关闭

电子设计自动化

所属频道 工业控制
  • DDR6预布局信号完整性:ODT参数自适应与三维封装协同仿真方法

    随着数据存储和处理需求的飞速增长,DDR(双倍数据速率)内存技术不断迭代升级。DDR6作为新一代高速内存标准,其数据传输速率大幅提升,这对信号完整性提出了更为严苛的挑战。在DDR6预布局阶段,确保信号完整性至关重要,其中ODT(On-Die Termination,片上终端电阻)参数自适应与三维封装协同仿真方法是解决信号完整性问题的关键技术手段。

  • 224G PAM6背板信道优化:玻纤效应补偿与混合调制均衡技术

    引言 随着数据通信需求的爆炸式增长,数据中心、高性能计算等领域对高速背板信道的传输速率提出了更高要求。224G PAM6(6级脉冲幅度调制)技术凭借其高带宽利用率和相对较低的实现复杂度,成为下一代高速背板信道的关键技术之一。然而,在224G PAM6背板信道中,玻纤效应和信道衰减等问题严重影响了信号的传输质量。为了实现稳定可靠的高速数据传输,必须对背板信道进行优化,玻纤效应补偿与混合调制均衡技术成为解决这些问题的有效手段。

  • AI辅助布线引擎:强化学习在规避串扰瓶颈中的应用

    在高速数字电路设计中,布线是一个至关重要的环节。随着芯片集成度的不断提高和信号频率的日益增加,串扰问题逐渐成为制约电路性能的关键瓶颈。串扰会导致信号失真、误码率上升,严重影响系统的稳定性和可靠性。传统的布线方法往往难以充分考虑串扰因素,而AI辅助布线引擎,尤其是强化学习技术的引入,为解决这一问题提供了新的思路和方法。

  • 汽车电子耐环境测试:温度循环 - 振动联合试验的焊点失效模型

    汽车电子系统在车辆运行过程中面临着复杂多变的环境条件,如温度的剧烈变化和持续的振动。温度循环 - 振动联合试验是评估汽车电子产品可靠性的重要手段,而焊点作为电子元件与PCB(印制电路板)之间连接的关键部位,其失效是导致汽车电子产品故障的主要原因之一。建立准确的焊点失效模型,有助于预测焊点在联合试验环境下的寿命,为汽车电子产品的设计和优化提供理论依据。

  • 刚挠结合板设计规范:弯曲半径与导体走线应力仿真指南

    刚挠结合板(Rigid-Flex PCB)作为一种将刚性板和挠性板有机结合的特殊印制电路板,兼具了刚性板的稳定性和挠性板的可弯曲性,在航空航天、医疗器械、消费电子等众多领域得到了广泛应用。然而,刚挠结合板的设计相较于传统刚性板更为复杂,尤其是弯曲半径和导体走线应力问题,直接关系到产品的可靠性和使用寿命。本文将深入探讨刚挠结合板的设计规范,并介绍如何通过仿真手段对弯曲半径和导体走线应力进行分析和优化。

  • DFM规则引擎开发:可制造性检查与CAM数据智能修正

    在电子制造行业,设计文件(Design File)到实际产品制造之间存在诸多环节,任何一个细微的疏忽都可能导致生产问题,如产品良率下降、成本增加甚至交货延迟。可制造性设计(Design for Manufacturability,DFM)理念应运而生,旨在从设计阶段就充分考虑制造的可行性和效率。DFM规则引擎作为DFM理念的核心工具,能够对计算机辅助制造(Computer-Aided Manufacturing,CAM)数据进行可制造性检查,并实现智能修正,从而确保设计能够顺利转化为高质量的产品。

  • 高频混压板层间对准:X-Ray补偿与膨胀系数匹配策略

    在高频电子电路领域,高频混压板因其能够整合不同材料的特性,满足复杂电路设计需求而得到广泛应用。然而,高频混压板在制造过程中面临着层间对准的难题。层间对准精度直接影响着电路的性能和可靠性,若对准偏差过大,会导致信号传输延迟、串扰增加等问题,进而降低整个电子系统的性能。X-Ray补偿与膨胀系数匹配策略是解决高频混压板层间对准问题的关键技术,本文将深入探讨这两种策略的原理、实现方法以及相关代码示例。

  • 超低损耗基板材料评测:松下Megtron 8 vs 罗杰斯RO4835LoPro实测

    在高速数字电路和微波射频领域,基板材料的性能对信号传输质量起着至关重要的作用。超低损耗基板材料能够显著降低信号在传输过程中的衰减,提高信号的完整性和系统的可靠性。松下Megtron 8和罗杰斯RO4835LoPro是两款备受关注的超低损耗基板材料,本文将通过实际测试对它们的性能进行对比评测。

  • EMI辐射源定位:近场扫描与电磁拓扑反向追踪算法的融合探索

    在现代电子设备高度集成化和复杂化的背景下,电磁干扰(EMI)问题日益凸显,它不仅会影响设备的性能与可靠性,还可能对周围电子系统造成干扰,甚至危及人员安全。因此,精准定位EMI辐射源成为解决这一问题的关键环节。近场扫描与电磁拓扑反向追踪算法作为两种有效的技术手段,为EMI辐射源定位提供了有力支持。

  • 开关电源中高频变压器的频率决定机制:从理论基础到工程实践

    在现代电力电子技术领域,开关电源的高频化已成为提升功率密度和实现小型化的核心路径,而高频变压器作为开关电源的 "能量枢纽",其工作频率的选择直接关系到整个系统的性能边界。当我们探讨高频变压器的频率由何决定时,实则是在破解一个多变量耦合的复杂工程命题 —— 这既涉及磁芯材料的物理特性与电磁理论的基础限制,也受制于功率器件的开关速度与系统散热的工程约束,更需在效率、体积和成本之间寻找精妙的平衡点。理解这一频率决定机制,不仅是变压器设计的核心要义,更是掌握开关电源技术的关键钥匙。

  • 纹波噪声的来源剖析

    BUCK 电路的纹波噪声主要源于其工作原理中的开关动作。当电路中的开关管(如 MOS 管)导通和关断时,电感电流会发生变化,导致输出电压产生波动,这便是输出电压纹波的主要成因。同时,电路中的寄生电感和电容,如 PCB 走线电感、MOS 管引线电感以及电感的寄生电容等,在开关切换瞬间会形成 LC 振荡,进而产生高频噪声。例如,在 MOS 管关闭时,其 CDS 寄生电容与寄生电感相互作用,引发高频振荡,这些噪声通过各种途径耦合到输出端,叠加在输出电压上,严重影响电源的稳定性和纯净度。

  • 浅析 LC 谐振电路和 LC 振荡电路

    在现代电子技术的广阔领域中,LC 谐振电路和 LC 振荡电路是极为关键的组成部分,它们广泛应用于通信、信号处理、电源等多个领域。尽管二者都包含电感(L)和电容(C)元件,但在工作原理、电路特性以及实际应用方面存在显著差异。深入理解它们的工作机制和特点,对于电子工程师设计和优化电路系统,以及电子爱好者探索电子世界的奥秘都具有重要意义。

  • 高速通道无源测试去嵌:TRL校准与端口延伸的误差抑制方法 引言

    在5G通信、AI芯片等高速电子系统中,无源通道(如PCB走线、连接器、封装基板)的信号完整性直接影响系统性能。某5G基站因无源通道阻抗失配导致误码率高达10⁻⁴,数据传输效率下降30%。传统测试方法受限于测试夹具、连接线等寄生效应,导致测量结果与真实通道特性偏差达±15%。TRL(Thru-Reflect-Line)校准与端口延伸技术通过数学建模和误差补偿,可将测量误差抑制至±2%以内。本文结合TRL校准的8项误差模型与端口延伸的相位补偿算法,实现25Gbps通道S参数的精确提取。

  • 多物理场联合仿真:电-热-应力耦合对BGA焊点疲劳寿命预测

    在5G通信、AI芯片等高密度电子系统中,球栅阵列封装(BGA)焊点作为芯片与PCB之间的关键连接,其可靠性直接影响产品寿命。某5G基站因BGA焊点疲劳失效导致通信中断率高达15%,维修成本增加30%。研究表明,电-热-应力多物理场耦合是焊点失效的核心诱因:电流通过焊点产生焦耳热(Joule Heating),导致局部温度升高至150℃以上,引发材料蠕变和电迁移;同时,PCB与封装基板热膨胀系数(CTE)失配(如PCB CTE=16ppm/°C vs. BT基板CTE=12ppm/°C)在热循环中产生剪切应力,加速裂纹扩展。本文通过多物理场联合仿真,揭示电-热-应力耦合对焊点疲劳寿命的影响机制,并提出优化方案。

  • 3D打印PCB技术突破:导电油墨阻抗匹配与多层堆叠可靠性验证

    在5G通信、AI芯片等高密度电子系统中,传统PCB制造面临空间利用率低、设计周期长等瓶颈。某5G基站PCB因多层堆叠结构复杂,导致信号完整性测试失败率高达30%,开发周期延长至6个月。3D打印技术通过直接沉积导电油墨实现三维电路制造,可将开发周期缩短至2周,空间利用率提升40%。本文结合导电油墨阻抗匹配算法与多层堆叠可靠性验证方法,实现50Ω±5%阻抗精度与10层堆叠99.8%良率的突破。