射极跟随器的典型电路:射极跟随器又叫射极输出器,是一种典型的负反馈放大器。从晶体管的连接方法而言,它实际上是共集电极放大器。图中Rb是偏置电阻,C1、Cl是耦合电容。信号从基极输入,从发射极输出。晶体管发射
一般晶体管放大电路多采用共发射极放大电路。然而该电路有一些缺点,如:输出阻抗高,容易受到负载所接的电路的影响。因此,在构成放大电路时,必须对输出进行强化,即降低输出阻抗。进而引出了射极跟随器,它可用在
源极接地与共射极放大器的组合
源极接地与射极跟随器的组合
功率MOSFET的驱动当然色可使明射极跟随器。最近,制作了很多使用功率MOSFET的高速开关电源。观察开关电源用控制IC的数据表,就会发现作为功率MOS的常见驱动的设备。代表性的
本系列的第10部分是我们所熟悉的《电气工程》杂志 (Electrical Engineering) 中《保持电容性负载稳定的六种方法》栏目的第六种方法(也是最后一种方法)。这六种方法包括Riso、高增益和CF、噪声增益和CF、输出引脚补偿
将PNP晶体管制作的射极跟随器与NPN晶体管制作的射极跟随器的两级串联连接,进而特该电路上下重叠成推挽电路(下侧为NPN+PNP的射极跟随器)二级直接连接的推挽射极跟随器。在电路内部使用的晶体管均作为射极跟随器工作
OP放大器与射极跟随器相组合形成的电路(电压增益为20dB的非反转放大电路)。如该电路所示,射极跟随器被插入到OP放大器的输出端,射极跟随器的输出将反馈加到OP放大器的输入端。由此可以增大电路的输出电流。通常,
OP放大器与推挽射极跟随器相组合的电路(电压增益为OdB的反转放大器)。因为使用将NPN与PNP晶体管的基极共同连接的推挽射极跟随器,该电路在输出端不取出电流时,发射极电流不流动,所以电路的效率非常高。这是该电路
电路规格下表表示的是随身听功率放大器的设计规格。随身听的输出最大为1V。一。左右。如果电路的电压放大度为10倍,则能够以某种程度的音量使小型扬声器发声。此时,如果输出功率为0.5W就足够了。表示已设计出的功率
在晶体管放大器基本理论中,已讨论过直流负反馈可以稳定静态工作点,使放大器稳定地工作在线性区。除此之外,在放大电路中引入交流负反馈还可以提高增益的稳定性、减小非线性失真、展宽频带以及按照需要改变输入阻抗
我们选择用于分析具有双通道反馈的RISO的双极发射极跟随器为OPA177,具体情况请参阅图1。OPA177为一款低漂移、低输入失调电压运算放大器,其能在±3~±15V的电压范围内工作。
我们选择用于分析具有双通道反馈的RISO的双极发射极跟随器为OPA177,具体情况请参阅图1。OPA177为一款低漂移、低输入失调电压运算放大器,其能在±3~±15V的电压范围内工作。
图2.9举例说明了一个ECL或GAAS射极跟随器输出电路。该电路在HI和LO两个状态都有电流流过。对于10KH和10G产品系列,两者的逻辑HI和LO输出电压都是相近的,尽管不同的ECL和GAAS射极耦合逻辑系列在温度轨迹特性上存在细
620)this.width=620;" />