关闭

功率器件

所属频道 电源
  • 在电池保护应用中如何选择 MOSFET器件

    在这篇文章中,我们将研究 MOSFET 用于电池保护。 每年,越来越多的电子设备由包含锂离子 (Li ion) 电池的电池供电。高功率密度、低自放电率和易于充电使其成为几乎所有便携式电子产品的首选电池类型——如今,从口袋里的手机到每天数以百万计开车上班的电动汽车,应有尽有由锂离子电池供电。尽管它们具有许多优点,但这些电池也带来了一定的风险和设计挑战,如果不成功缓解这些风险和设计挑战,可能会导致灾难性的后果。我认为没有人会很快忘记 2016 年爆炸性的 Galaxy S7 设备平板电脑和随后的召回。

  • 在电机控制应用中如何选择 MOSFET器件

    我们研究了如何在最终应用未知时为 FET 建议适当的交叉参考。在本博客和本系列即将发布的文章中,我们将开始研究针对特定最终应用需要考虑哪些具体考虑因素,从最终应用中用于驱动电机的 FET 开始。 电机控制是 30V-100V 分立 MOSFET 的一个巨大(且快速增长的)市场,特别是对于驱动直流电机的许多拓扑结构。在这里,我将专注于选择正确的 FET 来驱动有刷、无刷和步进电机。虽然硬性规则很少,而且可能有无数种不同的方法,但我希望这篇文章能让我们了解根据我们的最终应用从哪里开始。

    电源
    2022-05-13
  • 负载开关的应用如何选择 MOSFET器件

    MOSFET 被用作负载开关的次数超过了在任何其他应用中的使用量,一次数量为数亿个。我可能应该从我在这里定义“负载开关”的确切方式开始。为了这篇文章的缘故,考虑负载开关任何小信号 FET,其在系统中的唯一功能是将一些低电流 (<1A) 信号传递(或阻止)到另一个电路板组件。电池保护 MOSFET 具有非常相似的功能,但代表了负载开关应用的一个独特子集,它们也可以承载更高的电流。

  • 如何选择 MOSFET – 开关电源应用

    在当前市场上,高性能功率 MOSFET 最常见的用途或许也是选择最合适的 FET 的最大挑战。性能、价格和尺寸之间的权衡从来没有比开关模式电源 (SMPS) 中使用的 MOSFET 更混乱。 遍历一个详尽的 SMPS 拓扑列表,包括隔离的和非隔离的,并列出每个拓扑最重要的考虑因素,这可能需要一个新奇的 - 一个比我这样的简单营销工程师拥有更多技术知识的应用程序专家。但我确实希望在本博客的后续段落中,我可以提供至少一些技巧和陷阱来避免。

  • 如何选择 MOSFET,基于各方面考量

    在复杂的电源设计中,金属氧化物半导体场效应晶体管 (MOSFET) 的选择往往是事后才考虑的。毕竟,它只是一个三针设备。它有多复杂,对吧?但是任何喜欢生蚝的人都会(试图)告诉你,外表可能是骗人的。尝试选择正确的 MOSFET 或“FET”可能比我们想象的要复杂。

  • 如何使用原厂选型工具,选择 MOSFET

    我们谈到了为开关模式电源 (SMPS) 应用选择最合适的场效应晶体管 (FET) 是多么困难。根据数据表规格预测电路性能是一个繁琐的过程。要了解它的繁琐程度,我建议阅读应用说明“考虑同步降压转换器的共源电感的功率损耗计算”,因为它细致地详细说明了一阶和二阶寄生元件对这一特定拓扑的功率损耗影响.

  • 如何优化差分放大器噪声

    信号增益和噪声增益对于放大器电路设计都很重要。信号增益显然很重要,因为我们希望准确控制信号幅度。噪声增益也很重要,尽管它不会直接影响信号幅度,因为它会影响放大器稳定性和环路增益,而这两者都会对信号质量产生影响。因此,能够计算特定电路的噪声增益和信号增益非常重要。获得这些数字后,我们可以使用数据表指南来优化我们的电路。

  • 如何使用 Over-The-Top 放大器防止模拟前端出现过压

    高压发生的可能性是工业应用中一个持续关注的问题。寻找提供保护的方法一直是开发人员的一项重要任务。这个设计技巧说明了开发人员如何通过利用顶级®(OTT)放大器来实现这一点。即使是工业应用程序,有时也会经历高于系统供应的电压。虽然这里的潜力不像在汽车电子产品中那么高,但它们通常可能高于通常的系统电压。对于许多运算电流来说,某些系统电压甚至可能过高。这对模拟前端(AFEs)提出了一个巨大的挑战。例如,较高的电压可以使典型放大器的内部输入二极管传导。这种状态存在的时间越长,就越有可能发生故障甚至故障。开发人员可以使用外部的保护电路,如外部二极管或电阻,采取相应的预防措施。然而由于这个原因,这些额外的组件需要在板上的空间和有缺点如泄漏电流、附加电容和噪声。

    电源
    2022-05-13
  • 电感式传感:通过 3 个简单步骤将多通道 LDC 的 ENOB 提高 4 位

    电感式传感器利用线圈自感或互感系数的变化来实现非电量电测。在很多应用中都会有利用到电感式传感器来对位移、压力、振动、应变、流量等参数进行测量,在机电控制系统中应用得尤为广泛。这不仅得益于它结构简单、灵敏度高,其抗干扰能力强及测量精度高也有很重要的优势点。感应传感器检测金属目标与感应线圈传感器的接近程度,而电容传感器检测传感器和电极之间的电容变化。

  • 电感式传感:应该测量 L、RP 还是两者都测量?

    当设备提供不同类型的测量功能时,设计人员必须考虑哪种测量最适合他们的用例。 一些电感式传感解决方案,例如 TI 的LDC1000 电感数字转换器(LDC),具有两种测量功能:

  • 你的运算放大器滤波器响了吗?看Q值

    我们在项目中如何预计运算放大器 (op amp) 的有源模拟滤波器中的振铃?模拟滤波器的目的是去除有意频带中的信号,而不是无意中将额外的振铃添加到信号路径中。考虑查看每个滤波器级的 Q 值或品质因数。图 1 显示了二阶低通巴特沃斯滤波器的特性示例。

  • 了解 MOSFET 数据表,热阻抗相关内容

    关于 FET 数据表的问题,尤其是热信息表中的那些参数,大家不一定知道有什么作用。这就是为什么今天,我想解决数据表中结到环境热阻抗和结到外壳热阻抗的参数,这似乎是造成很多混乱的原因。 首先,让我们准确定义这些参数的含义。在热阻抗方面,很难在 FET 行业内找到这些参数命名的一致性——有时甚至在同一家公司内也是如此。为了这篇文章,我将使用图 1 和表 1 中定义的参数。如果您认为热流类似于电流,那么很容易想象出热量可以从所示结或芯片消散的电阻网络在图 1 中。这个网络的总和就是我们所说的器件的结到环境热阻抗 (R θJA )。

    电源
    2022-05-13
  • 电机启动技术:第一部分

    本文讨论了三相同步电机的不同“无传感器”启动技术,特别是这些技术如何应用于 DRV10x 系列集成电机控制器。在这个由三部分组成的博客系列中,我将讨论 TI 高性能InstaSPIN-FOC ™ 解决方案的启动选项。 三相电动机是指当电动机的三相定子绕组(各相差120度电角度),通入三相交流电后,将产生一个旋转磁场,该旋转磁场切割转子绕组,从而在转子绕组中产生感应电流(转子绕组是闭合通路),载流的转子导体在定子旋转磁场作用下将产生电磁力,从而在电机转轴上形成电磁转矩,驱动电动机旋转,并且电机旋转方向与旋转磁场方向相同。

  • 电机启动技术:第二部分

    在本系列的第一部分中,我解释了如何在InstaSPIN-FOC™中使用 ForceAngle来调节电机启动。接下来,我将讨论在启动期间产生足够的扭矩以及如何保持对齐以最大化扭矩。

  • 电机启动技术:第三部分

    我在本系列的第一部分中讨论了使用我们的 InstaSPIN-FOC™ 技术启动无传感器电机,然后在第 2 部分中讨论了如何在启动时产生足够的扭矩并在旋转电机时将其最大化。在这第三部分和在本系列的最后一部分,我将解释如何应对可能具有高达 100% 的高动态负载或额定扭矩输出的应用中的一些挑战。