关闭

电子设计自动化

所属频道 工业控制
  • AD芯片基准电压与采样范围的关联解析

    在模数转换(AD转换)技术的应用中,AD芯片作为模拟信号与数字信号的核心转换载体,其工作性能直接决定了整个测量系统的精度与可靠性。基准电压与采样范围是AD芯片两个关键的工作参数,很多工程实践中会存在疑问:二者之间是否存在关联?事实上,基准电压不仅与采样范围密切相关,更是决定采样范围的核心因素,同时还会通过采样范围间接影响转换精度,二者相互制约、相互影响,共同决定了AD芯片的实际工作效果。

  • 为什么叠层设计需要PP和CORE交替使用

    在多层印制电路板(PCB)的叠层设计中,PP(半固化片)与CORE(芯板)的交替使用并非随意选择,而是兼顾结构稳定性、电气性能、制造可行性与成本控制的核心设计原则。二者作为叠层结构的核心组成部分,虽同属绝缘基材范畴,却有着截然不同的物理特性与功能定位,单独使用任何一种都无法满足多层PCB的设计与使用需求,只有通过科学的交替搭配,才能实现叠层设计的最终目标,支撑电子设备向高密度、高速度、高可靠性方向发展。

  • 工作极性通过硬件实现周期性控制切换的方法

    在电子设备与自动化控制系统中,工作极性的周期性控制切换是实现设备精准运行、功能灵活切换的核心技术之一。工作极性本质上是指电路中信号、电压或电流的方向特征,其切换状态直接决定设备的运行模式、动作方向或信号传输特性。与软件控制相比,通过硬件实现工作极性的周期性切换,具有响应速度快、抗干扰能力强、稳定性高、实时性好等优势,广泛应用于电机驱动、电源管理、信号调制、工业自动化等多个领域。

  • 为什么电感没有交流电感或者直流电感之分?

    在电路学习和实际应用中,我们常常会接触到“交流电阻”“直流电容”这类带有明确工况区分的元件,却从未见过“交流电感”或“直流电感”的标注,甚至在专业的电子元器件手册中,也只有电感量、额定电流、寄生参数等规格,没有按交直流划分的类别。这一现象背后,核心是电感的工作本质由电磁感应定律决定,其核心特性——储能、阻碍电流变化,并不依赖于电流的类型,而是取决于电流的变化状态,这与电阻、电容的工况依赖性有着本质区别。

  • 开关稳压器电源动态响应测试方法解析

    开关稳压器作为电子设备的核心供电单元,其动态响应性能直接决定了设备在负载或输入电压突变时的工作稳定性。动态响应本质上是稳压器控制系统在典型输入信号作用下,输出量从初始状态过渡到稳定状态的过程,具体表现为负载电流或输入电压发生瞬变时,输出电压维持稳定的能力。随着高性能处理器、FPGA等瞬态电流变化剧烈的负载广泛应用,电源系统需在微秒级时间内快速响应负载跳变,否则会导致系统误动作甚至崩溃,因此动态响应测试已成为开关稳压器设计验证中不可或缺的关键环节。

  • 运算放大电路的输出偏置、漂移与自动调零技术探析

    运算放大电路(简称运放电路)作为模拟电子技术的核心单元,广泛应用于信号放大、滤波、比较等各类电子系统,在高精度测量、工业控制、医疗电子等对信号完整性要求极高的领域,其工作稳定性直接决定系统整体性能。理想运放具备输入失调电压为零、输出无静态偏移、参数不随环境变化等特性,但实际运放受制造工艺、环境因素等影响,必然存在输出偏置与漂移问题,而自动调零技术则是解决这类误差、提升电路精度的核心方案。本文将深入剖析输出偏置与漂移的成因及危害,系统阐述自动调零技术的工作原理、实现方式,并结合实践给出优化建议,为运放电路设计与调试提供参考。

  • DC直流开关电源纹波过大的成因解析

    DC直流开关电源凭借高效节能、体积小巧、稳压范围宽等优势,广泛应用于电子设备、工业控制、通信系统等诸多领域。其核心功能是将交流输入转换为稳定的直流输出,而纹波作为衡量电源输出稳定性的关键指标,直接影响后端电子元件的工作精度与使用寿命。所谓纹波,是附着于直流电平之上的周期性与随机性杂波信号,本质是输出直流电压中含有的交流成分,当纹波幅值超过设备允许范围时,会导致电路干扰、信号失真、元件过热甚至设备故障。本文将系统剖析DC直流开关电源纹波过大的核心成因,为工程调试与故障排查提供专业参考。

  • 硬件加速模块设计:嵌入式矩阵运算的FPGA实现

    在嵌入式系统与边缘计算场景中,矩阵运算作为图像处理、信号分析、机器学习等领域的核心操作,其性能直接影响系统实时性与能效。传统CPU架构受限于串行执行模式,难以满足高吞吐、低延迟的矩阵计算需求。FPGA(现场可编程门阵列)凭借其硬件并行性、可定制化架构及低功耗特性,成为嵌入式矩阵运算硬件加速的理想选择。

  • 双分区+Bootloader架构下的嵌入式固件升级策略

    在工业物联网与智能设备领域,嵌入式系统的固件升级是保障功能迭代与安全修复的关键环节。传统单分区升级方案存在升级中断导致系统崩溃的风险,而双分区(Dual Bank)结合Bootloader架构通过“备份-切换”机制,可实现高可靠性的固件更新。本文从架构设计、升级流程与安全策略三个维度,探讨该方案的技术实现。

  • 动态内存池设计:STM32平台下的内存泄漏检测与碎片化治理

    在STM32嵌入式开发中,动态内存管理是提升系统灵活性的关键技术,但内存泄漏与碎片化问题始终是开发者面临的两大挑战。本文将结合位图内存池设计与Chrom-GRC™工具链,提出一套完整的解决方案,实现内存资源的高效利用与实时监控。

  • 高精度贴装技术:AI芯片的未来引擎

    当人工智能向深度学习、边缘计算持续突破,AI芯片正朝着“更小、更密、更强”的方向极速演进。从数据中心的算力集群到手机端的智能交互,从自动驾驶的感知核心到工业AI的精准控制,每一次性能跃升的背后,都离不开微米级甚至纳米级制造工艺的支撑。其中,高精度贴装技术作为AI芯片封装测试环节的核心支撑,如同精密的“微观建筑师”,搭建起芯片功能与实际应用的桥梁,成为驱动AI芯片产业迭代的关键引擎,决定着人工智能技术落地的深度与广度。

  • PCB布局设计避坑指南:高速信号走线规则与地平面分割策略

    在高速PCB设计中,信号完整性和电磁兼容性是决定产品性能的关键因素。本文结合实际工程经验,系统梳理高速信号走线与地平面分割的常见误区,提供可落地的解决方案,帮助工程师规避设计返工风险。

  • 创新管用的PCB防抄板方法解析

    在电子产业竞争白热化的今天,PCB防抄板技术已成为企业保护核心知识产权的关键手段。传统方法如芯片打磨、环氧树脂灌封等虽有一定效果,但面临专业抄板团队的破解挑战。本文将系统梳理创新型防抄板技术方案,结合物理防护、逻辑加密与法律手段构建多维度防护体系。

  • 告别重复代码!嵌入式TCP常用接口封装指南

    在嵌入式物联网开发中,TCP通信是连接设备与云端的核心纽带。然而,每次实现socket初始化、端口绑定、连接监听等基础操作时,开发者总要面对结构体嵌套、参数配置等重复性工作。本文将分享一套经过实战验证的TCP接口封装方案,助你打造可复用的网络通信模块。

  • PCB刚柔结合板设计:弯曲半径与覆盖层切割工艺的工程实践

    刚柔结合板(Rigid-Flex PCB)通过将刚性板与柔性电路集成,实现了三维空间内的可靠电气连接,广泛应用于折叠屏手机、可穿戴设备及医疗内窥镜等领域。其设计核心在于弯曲区域的可靠性保障,需通过科学的弯曲半径规划与精细的覆盖层切割工艺控制实现。本文从工程实践角度解析关键技术要点。