本次讲解电源以一个13.2W电源为例输入:AC90~264V输出:3.3V/4A原理图 变压器是整个电源供应器的重要核心,所以变压器的计算及验证是很重要的。决定变压器的材质及尺寸:依
该电源具有输出稳定、电压可调、体积小、性能稳定电路等特点。该开关电源输出电流为1.8A;输出电压可在+15V ~+5V范围内设定;输入电压适用于AC90V—240V50/60Hz的电源,
十一长假过后,新能源汽车市场放量,带动相关产业链的发展,锂电市场迎来新一波增长,新能源汽车充电市场也将启动新的竞争圈地运动,新能源汽车市场猛劲发展。下面就随
典型电路设计 图1为两级共射放大电路,图2为带有电压串联负反馈的两级共射放大电路,其反馈网络由R11,C6,R4组成,它可构成交流负反馈电路。 静态工作点分析
根据实物画出的电路工作原理图如图5所示,220V交流市电经电容降压、二极管整流后给铅酸蓄电池充电,红色LED作充电指示。充好电后使用时闭合按钮开关K,将首先接通3颗彩
光电隔离是数据采集和控制系统抗干扰的一项重要措施,由于光电耦合器件的非线性,对模拟量的光电隔离会带来较大信号失真。为了提高光电隔离电路的线性度,采用负反馈方
由于不需要建立复杂的数学模型,大部分PID控制器靠良好的PID系数整定就能工作的很好。而STM8S103F属于很小的8位单片机,它开发简单便捷、价格适宜,是一种非常好用的单片机
这种控制器,在2007年的时候就做过,当时是做在路灯上的,用了一个8脚的单片机。其实这种PWM控制器非常成熟并且市场价格很低,由于这种控制方式其实就是类似于一个开关,所
随着全球范围内4G时代的开启,新一轮电信投资高潮亦随之到来,锂电池凭借突出的性能优势和日益提升的性价比,有望在通信后备电源领域率先突围。4G时代、基站小型化、集成化
小型无线充电电路由正弦波电路、谐振功率放大电路、LC谐振电路、直流转换电路、电压检测电路、红外控制电路构成。正弦波电路采用电容三点式LC反馈式,RC正弦波发生电路
图1所示电路是基于一款行业领先的微功耗仪表放大器的可配置4mA至20mA环路供电发射器。无调整总误差小于1%。既可以用一个开关配置为将差分输入电压转换成电流输出的发射
STC89C516RD单片机内部包含有1280字节的RAM数据存储器,对于一般应用已经足够,但是由于系统中使用了RTOS实时多任务操作系统需要占用一部分RAM,同时大量数据需要存储,
提出一种工业现场总线与以太网互联方法,介绍以太网与CAN现场总线之间协议转换网关的设计与实现,采用AT89C55作为主处理器,通过两个接口芯片实现CAN总线与以太网的互连
I2C 通信模块 OZ89采样模块将采集处理后的数据通过I2C总线发送到LF2407,由于LF2407自身不带I2C 接口,本设计利用PCA9564扩展其I2C接口。为了防止电磁干扰影响I2C总
智能车电源:7.2V、2A/h的可充电鎳镉蓄电池。 1 输出电流限制在1A左右,TPS7350在100mA时只有35mV压差。 2 保证TPS3750输出5V,电源至少需要6.7V以上,在大电流时
电热剪电路的系统构成如图1所示,其构成由传感器—滚珠开关、单片机定时检测及处理、工作状态指示、PWM信号产生与调整、电热模块驱动、电源共六个部分组成。 由图1可
对于电源工程师来说,掌握开关电源相关基本原理是作为电源工程师的基本要求。能够根据这些原理及相关公式来设计电源产品成为了步入电源行业的必备能力。经过一段时间后,每
电路原理:集成电路充电器,如图所示是用三端稳压器(LM317)构成的恒流充电电路。由于LM317①、②脚电位差为1.25V,若忽略R3、R1、LED的分流作用,电位器R2可调节充电
设计了一种简单实用的无线传能充电器,通过线圈将电能以无线方式传输给电池。只需把电池和接收设备放在充电平台上即可对其进行充电。虽然该系统还不能充电于无形之中.
将反相放大器中的反馈电阻,换作电容,便成为如图一所示的积分放大器电路。对于电阻,貌似是比较实在的东西,电路输出状态可以一目了然,换作电容,由于充、放电的不确定性