的功率器件为7MBP50RA120。它内部含有组成1个三相H桥(逆变桥)和1个制动单元的7个 IGBT和7个快速功率二极管,并且含有相应的驱动电路。另外它的保护功能相当完善,内含过电流保护(OC)、短路保护(SC)、驱动电源欠电压保护(UV)、过热保护(OH)、报警输出(ALM)等。7MBP50RA120是富士电机推出的第4代R-系列智能功率模块IPM,它克服了在传统的 IGBT-IPM中,当工作温度迅速上升时IPM可能被击穿(这种击穿发生是因为提供温度保护的温控器安装在IGBT芯片的绝缘基板上)以及有时由于寄生电容或控制电路产生的寄生电感而引起的噪声使IGBT产生误动作的缺点,并且该系列的IPM所使用的元件数量比传统的IPM少得多(仅为5%),可靠性得到很大提高。 1.2 硬件电路 系统硬件电路采用交-直-交变频方式,如图1所示。三相工频电压经速流桥6RI30G-160整流后,再经2个电容器HCGF5A2W222Y平滑滤波后送至IPM模块7MBP50RA120的主电流输入端口P、N端。 [!--empirenews.page--] 16 位的87C196MC通过计算查表把存储在片内EPROM中的正弦波数据送至97C196MC的波形发生器。波形发生器产生的三相互补的SPWM信号经 WFG1~WFG3端输出、再经光耦隔离后送至IPM的驱动信号输入端VinU、VinV、VinW(上桥臂)和VinX、VinY、VinZ(下桥臂)。8个按键:功能键FUN、显示键DISPLAY、设定键SET、移位键MOVE、启动/停止键RUN/STOPS、正转/反转键FWD/REV、2 个增减键(↑)和(↓)直接与87C196MC的P0口相连。显示驱动芯片采用ICM7218B。频率给定电位器直接与P1.4/ACH12相连,用于手动给定设置频率。当设置频率给定为数字给定方式时,手动调节电位器给定不起作用。当IPM内部的故障检测电路检测到有故障时,其故障输出端ALM立即发出故障信号,此信号和调速系统控制保护电路中的其它过流、过压、欠压等故障信号一起经逻辑电路送至87C196MC的EXTINT端,以便87C196MC 及时实施对IPM驱动电路的封锁,保护IPM及其它电路不致损坏,并且在LED显示器上显示其故障来源。87C196MC的P6.6用于控制IPM的制动单元,以保证主电路的直流电压不致过高。 2 系统软件设计 系统软件由主程序、故障中断子程序、显示子程序、键盘服务程序、捕获/比较模块2中断、捕获/比较模块3中断、WFG中断、A/D采样中断子程序等构成。主程序中主要完成系统的初始化、并根据显示模块计算要显示的数据并送出显示、键盘扫描及服务处理、输入数据的码制变换等等;故障中断子程序中视故障性质完成自处理或故障报警、封锁触发脉冲、跳闸等;捕获/比较模块2作为软件定时器完成20ms的定时,作为键盘去抖动和盘管理的定时(如设定参数时,5s内不按下任何按键则认为设定该参数完毕等);捕获/比较模块3作为软件定时器实现1ms的定时,用于完成实际调制频率fop的计算及触发A/D采样,其中框图中的fmin、fop、fset、Δfmax分别为系统最低调制频率、实际调制频率、给定调制频率及允许的最大频率变化量;WFG中断程序中,根据fop查 V/F表,计算相位比较寄存器WG_COMPX的值。本系统中,调制方式采用异步调制,即载波频率fc=4.8kHz不变。为计算方便,建立的正弦函数表中数据的最大值sin90°的值为2 13,V/F表(即调制深度系数m值)中数据的最大值为417×2 3。图2给出捕获/比较模块3中断子程序框图,图3给出WFG中断子程序框图。 [!--empirenews.page--] 在图3中,θu、θv、θw分别为U相、V相、W相调制正弦波的相位,U_TEMP、V_TEMP、 W_TEMP的3个临时变量,它们的数值在该子程序后面最终被装入波形发生器的三个相位比较缓冲器WG_COMP1、WG_COMP2和WG_COMP3 之中。WG_RELOAD为重装载寄存器,其值在每次产生WFG中断时自动装入计数器比较寄存器。θstep为当前调制频率下相邻2个WFG中断的时间间隔所对应的正弦波角度,由于在下次WFG中断产生时硬件自动将本次计算的相位比较缓冲器WG_COMPX值装入相应的相位比较寄存器,使WFG产生双极型 SPWM波(WFG工作于工作方式0),因此在查正弦表时,U、V、W某一相的相位指针应该对应加上与θstep相对应的n个数据。 3 实验结果及结论 根据上述的软硬件设计方案,设计了一个变频调速系统,被控对象为上海南洋电机厂生产的变频调速电机 YT8P1326-4,额定功率为5.5kW,其负载电流波形如图4所示。实验结果表明:系统软、硬件设计合理,具有良好的静态和动态性能。这说明 87C196MC单片机与IPM在变频器应用方面具有一定的优势,能给变频器的软硬件设计带来极大的方便。  

    时间:2012-03-04 关键词: 系统 模块 电源技术解析 变频调速 组成 87c196mc ipm

  • IPM自举电路设计难题探讨

    实现自举有两个关键问题:一是自举电容的初始充电;二是自举电容充完电后,当下臂关断后上臂并未立即导通,而在从下臂关断到上臂导通期间,电容会放电,因此必须保证少量放电后电容电压仍有驱动能力。如果以上两个问题未能处理好,将导致即使PWM波形正常,IPM也不能工作,因为自举电压不足以驱动上臂导通。   本文介绍了IPM自举电路的基本拓扑结构和原理,并重点研究了自举电容初始充电问题,通过在控制程序中执行简单的初始充电语句,很好地解决了上述关键问题,并在项目中取得良好的充电效果。   1 IPM模块自举电路基 本拓扑结构和原理   电压自举,就是利用电路自身产生比输入电压更高的电压。   基于电容储能的电压自举电路通常是利用电容对电荷的存储作用来实现电荷的转移,从而实现电压的提升。电压自举电路利用电荷转移的方式进行工作,通过存储电容,把电荷从输入转移到输出,提供负载所需要的电流。图1给出了双倍压电压自举电路的基本原理。        假设所有开关均为理想开关,电容为理想电容。当开关S1和S3闭合时,电源VCC给电容C充电使其电压达到VCC。然后开关S1和S3断开,S2闭合,直接接到电容C的低压端,此时电容C上仍然保持有前一个相位存储的电荷VCC×C。由于在S2闭合时,电容C上的电荷量不能突变,因此有:(V0-VCC)×C=VCC×C,即V0=2VCC。   在没有直流负载的情况下,通过图1所示的电路,在理想情况下,输出可达到输入电压的两倍。   2 自举电路设计中的关键问题研究   本项目的IPM型号选用IGCM20F60GA[2]。图2是IPM自举电路原理图。由图2可知,自举元件一端接电路的输入部分,另一端接到同相位的输出电路部分,借输入、输出的同相变化,把自己抬举起来,即自举元件引入的是正极性的反馈。        对原理图中第一路自举电路进行分析[3-4]。IPM模块自举电路仅由自举电阻R62、自举二极管D9和自举电容E1组成,因此简单可靠。其电路基本工作过程为:当VS因为下桥臂功率器件导通被拉低到接近地电位GND时,控制电源VCC会通过R62和D9给自举电容E1充电。当上桥臂导通,VS上升到直流母线电压后,自举二极管D9反向截止,从而将直流母线电压与VCC隔离,以防止直流母线侧的高压串到控制电源低压侧而烧坏元器件。此时E1放电,给上桥臂功率器件的门极提供驱动电压。当VS再次被拉低时,E1将再次通过VCC充电以补充上桥臂导通期间E1上损失的电压。这种自举供电方式就是利用VS端的电平在高低电平之间不停地摆动来实现的。如图2所示,自举电路给E1充电,E1的电压基于上桥臂输出晶体管源极电压上下浮动。   由于运行过程中反复地对自举电容进行充放电,因此必须选择适当的参数,保证自举电容上的电压在电机运行时保持高于欠压锁定电平。   由上述分析可知,要保证E1的跌落电压能够得到及时、完全的补充,自举电路对下桥臂最小导通时间有一定的要求。但是若能正确选择各元器件参数,自举电路对下桥臂最小导通时间的限制将会大大降低。   2.1 自举电容E1的选择   自举电容E1需要根据自举电容所能得到的最低充电电压来选择。实际应用中可以应用以下简化公式来初步计算E1:        式中,ΔVBS为自举电路在上桥臂功率器件导通时所允许的最大电压降,VF为自举二极管正向压降,VBSmin为所要求的最低上桥臂驱动电压,VBSUV为上桥臂控制电压的欠压保护值,Vsat为下桥臂功率器件的饱和压降,THON为上桥臂的最大导通时间,ILeak为IPM模块规格书中所提供的上桥臂功率器件驱动所需的最大额定电流值。这样只要选定ΔVBS即可快速计算出E1。但是考虑到各元器件参数的分布性和应用电路的可靠性,实际使用的E1应当选择为计算值的2~3倍。本项目选择的是47 μF/25 V的电解电容。   2.2 自举电阻R62的选择   自举电阻R62的作用是限制dVBS/dt。为了保证自举电容能够在下桥臂最小导通时间充电ΔVBS,所以:        式中,TLON为下桥臂的最小导通时间。本项目中自举电阻R62取22 Ω。   2.3 自举二极管D9的选择   因为自举二极管起到隔离直流母线高压和控制电源低压的作用,必须阻断直流干线上的高压,才能保护IC器件不受损坏, 所以选择D9时应当重点考虑二极管耐压、反向截止时间和正向导通电压降几个参数。二极管承受的电流是栅极电荷与开关频率之积。为了减少电荷损失,应选择耐高压的反向漏电流小的超快恢复二极管。本项目选用的自举二极管型号为BYV36C。3 自举电容初始充电过程及控制方法     3.1 初始充电分析及实现程序   在自举电容的初始充电过程中,较大的初始充电电流有可能给系统可靠性带来不利影响。这是因为较大的电流冲击一方面对控制电源器件造成冲击,另一方面增大了初始充电阶段上下桥臂直通的风险。由此可见应当尽量避免下桥臂长时间开通的自举电容初始充电方法。   实际应用中可采用脉冲串的方法,分多次给自举电容充电,直到自举电容充满。这样可有效减小初始充电过程中的充电电流。   本项目采用瑞萨SH7125作为控制芯片,软件上采用了一种简单实用的方法实现了自举电容的初始充电。具体的做法是:在每次更新PWM占空比时,先判断占空比的值,若小于0.056,则认为电机的给定速度为零,并以此作为进入充电程序的判断条件。如下面的程序所示:   if(revison_value < 0.056)   {   MTU2.TOER.BYTE = 0x38; /*禁止上桥臂输出*/   hall.HallPointer = (hall.HallPointer + 1)%6;   MTU23.TGRD = 1900;/*设定占空比*/   MTU24.TGRC = 1900;/*设定占空比*/   MTU24.TGRD = 1900;/*设定占空比*/   pwm_calc();/*占空比更新函数*/   }   由上述程序可知,通过程序预定的方式给定直流无刷电机的换相顺序,使得 U、V、W 三相进行错位充电,即每一次只给某一相的自举电容充电并依次循环直到三相都充满。   该控制程序的优点在于上臂被禁止输出,所以不存在上下臂直通的危险,且只要占空比小于0.056时就对自举电容充电,能保证自举电容能充满。通过将初始充电控制语句放在PWM更新函数里,保证了初始充电的实时性,很好地解决了实现自举的关键问题。   3.2 自举电压波形及分析   图3是实测的自举电压波形。由图3分析可知,初始充电近似阶跃函数。在0.1 s时,就能充电到14 V,即上述初始充电程序能快速完成初始充电;在0.2 s时,电机开始运行,自举电容放电。由图3还可知,在运行阶段,自举电容电压基本稳定在14 V,几乎在电机停止的瞬间,自举电容电压迅速充电到15 V,然后开始慢慢放电。        由上述分析可知,本项目采用的自举电容初始充电的方法简单实用,在实际项目应用中取得良好的效果。   本文分析了自举电路的基本原理,保证了充电的实时性,在应用中取得了良好的IPM驱动效果,为自举电容的初始充电提供了一个简单实用可靠的方案。总之,要在理论指导的基础上,使得控制算法和硬件参数紧密相关,并在实际系统反复调试并最终确定参数,以便最大程度地保证电路的可靠性。

    时间:2011-10-28 关键词: 自举电路 ipm

  • IPM模块实现通用变频器实用电路

     1 前言     变频器已应用于各行各业的多种设备,并成为当今节电,改造传统工业,改善工艺流程,提高生产过程自动化水平,提高产品质量,改善环境的主要技术之一。     开关器件是变频器的核心器件,绝缘栅双极型品体管(ICBT)投入市场以后,很快成为中小功率电力电子设备的主导器件,而且其电压、容量及开关频率性能还在提高。IPM内部集成的驱动和保护电路可简化系统设计,其自我保护功能可使功率模块在测试及现场应用中损坏的可能性大大降低。采用IPM后系统的综合性能极大提高,其性价比已经超过IGBT,有很好的经济性。     本文使用IPM模块PM50RSAl20设计一款小型通用变频器,功率为1 500 W,并将开关电源也集成到变频器中,体积小,方便在小功率场合使用。       2 PM50RSAl20简介[1]     PM50RSAl20是日本三菱公司推出的50 A/l200 V智能功率模块,开关频率20 kHz,其内部电路如图1所示。         PM.50RSAl20中共有7块:IGBT,其中6块构成桥路,另一块用于控制制动电阻的接人。P-N间接人前方整流模块整流后的直流电压(0 V~800 V);U、V、W是输出端子;B-P间接入制动电阻,在能耗制动过程中消耗制动能量;VUP1-Vupc,VVP1-VVPC,VWP1- VWPC,VN1-VNC间提供各IGBT模块的电源.典型值为15 V;UP-VUPc,VP_VVPC,WP-VWPC,UN·VN·WN·Br-VNc间为控制各IGBT导通和截止的控制端.当电压在0.8 V以下时,IGBT导通,在4 V。15 V之问时.:IGB3。截止;UF0-VUPc,VFo_-VVPC,Wm-V州,FO-VNC间为错误报告电压提供端,为了使接口电路尽量简化.该IPM模块用一个错误指示信号来通知控制器在该模块内发生的所有错误。控制器通过检测来判断是否发生了温升过高、过电流或短路故障.区别以上故障的依据是检测错误指示信号维持时间。短路和过电流故障信号的维持时间的典型值是1.5 ms.温升过高指示信号在温度超过允许值时有效,一直维持到温度降至复位值以下,这一过程的典型时间为十几秒。     3 硬件电路设计     通用型变频器的硬件电路主要由3部分组成:整流电路、开关电源电路以及逆变电路。整流电路将工频交流电整流为直流,并经大电容滤波供给逆变单元;开关电源电路为IPM和计算机控制电路供电;逆变电路是由PM50RSAl20组成,对于逆变电路本文主要阐述其控制电路的设计。         图2为整流电路「2-3」,整流电路中,输人为380V工频交流电。YRl~YR3为压敏电阻,用于吸收交流侧的浪涌电压,以免造成变频器损坏。输人电源经二极管整流桥6R130G-160整流为直流,并经El~E4大电容滤波后成为稳定的直流电压,再经电感和电容滤波后作为逆变单元和开关电源单元的电源。R2和R3是为了消除电容的离散性而设置的均压电阻,同时还起到放电的作用。发光二极管用于指示变频器的工作状态。Rl是启动过程中的限流电阻,由于E1~E4容量较大,上电瞬间相当于短路,电流很大,尺l可以限制该电流大小,电路正常状态后由继电器RLYl将该电阻短路以免增加损耗,继电器的控制信号SHORT来自于计算机,上电后延时一定时间计算机发出该信号将电阻切除。R1应选择大功率电阻,本电路中选择的是20 W的水泥电阻,而且为了散热该电阻安装时应悬空。电路中的+5 V、+12 V和±15 V电压是由 开关电源提供的电压。LVl是电压传感器,用于采集整流电压值,供检测和确定控制算法用.UDCM是电压传感器的输出信号。通过外接插排连接至外接计算机控制电路。         图3是开关电源电路「4,5」。该电路主要由PWM控制器TL3842P、MOSFET K1317和开关变压器组成,其功能是对整流电路的直流输出电压进行变换,为IPM模块和外接的计算机控制电路提供电源,提供的电压为±15 V、+12 V、+5 v。     图4为IPM的控制电路「1」,这里只给出了其中一个ICBT的控制电路,其它IGBT与之相同。         在电路中,HCPL4504是高速光耦,隔离计算机信号与变频器控制板,LM、UM是算机输入,控制对应的IGBT导通的控制信号,VNI、WN、F0、VNC为对应IGBT的信号引脚。P52l是光电隔离器件,其输出信号FOUT是错误信号,表明IPM内部出现错误,通过计算机响应进行错误处理。LA58是电流传感器,用于采集变频器输出U相和W相的电流,为控制算法提供现场数据。在整个电路板中, 与计算机接口信号是通过插排接出的。     另外,需要注意的是6R130G-160、PM50RSAl20都属于发热量较大的器件,在电路板中要注意散热问题,必须安装散热片,并涂以散热硅胶,以免温度超过器件的额定温升。     4 结束语     本文采用智能功率模块PM50RSAl20设计了一款小型通用1500 W变频器,该变频器包含了交-直-交变频电路和开关电源,具有结构紧凑、集成度高、可靠性高,体积小、稳定性好、可靠性高等特性,适应于小型电机驱动及实验。

    时间:2011-08-09 关键词: 模块 通用变频器 实用电路 ipm

首页  上一页  1 2 下一页 尾页
发布文章

技术子站

更多

项目外包