简介 通过加快内部和外部存储转化的性能,USB 3.0为存储器市场带来了一项根本性转变。由于USB 3.0能够使外部驱动器达到与PC内部驱动器相同的数据传输速度,因此用户当然可以比过去更加充分的利用外部存储器。USB 3.
【摘要】本文主要介绍了基于软硬件分离平台高清通用机顶盒的设计,打破了传统的数字电视技术模式,所有的第三方软件可以不再通过机顶盒厂家集成,各个软件的独立模块化和标准化增强,机顶盒软件升级不再困难,成本大
从增量型光电编码器的构造特点出发,分析其输出信号中引起抖动误码脉冲的原因。根据编码器两相输出信号(A相、B相)不能同时跳变的特点,设计了一种高精度抗抖动二倍频电路,能有效滤除信号的干扰脉冲。
在仿人机器人研究领域,双足步行控制一直是其难点。主要介绍基于TI的DSP芯片TMS320F2812设计双足机器人的基本运动控制系统,围绕机器人腿部无刷直流电机的驱动进行优化设计。系统采用PWM进行电机调速,辅助以补偿参数,通过步态指令,验证电机运转的精确性、稳定性和系统的可操作性。电机调试为CCS仿真、步态规划和独立行走提供试验平台,使机器人能够实现步行功能。
以32位低功耗的ARM9微处理器为核心,移植了嵌入式Linux操作系统设计的一个心电模拟波形发生系统,实现了心电信号的实时采集和波形显示功能。Qt是KDE等项目使用的GUl支持库,所以许多基于Qt的X Window程序也可以非常方便地移植到Qt/Embedded版本上,因此系统采用Qt进行软件界面的开发。该系统设计主要包括ARM9处理器、信号采集模块、D/A转换模块、右腿驱动、低通滤波等模块。采用嵌入式Linux操作系统作为软件开发平台,充分利用ARM9的高效性和低功耗性能,很好地模拟正常的人体除颤的过程,并且能够模拟34种常见的异常心电波形,输出波形都达到了医学相关要求。
假肢研究的重点是生理信号的提取和对仿生假手的控制。将肌音信号作为假肢控制的生理信号源,现以放大电路和滤波电路为核心,实现了能采集肌音信号的电路系统设计。通过采集软件,将数据导入Matlab进行特征分析,讨论并验证了电路的全部功能,运用该电路采集到了符合要求的肌音信号。该设计是一种实用的肌音信号前端采集电路。
1 引 言 随着近代工业和交通运输业的机械设备向着大型、高速、重载的方向发展,所引起的噪声越来越大。例如冶金轧制设备、破碎机、球磨机、纺织机械、喷气运输机及各种机动车辆等的噪声已经成为当代三大主要
整个电路主要由传感器电桥与信号调理电路组成,传感器以差分方式输m信号,即通过输出正和输出负两端的电压差值来表示。当被测非电鼍发生变化时,会引起传感器的电阻值发生变化,而此变化会线性的反应在R7和R9左端的
0 引 言模拟带通滤波器在信号的检测和传输过程中起着很重要的作用,但在传统模拟带通滤波器的设计过程中需要大量繁琐的数值计算,如果手工计算则费时费力。也有许多公司开发了相关的滤波器设计软件,如AnsoftDesig
针对工业测控的现状和需求,提出一种新型测控方案,并对其关键技术进行了研究。系统采用双DSP工作模式,并在此基础上提出了并行FFT算法,实现了双余度数据采集及处理,提高了数据处理效率;采用RS 485无线通信方式实现数据和控制信号收发;上位机端基于Lab-VIEW开发平台实现了信号收发,并提供ODBC数据库接口,将虚拟仪器技术和面向Internet的Web技术有机结合起来,很好地满足了监测系统互联和资源共享的需求。
传统的温度控制系统是以热敏电阻为温度传感器件,辅以风冷或水冷来达到目的的,存在体积大,噪音大且精度有限的缺点。介绍了利用数字温度传感器(DSl8B20)与DSP芯片(TMS320F2812)组成的温度测量系统,结合模糊PID算法(Fuzzy-PID),利用DSP的脉宽调制控制通过半导体制冷器的电流大小,达到温度控制的效果,体积小且精度达到O.1℃。给出DSP与DSl8820的接线图,并且介绍了利用CCS(代码编辑工作室)进行软件开发。该系统已经运用在LD温度控制方面,取得了很好的效果。
提出了一种以AT89C51单片机和DSl8820温度传感器为主要元器件的多点温度检测系统。首先给出系统的工作原理和软件流程图,并对系统主要电路,如温度测试电路、键盘及显示电路、电源电路等进行了设计。与传统的模拟测温系统相比,该系统硬件组成更加简捷、高效,抗干扰能力更加突出。
利用飞速发展的FPGA技术,在图像采集前端实现Bayer插值变换。比较了常用的3种插值方法,选用计算复杂度较高但图像质量最佳的Optimal Recovery方法。采用Lattice的FPGA芯片LFECP2-M50,实现1 208×1 024图像,12 f/s,实时Bayer转换。给出了实时采集图像结果,显示了插值变换前的原始图像,计算了变换后图像的峰值信噪比PSNR。
在此基于Altera公司的现场可编程门阵列(FPGA)芯片EP2C8F256C6,采用最小均方算法设计了自适应谱线增强(ALE)处理系统。以FPGA为处理核心,实现数据采样控制、数据延时控制、LMS核心算法和输出存储控制等。充分利用FPGA高速的数据处理能力和丰富的片内乘法器,设计了LMS算法的流水线结构,保证整个系统具有高的数据吞吐能力和处理速度。并且通过编写相应的VHDL程序在QuartusⅡ软件上进行仿真,仿真结果表明该设计可以快速、准确地实现自适应谱线增强。
MEMS即微机电系统,是利用微米级立体结构实现感应和执行功能的一项关键技术。其中,微米级立体结构是利用被称为“微加工”的特殊工艺实现的微米大小的立体机械结构。 因为技术和经济的原因,MEMS传感器曾经被局