有做高频电力电子系统及开关电源的工程师都离不开电感、变压器或电机等感性元件。感性元件内部具有磁芯,磁芯由磁性材料加工而成,感性元件高频开关工作过程中,磁性材料反复磁化。
今天要为大家介绍的是平均电流法,这种方法能够精确稳定的帮助工程师实现电源模块的并联和均流,一起来看看这种方法是怎么实践的吧。
HCPL-316J是由Agilent公司生产的一种IGBT门极驱动光耦合器,其内部集成集电极发射极电压欠饱和检测电路及故障状态反馈电路,为驱动电路的可靠工作提供了保障。其特性为:兼容CMOS/TYL电平;光隔离,故障状态反馈;开关时间最大500ns;“软”IGBT关断;欠饱和检测及欠压锁定保护;过流保护功能;宽工作电压范围(15~30V);用户可配置自动复位、自动关闭。 DSP与该耦合器结合实现IGBT的驱动,使得IGBT VCE欠饱和检测结构紧凑,低成本且易于实现,同时满足了宽范围的安全与调节需要。
电池电压不是4.2V电池存在反接情况 如何设计可以防电池反接的可调电压锂电池充电器
答:测量的方法如下:(1)测量电流:用钳形电流表选择合适的量程开关位置,将被测导线钳入钳中央,从表盘刻度上可读出指针所在位置的上行电流值和下行电流(2)测量电压:将电压表并联在线路中,可读出电压
干电池电压是干电池性能的重要性能指标之一,它表示干电池在一定状态下电池两端的电势差,单位伏特(V) 选定一个适当的负载电阻并联在电池的正负极间。 电池电压跟剩余电量存在某种已知关系,所
日前,Vishay Intertechnology, Inc.(NYSE 股市代号:VSH)宣布,为满足客户+28V电源中的降额要求,Vishay将TANTAMOUNT? Hi-Rel COTS T83、低ESR的TR3和标准工业级293D系列固钽贴片电容器的额定电压提高至63V,这也
概述:介绍一种基于FPGA的可编程电压源系统的设计与实现。采用FPGA为控制芯片,应用QuartusⅡ软件和硬件描述语言为工具,通过数/模转换和运放把数字信号转换成模拟电压信号。实验表明,该系统操作灵活方便,稳定性强
随着工艺尺度不断缩小,器件常常需要多个电源。为了减小功耗和最大限度地提高性能,器件的核心部分一般趋向于在低电压下工作。为了与传统的器件接口,或与现有的I/O标准配合,I/O接口的工作电平往往与核心部分不同,
摘要: 用于电能计量的谐波电压源要求具有很强的谐波合成能力,因此,对采样频率要求较高。目前,绝大多数谐波电压源装置采用DSP 作为控制芯片。DSP 虽然有着很强的信号处理能力,但其采样率不高,不能满足电能计量用
在自适应光学系统中,自适应控制器AD输出控制信号需要通过高压放大器放大成高压电驱动压电陶瓷变形镜,从而实现波前实时校正。在实际系统中,往往需要对高压放大器输出电压进行实时监测。本系统采用小
下面介绍一种利用STM32单片机制作的16路多通道ADC采集电路图和源程序。采用USB接口与电脑连接,实则USB转串口方式,所以上位机可以用串口作为接口。电路图中利用LM324作为电压跟随器,起到保护单片机引
下面对各个元器件进行应力计算。
关于开关电源的设计,与之相关的书籍和网络资料不计其数。这些资料中的内容大同小异,虽然适合进行基础的学习,但却缺少从实践出发的优势。在接触真正的电源设计之后,设计者们就会发现,书本上和实操的差距之大会让人一时无法适应。
首先从开关电源的设计及生产工艺开始描述吧,先说说印制板的设计。开关电源工作在高频率,高脉冲状态,属于模拟电路中的一个比较特殊种类。布板时须遵循高频电路布线原则。
本文将分析解释开关电源中的专业术语。
PCB Layout是开关电源研发过程中的极为重要的步骤和环节,关系到开关电源能否正常工作,生产是否顺利进行,使用是否安全等问题。
Micro-LED是电流驱动型发光器件,其驱动方式一般只有两种模式:无源选址驱动(PM:Passive Matrix,又称无源寻址、被动寻址、无源驱动等等)与有源选址驱动(AM:Active Matrix,又称有源寻址、主动寻址、有源驱动等),此文还延伸有源驱动的另一种“半有源”驱动。这几种模式具有不同的驱动原理与应用特色,下面将通过电路图来具体介绍其原理。
开关电源是各种电子设备必不可缺的组成部分,其性能优劣直接关系到电子设备的技术指标及能否安全可靠地工作。由于开关电源内部关键元器件工作在高频开关状态,功耗小,转化率高,且体积和重量只有线性电源的20%—30%,故目前它已成为稳压电源的主流产品。电子设备电气故障的检修,本着从易到难的原则,基本上都是先从电源入手,在确定其电源正常后,再进行其他部位的检修,且电源故障占电子设备电气故障的大多数。故了解开头电源基本工作原理,熟悉其维修技巧和常见故障,有利于缩短电子设备故障维修时间,提高个人设备维护技能。
系统设计师必须考虑加电和断电期间芯核电源和I/O源之间的定时差和电压差(换言之,就是电源定序)问题。当电源定序不当时,就有可能发生闭锁失灵或电流消耗过大的现象。如果两个电源加到芯核接口和I/O接口上的电位不同时,就会出现触发闭锁。定序要求不相同的FPGA和其他元件会使电源系统设计更加复杂化。为了排除定序问题,你应当在加电和断电期间使芯核电源和I/O电源之间的电压差最小。图1所示的电源将3.3V输入电压调节到1.8V芯核电压,并在加电和断电期间跟踪3.3V I/O电压,以使两电源线之间的电压差最小。