在高速数字电路与高频模拟电路中,电磁兼容性(EMC)问题已成为制约产品可靠性的核心挑战。PCB(印刷电路板)作为信号传输的物理载体,其布局、走线、层叠设计中的微小缺陷(如阻抗不连续、串扰、辐射耦合)均可能引发信号完整性(SI)异常,导致数据错误、时钟抖动甚至系统崩溃。传统EMC诊断依赖频域分析(如近场探头、频谱仪),但这类方法仅能定位“问题频点”,难以追溯至PCB物理层根源。时域反射仪(TDR)通过发射高速脉冲并分析反射波形,可精准定位阻抗突变点、耦合路径及介质损耗,成为PCB级EMC故障诊断的“显微镜”。本文结合工程实践,探讨TDR在信号完整性异常定位与辐射耦合路径分析中的应用方法与关键技术。
在科技飞速发展的当下,汽车正从单纯的交通工具向智能移动终端转变。汽车电子行业作为这一变革的核心驱动力,已成为国际半导体巨头竞相角逐的热点领域。
电磁兼容(EMC)问题已成为电子设备研发与生产中的核心挑战。据统计,超过60%的EMC故障源于设计阶段对干扰源定位不准确,导致后续整改成本增加3倍以上。传统EMC排查依赖“经验猜测-局部修改-重复测试”的试错模式,不仅效率低下,还可能掩盖根本问题。本文提出以频谱分析仪与近场探头为核心的三维定位技术,通过“频域分析-空间扫描-信号关联”的闭环流程,实现干扰源的毫米级定位与毫秒级响应,为EMC整改提供精准的“手术刀”。
随着集成电路向高密度、高速化发展,球栅阵列(BGA)封装因其高引脚密度、短信号路径和优异电性能,成为CPU、GPU、FPGA等高性能芯片的主流封装形式。然而,BGA封装在GHz级信号传输时,过孔残桩(Via Stub)引发的信号反射、串扰及电磁干扰(EMI)问题日益突出。传统设计中,过孔残桩长度控制与信号完整性(SI)优化常被视为独立目标,导致EMC设计陷入“局部优化-全局失效”的困境。本文提出一种基于过孔残桩长度与信号完整性协同控制的EMC优化方法,通过构建“电-磁-热”多物理场耦合模型,实现BGA封装从单板级到系统级的电磁兼容性提升。
随着人工智能算力需求指数级增长,AI加速器正从云端向边缘端加速渗透,其工作频率突破GHz级、集成度突破千亿晶体管,导致电磁干扰(EMI)问题呈现“高密度、强耦合、动态化”特征。传统基于静态测试的电磁兼容(EMC)设计范式已难以满足实时性要求,基于神经网络推理的实时电磁干扰预测与动态滤波技术应运而生,通过构建“感知-预测-抑制”闭环系统,实现EMI从被动治理到主动防控的范式跃迁。
随着6G通信技术向0.1-10THz频段加速演进,太赫兹通信凭借其超高速率、超大带宽和极低时延的特性,成为支撑全息通信、空天地海一体化网络等前沿场景的核心技术。然而,太赫兹频段的电磁特性对电磁兼容性(EMC)设计提出了全新挑战:高频段下分子吸收效应显著、路径损耗剧增,同时天线尺寸微缩化与电路集成度提升导致电磁干扰(EMI)问题复杂化。在此背景下,天线-封装-电路的协同设计成为突破EMC瓶颈的关键路径,其技术融合深度直接决定6G设备的性能上限。
工业机器人末端执行器如同人类双手般完成抓取、装配、打磨等核心任务,而力控精度直接决定了生产良率与设备寿命。MEMS加速度计凭借其微米级尺寸、微瓦级功耗与毫秒级响应速度,正成为工业机器人末端力控系统的“神经末梢”,推动制造业向柔性化、智能化方向深度演进。
在众多电子设备和系统里,电源模块扮演着为各个组件供应稳定电能的关键角色。而在电源模块的设计与应用环节,隔离技术占据着举足轻重的地位。那么,电源模块为何一定要采用隔离措施呢?又该如何实现隔离呢?
人机交互向自然化、无感化,柔性加速度传感器凭借其与人体曲面的高度适配性和动态感知能力,正成为可穿戴设备突破感知瓶颈的核心元件。从智能手环的运动监测到电子皮肤的触觉反馈,从AR眼镜的姿态识别到医疗贴片的生理信号采集,柔性加速度传感器通过材料创新与结构重构,重新定义了人机交互的感知维度。
电磁兼容性(EMC)鲁棒性设计已成为保障车辆安全的核心技术领域。面对复杂电磁环境下的瞬态脉冲干扰,基于ISO 11452标准的防护电路参数优化,通过多物理场耦合设计与实验验证,实现了从部件级到系统级的抗扰能力跃升。
在电磁兼容性(EMC)工程中,金属机箱的屏蔽效能直接决定了电子设备在复杂电磁环境中的稳定性和可靠性。然而,机箱缝隙和开孔结构作为电磁泄漏的主要路径,其屏蔽设计始终是工程实践中的难点。通过导电胶填充缝隙与波导截止窗设计开孔的组合策略,可显著提升机箱的整体屏蔽效能,为高敏感度电子设备提供可靠的电磁防护。
在现代电子设备中,开关电源因其高效、紧凑等优势,成为电力转换的关键部件。随着能源效率要求的不断提高以及电子设备多样化的负载需求,单一控制模式的开关电源难以在全负载范围内保持高效运行。多模式控制策略应运而生,它通过在不同负载条件下灵活切换控制模式,显著提升了开关电源的整体性能。
在汽车电子技术飞速发展的当下,汽车中的电子系统变得愈发复杂和多样化。从先进的信息娱乐系统、精准的导航设备,到关键的发动机控制系统和安全保障的气囊系统等,每一个电子部件都对电源有着严格且独特的要求。稳定、高效且精准的电源供应成为了确保汽车电子系统可靠运行的基石,而德州仪器(TI)推出的集成电源控制器 TPS43330-Q1,正是应对这一挑战的有力解决方案,在汽车应用领域展现出了卓越的性能和优势。
在化工行业高危环境中,防爆型MEMS加速度传感器作为设备状态监测的核心组件,其封装技术与认证标准直接决定了系统安全性和可靠性。本文将从封装工艺创新、防爆结构强化、认证体系适配三个维度,解析该领域技术突破与行业规范。
多DSP集群的实时信号处理系统,通信拓扑的优化直接决定任务调度效率与系统吞吐量。RapidIO与SRIO作为嵌入式领域的主流互连协议,其带宽利用率差异与QoS配置策略对集群性能的影响尤为显著。以无线基站、雷达阵列等典型应用场景为例,通过对比两种协议的物理层特性、拓扑构建能力及流量管理机制,可揭示其在多DSP集群中的优化路径。