当前位置:首页 > 模拟 > 模拟
[导读]在晶体管放大器基本理论中,已讨论过直流负反馈可以稳定静态工作点,使放大器稳定地工作在线性区。除此之外,在放大电路中引入交流负反馈还可以提高增益的稳定性、减小非线性失真、展宽频带以及按照需要改变输入阻抗

在晶体管放大器基本理论中,已讨论过直流负反馈可以稳定静态工作点,使放大器稳定地工作在线性区。除此之外,在放大电路中引入交流负反馈还可以提高增益的稳定性、减小非线性失真、展宽频带以及按照需要改变输入阻抗和输出阻抗,使放大性能得到很大改善。因此,尽管负反馈会使增益下降,但在实际放大电路中几乎都有应用。

1、框图、基本反馈方程式

负反馈电路类型很多,但根据反馈网络从基本放大电路输出取样方式(电压或电流)的不同可分为电压反馈和电流反馈:而根据反馈信号引回到输入端求和方式的不同,又分为串联反馈和关联反馈。综上所述,负反馈放大器分为四种类型,如图5.2-8所示,表5.2-8示出它们的基本反馈方程式。

图5.2-8 四种类型负反馈放大方框图

A 电压并联负反馈  B电流串联负反馈  C 电压串联负反馈  D 电流关联负反馈

负反馈放大器的闭环增益A1,并环增益A和反馈系数B的基本关系式称基本关系式称基本反馈方程。

反馈深度是反映反馈强弱的重要物理量,其值越大负反馈越强。当反馈很深,即|AB|》1时,称为深度负反馈,则闭环增益

2、负反馈对放大器性能的影响

负反馈放大电路,以降低增益为代价,可改善许多性能。表5.2-9给出负反馈对输入电阻、输出电阻的影响;表5.2-10给出负反馈对放大器其他几项主要性能的影响;表5.2-10给出负反馈对放大器其他几项主要性能的影响。


3、射极跟随器

射极跟随器 是典型的单谐电压串联负反馈放大电路,其电路图如图5.2-9所示。

图5.2-9 射极跟随器电路

(1)射极跟随器特点

1)电压增益小于1,通常很接近于1,而且为正值。

2)输入电阻高、可达几十千欧。

式中H10为晶体管输入内阻。

3)输出电阻小,可小到数十欧。当计信号源内阻影响时,输出电阻为

4)频带宽 射随器是一个百分之百的电压负反馈电路。对于管子本身的频率特性,抽反馈有展宽频带的作用,是通过负反馈的自动调节作用,使输出电压随频升高而下降得慢些、小些,因此展宽了频带。分析指出,负反馈使上限频率提高一个反馈深度。由图5.2-8可知,其上限频率

式中CO为分布电容及负载电容。

若满足条件

则上限频率

(2)射极跟随器实用电路

1)复合管射随器 图5.2-10示出一个复合管射随器实际电路。此电路为大功率放大器,第一管采用小功率开关管3AK20C作为推动级,第二管采用大功率管3AA12C。以上是用两个同型管子组成复合管,实际中也可以用异型管子组成复合管,复合管的采用主要是增大等效的B。复合管用于射随器有助于增大输入电阻,也有助于减小输出电阻。复合管电路亦称为“达林顿”电路。

图5.2-10复合管射随器

2)自举式跟随器 自举电路是提高偏置电路等效输入电阻的有效方法。图5.2-11为自举式射随器,采用自举来提高射随器的输入电阻,其原理是RB8下端电位随上端电位升高而升高,使RB8两端的交流压降为零,即对交流而言RBA相当于开路,从而避免了由于偏置电路的分流作用而降低输入电阻。

图5.2-11 自举式射随器

3)互补式跟随器 图5.2-12示出改进型互补跟随器电路,它相当于有两对NPN与PNP管组成的复合管电路,其特点是由于相互补偿不会出现交叉失真,输入电阻很高,等效B很大,以致使该电路增益很接近于1。它的典型应用是高速取样保持电路的保持放大器的输出级。

图5.2-12 互补式跟随器

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭