当前位置:首页 > LabVIEW
  • 一种串口LabVIEW与PLC的无线通信实现

    由于光纤通信具有容量大、传送信息质量高、传输距离远、性能稳定、防电磁干扰、抗腐蚀能力强等优点,而得到了人们的青睐。特别是在近十年里,随着人们对宽带业务需求的不断提高,光纤通信得到了大力发展。但与此同时,光缆的维护与管理问题也日渐突出。随着光缆数量的增加以及早期敷设光缆的老化,光缆线路的故障次数在不断增加。传统的光缆线路维护管理模式的故障查找困难,排障时间长,影响通信网的正常工作,每年因通信光缆故障而造成的经济损失巨大。因此,实施对光缆线路的实时监测与管理,动态地观察光缆线路传输性能的劣化情况,及时发现和预报光缆隐患,以降低光缆阻断的发生率,缩短光缆的故障历时显得至关重要。   光缆监测系统集计算机技术、通信技术和光电技术为一体,具备远端实时、定期测试、遇不良情况自动告警及数据综合分析等多项功能。同时,通过定期测试,光缆自动监测系统能及时判断光缆接头盒进水进潮情况,迅速准确地判断光缆障碍,缩短障碍历时,及早发现光缆劣化情况,提高长途光缆的维护质量。本文介绍了光缆线路自动监测系统的组成原理,分析了其应用。   一、应用背景   据统计,我国已敷设光缆的总长度超过了4.05&TImes;106km,约7.582&TImes;107芯公里,而微波线路长度仅为2&TImes;105km,且传输容量远低于光缆线路,可见目前我国信息容量的90%以上是通过光缆线路传送的。   虽然现有环网保护技术可在一定程度上能继续保证业务的畅通,但可以看出,由于线路维护仍然采取传统的方式维护抢修,线路故障恢复历时均较长,出现业务故障的隐患仍然存在。   因此,实施对光缆线路的实时监测与管理,动态地观察光缆线路传输性能的劣化情况,及时发现和预报光缆隐患,以降低光缆阻断的发生率,缩短光缆的故障历时显得至关重要。   二、光缆线路监测系统的应用   光缆线路自动监测系统是电信管理网(TMN)中传输网管理域的一个子网,是有效压缩全阻障碍历时和及时发现光缆线路隐患的重要技术手段。它利用计算机技术、光纤通信测量等技术,对光缆线路质量、运行等情况进行自动、实时监控和测试。   根据监测对象的不同,一般将监测系统分为两大类:对光缆金属护套对地绝缘电阻的测试和对光纤后向散射系数的测试,前者也称光缆护套对地绝缘自动监测系统,后者称光纤自动监测系统。   1.光缆护套对地绝缘电阻自动监测系统   光缆(opTIcal fiber cable)主要是由光导纤维(细如头发的玻璃丝)和塑料保护套管及塑料外皮构成,光缆内没有金、银、铜铝等金属,一般无回收价值。光缆是一定数量的光纤按照一定方式组成缆心,外包有护套,有的还包覆外护层,用以实现光信号传输的一种通信线路。 即:由光纤(光传输载体)经过一定的工艺而形成的线缆。光缆护套对地绝缘电阻自动监测系统是通过远程测量直埋光缆金属外护层对大地构成回路的完整性来实现对光缆监测的目的。它利用远程供电系统对安装于直埋光缆接头盒内的设备进行充电,并进行数据的收集和分析,产生告警信号。   该系统优点能在外护套质量受到影响时,提供损伤预警,可及时对受损光缆进行修复;自动进行数据采集;系统设备较为简单(与光纤监测相比较);提供定量的故障定位信号,缩短障碍历时。   但该系统在应用时,还存在以下缺点。   (1)由于国内直埋光缆施工时,在金属外护层对地绝缘电阻方面存在较多的问题,而该系统在安装前要求对地绝缘电阻必须符合规定,因此前期改造的工作量很大;   (2)前站安装传感器时,必须打开接头盒,对已开通电路的线路来讲,危险性大;   (3)由于该系统利用直埋光缆金属外护层与大地构成的回路来进行测试和传输数据,不适用于架空光缆线路。   综合以上分析,由于目前迫切需要应用光缆线路自动监测系统的干线均已建设成形,改造困难大,故光缆护套对地绝缘电阻自动监测系统应用的可行性较差。

    时间:2020-09-09 关键词: plc LabVIEW 无线通信

  • NI于LabVIEW纳入3D视觉功能以顺畅整合软硬体

      NI推出全新的NI视觉开发模组2012,进而为LabVIEW 加入3D视觉功能。只要使用2个照相机,就可以开发出3D立体视觉系统,再运用3D视觉技术所提供的深入资讯,进一步执行进阶监测与控制作业。此外也可把 LabVIEW 搭配其他厂商的3D 视觉软硬体工具,并透过样式比对或物件追踪等运算式来结合3D 影像,以便掌握静止或移动中的物件。   【产品特色】   使用视觉开发模组中全新的立体视觉与校準运算式来撷取高精确度的 3D 影像   可与其他厂商的3D相机相容,例如搭载雷射叁角技术的SICK Ranger相机   可在相同的图形化程式设计环境中顺畅整合其他3D处理与分析函式库,例如 AQSENSE SAL3D 函式库.

    时间:2020-09-08 关键词: 美国国家仪器 3d 视觉技术 LabVIEW

  • 基于LabVIEW测试系统的便携式汽车仪表检测系统的研制

    基于LabVIEW测试系统的便携式汽车仪表检测系统的研制

      本文首先对仪表的种类和构造进行研究,了解和分析汽车中车速表、转速表、水温表、燃油表、里程表、各种LED报警灯、LCD等的结构原理以及他们的显示原理,分析它们工作时的参数以及这些表的国家标准等,然后搭建硬件平台,设计软件程序,再让软件和硬件连接,进行参数设置,进行测试。   本文要研究的是基于LabVIEW测试系统,因此在本文中用LabviEW作为便携式汽车仪表检测系统的软件平台,在研究中我们把LabVIEW用作仪表测试结果的显示和仪表信号的输入,故LabVIEW也本文要研究的重要内容之一。   本文研究内容还包括汽车中的通信模块,在本文中用到CAN总线以及PXI板卡,所以在研究中我们要研究它们在汽车中是怎样通信的,怎么连接才能使我们获得最快最准确的数据。   主要工作:   1、调研,便携式汽车仪表检测系统的研究现状及其存在的问题。对各种汽车仪表进行分析,然后对数据进行分析、处理、综合。查阅相关资料,确定研究课题,并作可行性分析。   2、搭建基于LabVIEW的便携式汽车仪表检测系统相关硬件和软件平台。   1)硬件平台:汽车仪表测试系统的硬件系统主要包括工控机(是整个控制系统的大脑)、PXI板卡(PXI6528是一块静态数字FO板卡,专门针对某些变化缓慢的数字信号,并且具有24路输入和24路输出,既可以采集数字信号,又可以向外输出)、信号接线盒、数据通信转换板卡、CAN卡、可编程网络电阻、供电电源以及被检测仪表等主要部分。   2)软件平台:仪表检测系统软件采用Nl公司的LabVIEW平台进行设计,本系统采用LabVIEW的图形化程序语言,以一种很直观的方法建立前面板人机界面和程序框图。   3、反复的实验,与其他的汽车仪表测试系统做比对,结合实际试验的结果,反复验证评价检测系统的正确性及评价软件的有效性。   本文利用Nl公司的软硬件系列产品和一块自己研发的数据通信转换卡,根据便携式汽车仪表检测系统所需要的各种模拟、数字、开关、CAN等各种信号参数,采用Nl的PXI板卡和数据通信转换卡连接好硬件电路,在此硬件基础上,通过Nl公司的LabVIEW软件平台对整个测试系统进行开发,最终提出一个完整的便携式汽车仪表检测系统理论。   第二章设计方案   2.1可行性分析   2.1.1虚拟仪器的结构与优势   虚拟仪器的出现是测量仪器领域的一个突破,它彻底改变了传统的仪器观点,从根本上更新了测量仪器的概念,带给了人们一个全新的仪器观念。虚拟仪器代表着测量仪器发展的最新方向和潮流。它是基于计算机的软件仪器,以计算机为核心,将仪器功能装入计算机,通过计算机实现各种仪器功能。常见的虚拟仪器组建方案如图2一1所示      虚拟仪器的构成:虚拟仪器由通用仪器硬件平台(简称硬件平台)和应用软件两大部分构成:   1、通用仪器硬件平台   构成虚拟仪器的硬件平台有两部分:一部分是计算机,一般为一台PC或者工作站,它是硬件平台的核心;另一部分为1/0接口设备,主要完成被测输入信号的采集、放大、模/数转换等。可以根据实际情况采用不同的接口设备(卡)。如数据采集卡/板(DAQ),GPIB总线仪器、VXI总线仪器模块、PXI总线仪器模块、串口仪器等。虚拟仪器从硬件结构上讲,己经完全脱离了原有的单个仪器的概念,并不是在计算机上实现某一台仪器的功能,而是形成了一个虚拟仪器系统的概念。虚拟仪器系统的构成如图2一2所示。   

    时间:2020-09-06 关键词: 测试系统 检测系统 can总线 汽车仪表 LabVIEW

  • 基于labview的工控机与变频器间通讯的设计和实现

    2013年2月21日,北京讯 ——全球整合式芯片解决方案的领导厂商美满电子科技(Marvell,NASDAQ: MRVL)今天宣布,其全球制式四核平台已经实现LTE TDD / FDD功能,提供了高性能、低功耗的移动计算能力,支持全球所有3G和4G宽带标准,可无缝全球漫游,及支持最新的无线连接技术。 Marvell公司的LTE解决方案是业界领先的调制解调方案,已经过现场验证支持五种蜂窝制式,包括LTE TDD、LTE FDD、HSPA+、TD-HSPA+和EDGE。 Marvell正在与全球多家OEM伙伴合作进行LTE产品设计,预计基于该平台的商用产品在年内上市。 “通过将我们业界领先的TDD-LTE和FDD-LTE解决方案引入四核移动平台,Marvell加速了创新和商用化的步伐。我们相信,随着产品导入设计的顺利完成,我们可以支持合作伙伴在全球各地加速LTE解决方案的规模化应用进程。 ”Marvell公司联合创始人戴伟立女士(Weili Dai)表示。 在2013全球移动通信大会(MWC2013)上,Marvell公司LTE解决方案将助力中兴实现首款支持双连通双待(DRDS)LTE智能手机的演示。 Marvell公司LTE平台同时支持TD-SCDMA 和DRDS LTE语音解决方案,此外还支持CSFB(语音回落)解决方案。戴伟立女士说:“我们非常感谢中兴通讯的领导团队对LTE智能手机解决方案的大力推动。与中兴通讯的长期合作关系使得我们再次站在终端设备的技术前沿,引领消费者进入LTE连接的新时代。” 中兴通讯副总裁、手机产品移动经营部总经理王勇表示:“非常高兴跟Marvell再次合作,开发业界首款支持双连通双待的LTE智能手机。作为全球领先的通信解决方案提供商,中兴通讯在TD-LTE设备和终端市场都有着深厚的积累。而Marvell PXA 1802单芯片支持EDGE/WCDMA/TD-SCDMA/TD-LTE /FDD-LTE五种制式,将使得购买中兴U系列智能手机的消费者实现任意网络上的最佳性能体验。” Marvell将在2月25日到28日的全球移动通信大会上展出其四核全球制式平台,以及多款支持“美满互联的生活方式”的移动设备(展出地址:巴塞罗那Fira Gran Via展览中心6号馆6C44)。 关于中兴通讯 中兴通讯,全球领先的综合性通信制造业上市公司和全球通信解决方案提供商之一。1985年,中兴通讯成立。1997年,中兴通讯A股在深圳证券交易所上市,目前是国内A股市场上市值、营业收入最大的通信设备制造业上市公司。2004年12月,中兴通讯作为中国内地首家A股上市公司成功在香港上市。 中兴通讯拥有业界最完整产品线和解决方案,以满足客户需求为目标,为全球客户提供创新性、客户化的产品和服务,帮助客户实现持续赢利和成功,构建自由广阔的通信未来。中兴通讯是中国电信市场的主导通信设备供应商之一,中兴通讯各系列电信产品都处于市场领先地位,并与中国移动、中国电信、中国联通等中国主导电信运营商建立了长期稳定的合作关系。在国际电信市场,中兴通讯已向全球140多个国家和地区的500多家运营商提供优质的、高性价比的产品与服务,与包括法国电信、沃达丰、澳大利亚电信、西班牙电信在内的众多全球主流电信运营商建立了长期合作关系。 中兴通讯在高速发展的同时积极履行社会责任。作为国家纳税百强企业,2001年至2009年公司累计纳税超过315亿人民币。中兴通讯积极参加印尼海啸、汶川、玉树地震等重大自然灾害救助,与中国儿童少年基金会携手成立国内规模最大的“关爱儿童专项基金”。2008年,中兴通讯正式加入了联合国契约组织。未来,中兴通讯将继续迎接挑战,打造享誉全球的中兴通讯品牌,力创世界级卓越企业。有关详细信息,请访问 www.zte.com.cn 关于Marvell Marvell(纳斯达克代码:MRVL)是全球领先的完整芯片解决方案提供商,旨在实现数字化“美满互联的生活”。Marvell公司拥有从移动通信、存储、云基础设施、数字娱乐到家庭内容交付的多元化产品组合,将完整的平台设计与业界领先的性能、安全性、可靠性和效率相结合。作为消费电子、网络和企业系统的强大核心,Marvell公司令合作伙伴及其客户始终站在创新、性能和大众诉求的最前沿。Marvell公司致力于提高大众的生活体验,通过为世界各地的用户提供移动性和易于访问的服务,为社交网络、生活和工作增添价值。

    时间:2020-09-05 关键词: 德州仪器 变频器 通讯系统 工控机 LabVIEW

  • 伟世通使用NI LabVIEW控制设计和仿真模块简化汽车动力总成控制

    伟世通使用NI LabVIEW控制设计和仿真模块简化汽车动力总成控制

      作者:Arek Dutka - Industrial Systems and Control Limited   Gustav Ferrao - Industrial Systems and Control Limited   “在当今应用于汽车工业的软件中,LabVIEW主要具有两个主要优势:一个是其前面板,可以作为强大的用户界面;另一个是其生动的开发环境,可以避免底层语言编程。”   挑战:   对多个变量进行仿真,验证复杂的汽车发动机设计,以获得最佳的耗油量、发动机性能以及尾气排放控制。   解决方案:   使用NI LabVIEW控制设计和仿真模块,我们开发了一个可以进行实时控制、分析和测试的应用。   如今,汽车动力总成控制系统必须保持持续的发展以满足要求。这些要求包括调节尾气的排放以适应日益严格的排放标准;提供更好的耗油量以遵守企业平均耗油量的标准;并满足用户对性能和舒适性的需要。   这些要求是相互联系的,甚至经常是相互矛盾的。比如,贫燃技术可以显著地减少油耗,但同时降低了三元催化转换的效率,造成了额外的空气污染。   有两种方式可以满足如今的汽车规范,一种为改进现有的结构,另一种为引进新的更加复杂的机械设计。   在决定发动机性能的参数中,凸轮轴外形是最重要的设计参数。   在设计过程中,一些发动机着重满足扭矩的需要,另一些着重优化速度,因此没有某种外形可以满足所有的设计参数的要求。   双顶置凸轮轴(Double overhead camshaft, DOHC)发动机主要有四种可变凸轮定时策略:   • 只有进气凸轮相移 (只进气)   • 只有排气凸轮相移(只排气)   • 进气凸轮和排气凸轮等量相移 (两者相等)   • 进气凸轮和排气凸轮独立相移 (双独立)   在双独立可变凸轮轴发动机发动机(Twin-independent variable camshaft TIming, TIVCT)中,进气凸轮轴和排气凸轮轴均独立完成校正。其变化量是气门位置和发动机速度的函数。   为提高发动机性能,系统提供了很大的自由度。正因如此,需要找到一种途径,能够优化气门定时参数,以获得最好的耗油量、发动机性能以及排放控制。   然而,这项技术的结果是一个高度复杂的实时控制算法。虽然在几年前TIVCT就已经被引入汽车发动机领域,但其仍然是如今研究和探索的焦点。   使用LabVIEW完成实时控制、分析和测试   此工程是基于TIVCT发动机进行建模和最优控制器设计,以达到特殊的发动机性能要求。控制策略的目标是为发动机提供扭矩的参考量跟踪,同时最大限度地减少制动时的油耗率,并优化燃料燃烧的稳定性。   使用LabVIEW控制设计和仿真模块及其自带的线性代数函数来完成此项目。在当今应用于汽车工业的软件中,LabVIEW主要具有两个主要优势:一个是其前面板,可以作为强大的用户界面;另一个是其生动的开发环境,可以避免底层语言编程。   另外,NI的很多硬件都集成了用来控制、设计和仿真的工具,以便于开发实时控制、分析和测试应用。这也让LabVIEW对于汽车研发部门来说很有吸引力。   对于发动机模型,控制系统操作最主要的变量包括进气歧管的气流量、独立凸轮轴在入口处的位置和相对于曲轴的排气阀排气时间。   控制输出为发动机扭矩,制动的油耗率以及平均有效压力示值的变化系数。其它影响系统性能的变量(如发动机转速,发动机冷却液温度)被当作外部参数,作为控制系统的调度变量使用。   通过使用LabVIEW控制设计和仿真模块,时间连续的TIVCT发动机模型将一种静态的典型燃烧过程特征方程与描述驱动器和进气歧管的微分方程结合,以得到一种动态模型。   最后得到的非线性TIVCT发动机模型具有多路输入、多路输出(Multiple input, multiple output, MIMO)的特性。通过操纵每一个输入变量,其输入输出关系出了明显的交叉作用。在此控制应用中,使用LabVIEW将系统设定于特定的工作点,将非线性的发动机模型线性化,从而开发了一种线性的模型。   使用LabVIEW前面板进行交互仿真   使用LabVIEW中的线性二次型调节器(LQR)设计了一种先进的优化控制器。功能上,此控制器完成两个目标:最小化偏移和实现校准器的作用。在有外界干扰的情况下,通过引入循环内积分可消除稳态误差,从而达到上述控制器的设计目标。   为了定义性能指标,并最小化输出误差和输出变化率,使用LabVIEW基于连续时域系统的最优化对理论对TIVCT发动机进行状态反馈和参考点追踪,并通过该工具来获得预期的增益。   本地控制器和线性模型在LabVIEW中搭建和仿真。在最小化制动油耗率(BSFC)和平均指示压力变动系数(COVIMEP)的同时,系统通过与设定值相关的一个准确的稳态值来追踪发动机扭矩。   将Q和R两个调谐变量置于前面板,可以保证对控制器直观的检测并进行在线调整,这也充分利用了LabVIEW交互仿真的特点。   为了可以轻松地将仿真转移到计算机硬件中以便最终应用,通常会将模型和控制器应用到离散时间系统中。离散控制器可以从连续控制器中衍生,也可以直接在离散时间系统中使用同样的线性二次型调节器VI重新设计。   由于模型是非线性的,在某个工作点产生预期响应的理想增益参数也许并不能在另外的工作点产生同样令人满意的响应。   因此,需要通过在非线性模型的不同的工作范围中使用相应的理想增益参数来实现增益调度。通过前面板完成参数的交互调整,以使增益调谐的过程合理化。   使用LabVIEW进行交互仿真、实时控制、分析和测试   演示多路输入多路输出控制(MIMO)设计方法的屏幕截屏

    时间:2020-09-03 关键词: 仿真 ni 伟世通 LabVIEW

  • 基于LabVIEW的视频远程控制系统

    基于LabVIEW的视频远程控制系统

    点击学习>>《龙哥手把手教你学LabVIEW视觉设计》视频教程   本文采用虚拟仪器的原理,综合计算机的结构特点,提出了一种以计算机为平台,基于LabVIEW的视频远程监控系统,介绍利用TCP/IP协议进行数据远程监测和控制。利用LOCD技术和TCP/IP协议组以及LabVIEW中的网络传输模块,提出了一种更廉价的监控系统设计方案,具有通用性强,实用价值高以及性能稳定等特点。   1.引言   随着科学技术的迅猛发展,现在网络已经走进千家万户,成为生活、工作和学习不可缺少的条件。远程监控已逐渐被应用到政府、教育、医疗、生产以及治安等众多的领域。   在远程视频测控系统的构建中,视频采集是一个必不可少的模块。通过视频,客户端可以随时很方便的观察到现场的情况,实时针对状况发出控制命令。本文介绍运用控件技术在虚拟仪器LABVIEW软件开发的远程视频监控系统。   2.系统硬件设计   在硬件系统中客户端PC运用TCP/IP通信对远程监控端PC发出控制命令,远程监控端PC通过得到客户端PC发布的控制命令,利用数据采集卡输出控制信号进行操作。   2.1 采集卡   数据采集卡是采用海凯聪2013年2月份上市的一款带USB接口的采集卡,实时监控/录像回放全D1,支持720X576高清分辨率,4路视频输入,4路音频输入。   2.2 控制操控机构   在控制操控机构中利用模拟输出通道对电源总开关进行控制,模拟输出的电压接入继电器,从而完成对远程阀门,开关的控制。   3.系统软件   本课题设计的数据传输方案主要采用TCP协议,运用图像化软件LabVIEW中的Vision Acquisition Software编写完整的TCP使用控件。在这个设计模块巾,主要是将服务器采集得到的图像信息传输给客户端,所以传输部分是重中之重。又因为是采用 TCP协议,所以可以直接调用写好的TCP开启、TCP写入、TCP读取和TCP关闭等功能,再进行相应的连接即可。   3.1 总体框图   软件部分分为两部分:服务端和客户端。需要运用LABVIEW软件设计出可执行的流程图。具体设计如下图1.      3.2 视频图像显示及采集模块   要达到在视频传输的同时进行实验数据采集的目的,软件设计中的视频模块和数据采集模块必须要实现并行且独立执行,在LABVIEW软件中设置两个独立的循环程序,分别由不同的布尔控件进行控制,这样就可以同时采集视频和实验数据。图像采集程序框图见图2.      3.3 视频监控设计   在视频监控模块中,主要的任务是将服务器采集到的图像信息传输给客户端。又由于采用TCP协议,可直接调用写好的TCP开启、TCP写人、TCP读取和TCP关闭等功能,再进行相应的连接即可。TCP/IP传输的部分是字符串,所以服务器端在采集图像完毕后需将采集到的图像数据转化成字符串,才能进行进行传输。同时,在传输过程,一旦客户机或服务器中任一方发生中断,整个通信过程立刻结束,同时提供了发生错误时的处理程序,如图3所示。      3.4 视频保存模块设计   在现代远程视频监控系统中,图像保存的模块是不可缺少的。利用LABVIEW中的图片写人文件函数控件,并调用WebcamFlatto picture.vi和Picture to Pixmap.vi函数,再调用具体的结构参数设定和保存路径就可以实现。   4.总结   利用图像虚拟软件LABVIEW使得无线视频传输系统的设计更加简单,人机交互界面更加直观美观。本系统平台上还可以进行进一步的设计研究,比如图像清晰度设置,自动保存等。(作者:吉志丽,林都,闫颖,王卫国)

    时间:2020-09-03 关键词: 视频监控系统 虚拟仪器 LabVIEW

  • LabVIEW通信系统设计套件彻底颠覆了软件无线电原型开发方法

      2014年12月9日——美国国家仪器有限公司(NaTIonal Instruments,简称NI)作为致力于为工程师和科学家提供解决方案来应对全球最严峻的工程挑战的供应商,今日宣布推出LabVIEW通信系统设计套件,该套件结合了软件无线电(SDR)硬件和完整的软件设计流程,旨在助力工程师开发5G系统原型。   过去,无线通信原型是由独立的设计团队使用各自的设计工具来进行开发。LabVIEW通信系统设计套件开发环境可帮助整个设计团队通过统一的抽象表示来获得从算法到FPGA的整体认识。该方法使得设计工程师能够专注于创新而无需将过多的精力用于具体实现,进而提高了他们原型开发的速度和质量。   德累斯顿工业大学教授沃达丰移动通信联合实验室主席Gerhard Fettweis表示:“无线用户对带宽不断增加的需求迫使无线行业进行大量技术投资来提高网络容量。 在德累斯顿工业大学,我们主要使用NI软硬件集成的平台来进行5G研究。通过与NI的合作并借助NI平台,德累斯顿工业大学的研究人员大量缩短了从概念到原型的过渡时间。我们仅花了六周就开发出了一个工作原型。 过去使用其他标准工具时,这个过程需要两年多的时间才能完成。”   根据Frost & Sullivan公司的测试和测量行业总监Jessy Cavazos表示:“SDR(软件无线电)已经成为开发下一代无线系统原型的标准方法。FPGA集成到x86架构大大扩展了该平台的灵活性,但同时也要求设计工程师具有专业的技能和工具。LabVIEW通信系统设计套件可利用现有IP,包括C和.m的算法,使得设计人员能够在统一的设计环境中使用正确的语言来完成各项任务。”   LabVIEW通信系统设计套件针对SDR平台进行了优化,提供了一个硬件感知的设计环境,可通过统一的功能软件流程图控制物理配置、硬件约束和系统文档。这可提高硬件的灵活性,使得设计人员能够通过SDR平台访问所有组件。这一紧密的集成解决方案无需设计人员手动将不同的算法与对应的硬件架构进行匹配,从而最大程度提高了他们的工作效率。   “LabVIEW通信系统设计套件包含了用于WiFi和LTE的内置应用程序框架,使得无线原型开发工程师能够专心开发针对现有标准的创新组件,而无需从头开始设计算法。”NI 射频和通信总监James Kimery说到,“对于我们领先用户项目的部分院校和工业研究人员,该方法帮助他们缩短了一半的工作原型开发时间。”   NI的软件市场营销总监Shelley Gretlein补充说到:“尽管现有的原型开发工具有限,但无线设备的数量却以指数级增长。LabVIEW通信系统设计套件可有效弥合当前不断普及的4G网络和未来待开发5G标准之间的断层。NI不断为SDR平台开发出创新灵活的硬件和强大的原型开发软件将进一步助力下一代通信系统设计。”   关于NI   从1976年开始,美国国家仪器就为工程师和科学家提供各种工具来加速生产、创新和探索。NI的图形化系统设计方法为工程界提供了一个将软硬件结合在一起的平台,有助于加速测量和控制系统的开发过程。公司的长期愿景和通过技术提高社会发展水平的理念为客户、员工、供应商和股东的成功提供支持。   NI中国自1998年成立以来,不断致力于以跨国公司的实力为本地用户提供创新、高效的工具和解决方案。辐射全国的销售、技术人员及系统联盟商网络则以为本地市场提过优质服务为己任,倾力满足客户要求。 NI中国在线商城的推出进一步完善了NI的服务体系,旨在为用户提供更方便快捷的购买体验,即刻浏览china.ni.com   LabVIEW、NaTIonal Instruments、NI和ni.com为美国国家仪器有限公司(NaTIonal Instruments)的商标。 此处提及的其它产品和公司名称均为其各自公司的商标或商业名称。

    时间:2020-09-01 关键词: ni LabVIEW

  • 机器人模块概述

    机器人模块概述

    机器人技术是发展最快的工程领域之一,也是最具有挑战性的一个领域。几乎所有的机器人,都有不同的操作环境,行为或任务也不同,连接的传感器和执行器也不同。因此,人们经常在不同的硬件平台上使用不同的开发工具来开发机器人。一个工程师开发的成功用于某个机器人的可用控制系统很难再用于另一个机器人,因为应用于传感、自治和电机控制的应用程序接口(API)在语法上是不同的。 在设计、原型开发和部署机器人应用时,面临三个最大的挑战:集成传感器和执行器,实现自治以及部署确定性的控制算法至嵌入式硬件。为了应对这些挑战, LabVIEW RoboTIcs提供了一整套全新的机器人专用传感器和执行器驱动,以及实现复杂导航运算的新代码库。而且,有了LabVIEW,开发人员只需要使用一个软件开发环境就可以设计控制算法,连接实际I/O,以及部署至确定性硬件目标。   1. 集成传感器和执行器 如果设计者可以得到实际的传感器输入以及控制实际执行器,比如马达的能力,那么他们就能加快机器人的原型开发。LabVIEW RoboTIcs包含新的VI选版来配置、控制和获取自主车辆中的一些最常用的传感器的数据,其接收到的数据可以使用。无论是低成本的红外线传感器还是高分辨率的光定向和测距(LIDAR)传感器,LabVIEW RoboTIcs都可以让使用者快速地检索传感器数据,从而使他们能更加关注于高级智能和控制的实现。另外,无论是无刷马达,有刷直流马达,还是步进马达,LabVIEW RoboTIcs都提供了多种连接、控制马达的方法。 图1. LabVIEW Robotics包括一整套针对自治系统中最常用的传感器的新驱动。 美国弗吉尼亚理工大学设计的盲人驾驶车辆是一个典型的依赖于传感器的反馈和执行器的控制的机器人例子。这个半自动车辆有一个基于触觉的人机界面,可以让盲人驾驶员做出驾驶决定。传感器根据车辆的状态来采集重要信息,比如通过霍尔效应传感器采集速度信息,通过弦丝电位计采集转向角。光定向和测距(LIDAR)传感器扫描驾驶环境,然后确定障碍或者交通路标。­­学生们可以快速采集这些传感器获得的数据,然后在LabVIEW中使用NI CompactRIO内嵌式平台的高速现场可编程门阵列(FPGA)进行直接处理。 处理完这些传感器数据后,学生们使用LabVIEW和CompactRIO来控制大量的晶体管和继电器,以不同强度开动驾驶员身上穿的马甲中的马达。驾驶员可以使用触感式马甲对速度进行调节,从而自如的驾驶直至到达速度上限,速度达到上限时,马甲会提示驾驶员需要多大的刹车力度来使车辆回到安全速度。学生们在FPGA上使用LabVIEW实现这种电机控制,从而极大地缩短了从探测到障碍,到马达全速振动之间的时间,对于驾驶员来说,这在紧急情况下是至关重要的。 图2. 弗吉尼亚理工大学的盲人驾驶车辆使用LabVIEW和CompactRIO完成与传感器、执行器的通信,算法开发以及部署。阿迪•哈根,16岁,驾驶盲人汽车,带着弗吉尼亚理工大学的设计师格雷格•加纳曼(乘客座)出去兜风。 仅仅用了两个学期,9名大学生就完成了设计,盲人驾驶员可以安全地实现基本的驾驶任务。 “LabVIEW具有直观的图形化操作界面,LIDAR等传感器的驱动也是现成的,这对由机械工程专业大学生组成的团队来说,可以让我们快速、有效的搭建定制的嵌入式软件。”——格雷格•加纳曼,弗吉尼亚理工大学的学生,团队队长。 2. 自治代码库 实现机器人的自治是一个既有挑战,又非常重要的任务。对于像导航这样的任务,算法越来越复杂,这往往需要软件开发人员具有计算机科学方面的背景知识。另外,如果不能实现代码的重复利用,每开始一个新项目,工程师总要从底层对算法进行开发。

    时间:2020-08-05 关键词: ni LabVIEW

  • 基于LabVIEW NI SoftMotion的运动控制系统结构及原理应用

    基于LabVIEW NI SoftMotion的运动控制系统结构及原理应用

    几乎所有的自动设施——从工业机器到医疗设备——其组件如何移动都必须按照控制方式执行。移动负载最常见的方法就是使用一些电机元件如电动机。我们来学习如何控制基于电动机的系统,并探究NI公司所提供的各种不同的机器控制解决方案。   运动控制需求 在工业和医疗领域中,最常见的电动机就是步进式、有刷式以及无刷式直流电动机,但是其实还有一些其它类型的电动机。每种电动机都需要有独立的输入信号来激励电动机,然后将电能转换成机械能。在最广义的意义上,运动控制可以帮助你使用电动机(最大程度上满足你的应用需求),而无需考虑所有激励电机所需的低层次的激励信号。 另外,运动控制还具备一些高级功能,因此可以基于模块搭建高效地实现指定的应用,为一些常规任务提供解决方案,如精准定位、多轴同步,以及指定速度、加速度和减速度的运动等等。 因为大多电动机的工作环境都是瞬时的,所以运动控制工具必须能够适应不同负载和动态条件,而这则需要一些复杂的控制处理算法和机械系统的反馈信息。最后(但并不是最不重要的),运动控制的任务一般都比较严格,而且通常其所操控的机器还可能会伤及到周围的人。因此,运动控制中必须具备一些安全特征,如限位开关(limit switch)和I/O通道,用以收集状态信息并执行停止程序。 运动控制系统的组件 下图描述了运动控制系统的基本组成部分。     图1. 运动控制器是运动控制系统的核心。 你所开发的应用软件便是你应用程序中的特定部分。应用软件定义了运动配置文件,以及特定事件触发并影响配置文件的方式。应用软件由好几个可选的层次构成。通常来说都包含一个用户界面程序,用以实现交互式操作。很多运动控制应用都包含应用层,实现警报处理和数据库连接性(连接到一个SCADA系统)。它们还通常包含由运动控制器执行的运动控制指令。运动控制器的制造商提供了应用软件的开发环境。 根据上述内容,运动控制器创建运动配置文件。根据这些配置文件,控制器将信号(通常是±10 V,或者步进信号与方向信号)通过放大器或者电动机驱动传到电动机。放大器的任务就是从控制器接收信号,然后将它们变成可以驱动电动机转动的信号。 随着电动机运转,反馈设备——通常是位置传感器——会将位置信息反向传递至控制器,构成闭环控制环。运动控制器通过位置传感器获取电动机的位置信息,从而推算出电动机的移动速度。有些应用中需要有多个反馈设备,以保证该电动机所驱动的机械系统能够正确运行。虽然反馈设备提供了位置信息,但有时还需要向控制器传递一些特殊的反馈信息,譬如压力传感器或者震动传感器的数据。 运动控制器的架构 运动控制器就像是运动控制系统的大脑,它要计算每个预定运动轨迹。该任务非常重要,因此它需要一个专门的资源以保证高度的确定性。运动控制器利用其所计算出来的运动轨迹来决定合适的扭矩命令,然后将其发送至电动机放大器,才真正产生运动。控制器还必须通过监测限制条件和紧急制动条件,来关闭控制环并处理监控(supervisory control),从而保证安全操作。这些操作都必须实时实现,以确保有效运动控制系统所必需的高度可靠性、确定性、稳定性和安全性。     图2.运动控制器架构 下面描述运动控制器的各种不同任务。 监控 – 提供了执行特定操作所需的命令顺序安排和协调。这些特殊操作包括: 系统初始化,其中包括返回到零位置。 事件处理,其中包括:电子传动,基于位置信息的触发输出,基于用户定义事件的配置文件更新。 故障检测,其中包括:遇到限位开关停止运动,遇到紧急制动或者驱动故障、看门狗等时的安全系统反应。 轨迹发生器 – 根据用户定义的配置文件进行路径规划。 控制环 – 执行快速的闭环控制,在单轴/多轴上同步维持位置、速度和轨迹。控制环根据反馈信息来处理位置/速度环的关闭,并决定系统的响应和稳定性。在步进式系统中,由步进发生组件构成控制环。该控制环包含一个插值组件或者样条引擎(spline engine),在轨迹发生器所计算出的两个设置点之间进行插值。这样,控制环的执行速度就会快于轨迹发生器。图2描述了NI运动控制器的功能架构。

    时间:2020-08-05 关键词: ni 运动控制系统 LabVIEW

  • labview实现can通讯

    点击学习>>《龙哥手把手教你学LabVIEW视觉设计》视频教程    一、LabVIEW介绍   LabVIEW是一种程序开发环境,由美国国家仪器(NI)公司研制开发,类似于C和BASIC开发环境,但是LabVIEW与其他计算机语言的显著区别是:其他计算机语言都是采用基于文本的语言产生代码,而LabVIEW使用的是图形化编辑语言G编写程序,产生的程序是框图的形式。 LabVIEW软件是NI设计平台的核心,也是开发测量或控制系统的理想选择。 LabVIEW开发环境集成了工程师和科学家快速构建各种应用所需的所有工具,旨在帮助工程师和科学家解决问题、提高生产力和不断创新。   LabVIEW应用领域   LABVIEW有很多优点,尤其是在某些特殊领域其特点尤其突出。   测试测量:LABVIEW[5] 最初就是为测试测量而设计的,因而测试测量也就是现在LABVIEW最广泛的应用领域。经过多年的发展,LABVIEW在测试测量领域获得了广泛的承认。至今,大多数主流的测试仪器、数据采集设备都拥有专门的LabVIEW驱动程序,使用LabVIEW可以非常便捷的控制这些硬件设备。同时,用户也可以十分方便地找到各种适用于测试测量领域的LabVIEW工具包。这些工具包几乎覆盖了用户所需的所有功能,用户在这些工具包的基础上再开发程序就容易多了。有时甚至于只需简单地调用几个工具包中的函数,就可以组成一个完整的测试测量应用程序。   控制:控制与测试是两个相关度非常高的领域,从测试领域起家的LabVIEW自然而然地首先拓展至控制领域。LabVIEW拥有专门用于控制领域的模块----LabVIEWDSC。除此之外,工业控制领域常用的设备、数据线等通常也都带有相应的LabVIEW驱动程序。使用LabVIEW可以非常方便的编制各种控制程序。   仿真:LabVIEW包含了多种多样的数学运算函数,特别适合进行模拟、仿真、原型设计等工作。在设计机电设备之前,可以先在计算机上用LabVIEW搭建仿真原型,验证设计的合理性,找到潜在的问题。在高等教育领域,有时如果使用LabVIEW进行软件模拟,就可以达到同样的效果,使学生不致失去实践的机会。   儿童教育:由于图形外观漂亮且容易吸引儿童的注意力,同时图形比文本更容易被儿童接受和理解,所以LabVIEW非常受少年儿童的欢迎。对于没有任何计算机知识的儿童而言,可以把LabVIEW理解成是一种特殊的“积木”:把不同的原件搭在一起,就可以实现自己所需的功能。著名的可编程玩具“乐高积木”使用的就是LabVIEW编程语言。儿童经过短暂的指导就可以利用乐高积木提供的积木搭建成各种车辆模型、机器人等,再使用LabVIEW编写控制其运动和行为的程序。除了应用于玩具,LabVIEW还有专门用于中小学生教学使用的版本。   快速开发:根据笔者参与的一些项目统计,完成一个功能类似的大型应用软件,熟练的LabVIEW程序员所需的开发时间,大概只是熟练的C程序员所需时间的1/5左右。所以,如果项目开发时间紧张,应该优先考虑使用LabVIEW,以缩短开发时间。   跨平台:如果同一个程序需要运行于多个硬件设备之上,也可以优先考虑使用LabVIEW。LabVIEW具有良好的平台一致性。LabVIEW的代码不需任何修改就可以运行在常见的三大台式机操作系统上:Windows、Mac OS 及 Linux。除此之外,LabVIEW还支持各种实时操作系统和嵌入式设备,比如常见的PDA、FPGA以及运行VxWorks和PharLap系统的RT设备。   二、CAN总线简介   CAN总线是德国BOSCH公司在80年代初为解决现代汽车中众多的控制与测试仪器之间的数据交换而开发的一种串行数据通信协议。它是一种多主总线,通信介质可以是双绞线、同轴电缆或光导纤维,通信速率可达1MBPS。CAN总线通信接口中集成了CAN协议的物理层和数据链路层功能,可完成对通信数据的成帧处理,包括位填充、数据块编码、循环冗余检验、优先级判别等各项工作。   由于其具有通信速度快、可靠性高和性能价格比好等突出优点,它正越来越广泛地应用于汽车、机械工业、纺织机械、农业用机械、机器人、数控机床、医疗器械、家用电器及传感器等领域[2],并越来越受到工业界的重视,被公认为是最有前途的现场总线之一。   CAN总线优势   CAN属于现场总线的范畴,它是一种有效支持分布式控制或实时控制的串行通信网络。较之许多RS-485基于R线构建的分布式控制系统而言,基于CAN总线的分布式控制系统在以下方面具有明显的优越性:   1、网络各节点之间的数据通信实时性强   CAN控制器工作于多种方式,网络中的各节点都可根据总线访问优先权(取决于报文标识符)采用无损结构的逐位仲裁的方式竞争向总线发送数据,且CAN协议废除了站地址编码,而代之以对通信数据进行编码,这可使不同的节点同时接收到相同的数据,这些特点使得CAN总线构成的网络各节点之间的数据通信实时性强,并且容易构成冗余结构,提高系统的可靠性和系统的灵活性。而利用RS-485只能构成主从式结构系统,通信方式也只能以主站轮询的方式进行,系统的实时性、可靠性较差。   2、开发周期短   CAN总线通过CAN收发器接口芯片82C250的两个输出端CANH和CANL与物理总线相连,而CANH端的状态只能是高电平或悬浮状态,CANL端只能是低电平或悬浮状态。这就保证不会在出现在RS-485网络中的现象,即当系统有错误,出现多节点同时向总线发送数据时,导致总线呈现短路,从而损坏某些节点的现象。而且CAN节点在错误严重的情况下具有自动关闭输出功能,以使总线上其他节点的操作不受影响,从而保证不会出现像在网络中,因个别节点出现问题,使得总线处于“死锁”状态。而且,CAN具有的完善的通信协议可由CAN控制器芯片及其接口芯片来实现,从而大大降低系统开发难度,缩短了开发周期,这些是仅有电气协议的RS-485所无法比拟的。   3、已形成国际标准的现场总线   另外,与其它现场总线比较而言,CAN总线是具有通信速率高、容易实现、且性价比高等诸多特点的一种已形成国际标准的现场总线。这些也是CAN总线应用于众多领域,具有强劲的市场竞争力的重要原因。   4、最有前途的现场总线之一   CAN 即控制器局域网络,属于工业现场总线的范畴。与一般的通信总线相比,CAN总线的数据通信具有突出的可靠性、实时性和灵活性。由于其良好的性能及独特的设计,CAN总线越来越受到人们的重视。

    时间:2020-08-05 关键词: 通讯 can总线 LabVIEW

  • labview实现串口通信

    labview实现串口通信

    点击学习>>《龙哥手把手教你学LabVIEW视觉设计》视频教程   一、串口通信简介   串口按位(bit)发送和接收字节。串口通信是指外设和计算机间,通过数据信号线 、地线、控制线等,按位进行传输数据的一种通讯方式。这种通信方式使用的数据线少,在远距离通信中可以节约通信成本,但其传输速度比并行传输低。   串口按位(bit)发送和接收字节。尽管比按字节(byte)的并行通信慢,但是串口可以在使用一根线发送数据的同时用另一根线接收数据。它很简单并且能够实现远距离通信。比如IEEE488定义并行通行状态时,规定设备线总长不得超过20米,并且任意两个设备间的长度不得超过2米;而对于串口而言,长度可达1200米。典型地,串口用于ASCII码字符的传输。通信使用3根线完成,分别是地线、发送、接收。由于串口通信是异步的,端口能够在一根线上发送数据同时在另一根线上接收数据。其他线用于握手,但不是必须的。串口通信最重要的参数是波特率、数据位、停止位和奇偶校验。对于两个进行通信的端口,这些参数必须匹配。   二、LabVIEW简介   LabVIEW是一种程序开发环境,由美国国家仪器(NI)公司研制开发,类似于C和BASIC开发环境,但是LabVIEW与其他计算机语言的显著区别是:其他计算机语言都是采用基于文本的语言产生代码,而LabVIEW使用的是图形化编辑语言G编写程序,产生的程序是框图的形式。 LabVIEW软件是NI设计平台的核心,也是开发测量或控制系统的理想选择。   LabVIEW特点   尽可能采用了通用的硬件,各种仪器的差异主要是软件。   可充分发挥计算机的能力,有强大的数据处理功能,可以创造出功能更强的仪器。   用户可以根据自己的需要定义和制造各种仪器   三、Labview实现串口通信步骤   1.在程序面板上添加VISA配置接口   2.添加后,开启帮助文档的显示。菜单的Help-》show context help,如下图   鼠标选择目标则会显示帮助框。如下图所示。   3.创建相应的配置   在程序面板中鼠标移动到对应的引脚上,点击鼠标右键-》create-》control,创建后,界面面板上会出现对应的控制框。如下图所示,创建个VISA resource name。   前面板显示如下:   4依次创建,波特率、停止位、数据位等   如下图所示。   5.创建个while循环,用于放置发送的程序   鼠标移动到循环条件控制的引脚上,创建个control。用于调试,不对条件处理,会报错。   6前面板放置个按钮,用于控制数据的发送   7.创建个事件,用于响应发送按钮   鼠标移动到timeout的位置,鼠标右键选择edit events…如下图所示。   操作上面后,出现如下界面:选择需要响应的控件,这里选择“ok button”,选择鼠标按下   点击ok后,事件的名称也变化了。如下图所示。   如果鼠标点击按键,则会进入事件处理。   8.创建VISA写函数   9连接端口和写函数   10添加个关闭函数   11.创建字符串控件,传递给写函数,用于发送   选中VISA Write的write buffer,右键create-》control,   12界面如下所示   13.安装虚拟串口,提供一个下载地址   用虚拟串口配置两个端口,配置好后,这两个串口之间是自动连接上,模拟硬件上两个串口对接上的。   14运行串口工具   15.运行串口工具,打开串口,运行VI,发送数据   我的电脑配置的是COM12和COM13,vi选择COM12   运行VI,在write buffer里面填写test,点击OK发送。   每点击一次,发送一次   16.建立接收模块   添加个while循环,   创建while循环,用于接收。创建VISA Read,在Read buffer引脚上点击鼠标右键create-》indicator,建立个显示控件。   17 在VISA Enable Event的event type,创建个常量   然后在常量的下拉列表中选择Serial Character。这个表示串口接收到数据,可以进入帮助文档查看详细的说明。   18.创建事件等待   19.连接事件,等待事件的类型直接连接在VISA Enable Event的Event type即可。   20.添加个属性节点,Visa Bytes at serial port,获取串口中的字节数   连接字节数,这样告诉需要读取的字节数。也能保证每次都把串口中的数据读完。

    时间:2020-08-05 关键词: 串口通信 LabVIEW

  • 基于LabVIEW开发的用于检测分离稀有细胞的系统设计方案解析

    基于LabVIEW开发的用于检测分离稀有细胞的系统设计方案解析

    挑战: 设计、开发并制造一种能够检测和分离循环肿瘤细胞(CTC)或母血中的胎儿细胞的工具,前者的目的是研究肿瘤学中的个体化治疗,后者是为了实现无创性产前诊断。 解决方案: 开发一种名为“芯片实验室”的专利技术,该技术利用活性硅衬底的微电子特性,可制造微型生物实验室,借助NI嵌入式控制器对悬浮细胞分别单独操作。 Silicon Biosystems公司的技术基于电场能够对悬浮在液体中的中性可极化粒子(比如细胞)施加作用力的能力。按照这种称为介电泳(DEP)的动电学原理,非均匀电场中的中性粒子会受到一个空间上电场强度沿(正)介电泳(pDEP)增加方向或者(负)介电泳(nDEP)减少方向的力。更具体地说,粒子由于其自身的电特性受到正介电泳力或负介电泳力,这种电特性取决于频率,以及粒子所悬浮于的介质的属性(图1)。 在DEPArray系统中,电场产生于硅芯片(图2a)的表面,该表面直接与细胞悬浮于其中的微流体腔相连。微流体腔被芯片表面以及距离芯片表面几十微米的透明覆盖面所封闭。活性芯片的表面实现了微单元的二维阵列,每一个微单元由平面电极和集成逻辑电路组成(图2b)。当被放到与电极相对应的区域中时,每一个电极可以通过编程产生一个势阱或介电笼。在每一个介电笼中,粒子可以处于稳定的悬浮状态,从而实现单独分析。因为每一个细胞都是被单独分析,系统能够实现基于荧光的复杂分析,从而可以识别令靶细胞区别于其它成千上万受污染细胞的独有特性。靶细胞能够独立,但也是同时地被移动到芯片的某个区域,微流体控制在那里将它们自动回收。 DEPArray系统 我们的专利平台DEPArray,是一个灵活且易于使用的先进技术系统(图4)。系统的核心是一个微芯片,它在一个微流体电路中集成了包含30万个电极的阵列。 DEPArray系统使用NI公司的硬件和软件来管理高精密机械、微流体、现成可商用的电子和自定义工具,以及视觉和图像处理。系统允许用户进行的工作流程概括为以下的基本步骤: * 通过微流体控制装载样本 * 在明视场和荧光下获取图像 * 分析图像 * 通过图形用户界面识别并选择靶细胞 * 自动对识别的靶细胞进行分类 * 通过微流体控制对靶细胞进行回收 样品装载 样品装载是一个非常精细的过程。我们使用NI LabVIEW软件控制泵装置产生所需的压力梯度,从而使样品从入口槽流到微流体腔内的芯片上。系统使用由NI视觉开发模块的视觉库开发的算法,实现装载过程的自动监视与控制。 捕获与分析 一旦样品被装载到芯片上,LabVIEW就会控制所有的I/O线,对电极阵列进行配置,将细胞关在笼中,并使它们在流程的所有阶段都保持悬浮,从而保证强而可靠的系统控制。 样品分析是通过荧光以及明视场下的多重滤光器对芯片表面进行光学扫描而实现的。LabVIEW控制置有芯片的处理系统并以微米级的精度进行捕获、图像处理,并对获取自显微镜的高精度数字图像进行视觉化处理。 选择靶细胞 在这个步骤中,DEPArray系统为用户提供了强大的人机界面(HMI),它由LabVIEW结合Microsoft .NET framework开发,对靶细胞进行分类和选择(图3)。可以使用不同的方法对细胞进行分析,从而验证它们的性质。人机界面展示了分析测量结果的散点图或直方图,并提供了图像上所有测量结果的列表显示。对于被选中的每一个细胞,分析中捕获的图像也被显示出来,从而允许用户将计算机测量的结果与形态学评估结合起来。 自动分类 在这个步骤中,根据细胞地图和障碍物,LabVIEW动态地配置芯片电极阵列,使其能够单独而同时地把每一个感兴趣的细胞从初始位置移动到回收点。数字化控制每一个感兴趣细胞的移动,使系统获得高分类纯度,以及无与伦比的性能。 回收 在这个步骤中,LabVIEW与蠕动泵装置进行交互,产生所需的压力梯度,使回收介质(比如微流体腔中的阱或者玻片)中包含所选细胞的缓冲物部分向下流动。分类和回收过程可以重复进行,以分别收集多个细胞或多组净化的细胞,从而使用传统的分子生物学技术进行基因分析。 结论 Silicon Biosystems公司开发的技术,充分利用了NI的软硬件与 Sky Technology公司的技术,为一系列研究活动提供了方法,这些研究旨在分离循环肿瘤细胞(CTCs)以研究肿瘤学中的个体化治疗,以及识别母血中的胎儿细胞,从而实现无创性产前诊断。

    时间:2020-07-28 关键词: 智能医疗 LabVIEW

  • 用 LabVIEW软件和CompactRIO硬件 解决生物流体灌注系统方案详解

    用 LabVIEW软件和CompactRIO硬件 解决生物流体灌注系统方案详解

    Biorep生物流体灌注系统 挑战:增进细胞分泌分析的处理能力和可重复性,这种分析常被用于第一型糖尿病研究中的胰岛细胞的分析。 解决方案:使用NI的LabVIEW软件和CompactRIO 硬件,创建一个自动生物流体灌注(Perifusion) 系统。它能实现全面的环境控制,刺激不同细胞类型,并在符合可编程协议的情况下能够自动收集分泌物。 “只用了3个月,我们VI设计组的克里斯?佛朗达(Chris Fronda)就能使用 LabVIEW和CompactRIO 来控制一个复杂的自动化医疗仪器。” Biorep技术股份有限公司(Biorep Technologies Inc.)需要设计一种设备用来隔离胰脏中特定细胞(胰岛细胞)。隔离过程非常复杂,需要超过20 种不同的装置,其中5种需高度自动化。在目前,这些自动化装置是使用不同的平台与可编程语言来完成的,比如,一种语言用于控制器、另一种用于触摸屏、第三种语言用于电机驱动、第四种语言用于步进器驱动。随着公司的发展,这样的设计方式造成了很多问题。由于采用了多种语言环境,所以需要不同的学习曲线,冗长的程序说明文件,而且不同平台间需要不同的通讯协议,非常没有效率。 考虑到NI的产品在近年来有着非常巨大的发展,能够满足我们的功能需求,我们决定采用功能强大的LabVIEW图形化系统设计软件来实现所有的自动化装置。这样,绝大部分的自动化装置都能够在一个软件平台上完成,所以工程师只需要学习一种语言,并且也能简化设备的工作流程。此外,LabVIEW还提供了先进的软件调试工具,并使设备具备了远程调试功能,帮助我们缩短调试时间,并避免长途旅行,换算下来相当于节省了超过10,000美金的成本。LabVIEW平台的使用,对我们的效率和开发能力造成了很大的影响。 只用了3个月,我们VI设计组的克里斯?弗朗达(Chris Fronda)就能使用 LabVIEW和CompactRIO 来控制一个复杂的自动化医疗仪器,其中包括多轴运动控制 (步进电机)、精准的培养箱温度控制和复杂的液体处理功能(电子阀数组控制)。VI设计组使用LabVIEW Real-Time模块与LabVIEW FPGA模块开发了软件架构。公司还使用LabVIEW NI SoftMoTIon模块(图1)实现了系统的仿真,在虚拟原型上模拟真实的运动轨迹,这使我们在花费成本制造实体原型之前,就先将设计进行可视化和最优化,并帮助我们评估不同的设计理念。依靠LabVIEW 和 CompactRIO,VI设计组将开发时间从预计的12个月缩短至3个月,并且不用开发定制的控制软件与驱动程序。 图 1. SolidWorks下的 XY 机械结构 起初,我们开发Biorep生物流体灌注系统(图2)是为了测试试管内胰岛能力的。之后,系统功能得以不断扩充,还可以可测定来自胰腺源祖干细胞 ( pancreaTIc progenitor stem cells) 的分化细胞的分泌物。 图 2. Biorep生物流体灌注系统 在研究细胞对刺激物的反应时(例如在糖尿病研究中细胞对药物或葡萄糖的反应),灌注对批次培养(batch incubaTIon)有非常大的好处。在生物流体灌注系统中,会有刺激物不断注入,研究中的细胞或细胞群所分泌的代谢物冲走。而在过去的批次培养中,这些代谢物会累积从而影响研究结果。 也有一些其它更先进的方法,例如动态量测,但它们并不实用,所以实验室仍然使用批次培养的方法。Biorep技术股份有限公司(Biorep Technologies Inc.)与迈阿密大学糖尿病研究机构(Diabetes Research InsTItute at the University of Miami)开发的自动的生物流体灌注系统,可以简化实验流程。它能实现全面的环境控制,刺激不同细胞类型,并在符合可编程协议的情况下能够自动收集分泌物(图3及图4)。经过测试,我们的生物流体灌注系统被证明是非常有价值的,可以在器官移植前,在试管内测试人类胰岛的生存能力。 图 3. 协议监测界面 图 4. 容器定位界面 目前,已有数个实验室定期采用该系统来研究胰岛细胞的激素分泌。然而,Biorep 生物流体灌注系统并不仅限于用在胰岛分泌的研究。它还可用来测定其他类型细胞的分泌,包括诸如干细胞这类的单细胞。此外,它更成为了医药产业药物研发过程中不可或缺的一部分。

    时间:2020-07-28 关键词: 医疗电子 compactrio LabVIEW

  • 仪器自动化时代来临 软件是关键

    仪器自动化时代来临 软件是关键

    越来越多的测试和制造工程师依靠软件来快速高效地完成其工作职责。在Aspencore(前称UBM)2015年开展的一项测试和测量调查中,有一半参与调查的测试工程师特别提到接口/可用性是现代测试设备亟需改进的一个主要方面。为了让工程师更轻松地工作,仪器供应商不断投入到软件应用程序的开发,但最终结果是大量不同的软件工具不能在整个构建、部署和维护测试系统的软件工作流程中相互支持和操作。在整个产品开发过程中,您的工具必须在设计时考虑到互操作性,否则您可能要自己承担工具集成的费用,浪费时间在互操作性问题上,而不是解决实际业务挑战和开发产品。 为了高效地满足严格的时间期限,您不仅需要足够的软件抽象来简化常见任务以及实现代码复用,还需要能够进行一定程度的底层控制,以便在适当阶段针对特定测试进行具体的自定义。没有一个软件可以完美地兼具这两点。因此,为了最大限度地发挥您的工程设计潜力,请采用可同时提供这两个功能的软件平台。 在过去的四十年里,NI以软件为中心的开放平台帮助测试和制造工程师提高了生产力,这个平台经过专门设计,利用了模块化硬件,并拥有一个庞大的生态系统。通过使用软件对硬件进行重新配置,工程师们提高了测试系统的灵活性,并能够更快速地将他们的想法变成现实。随着最新版本的LabVIEW NXG和SystemLink的推出,NI进一步帮助工程师在整个测试工作流程中加速开发和提高效率。尽管越来越多的供应商已经接受了NI率先推出的软件设计方法,但工程师们却难以将各种不同的软件工具结合在一起。作为唯一一家为从FPGA I/O引脚到远程测试系统管理均提供了相应软件的供应商,NI正在变革构建测试系统的工作流程。 图1. NI软件工具在构建、部署和维护测试系统的整个工作流程中可以相互支持和操作。 设计和采购测试系统 面对紧迫的发布时间期限和严格的项目时间表,您必须采用既能够解决当前新测试系统需求、又能够让您的团队适应未来各种、需求的强大解决方案。新项目的硬件决策清单一直在增加,包括仪器、电缆、连接器、开关拓扑结构、大规模互连、机架布局、功耗预算和散热分析等。在硬件决策最终确定以确保测量质量之后,您最后需要做的就是让软件不再成为阻碍开发的瓶颈。为了简化初始系统设置,NI系统出厂时会在新控制器上安装选定的软件环境和必要的硬件驱动程序。这样,您可以将时间花在思考测试需求上,而不是安装驱动程序。 配置和验证您的设置 工程系统通常会用到来自多个供应商具有不同软件功能的仪器。通过查看用户手册来了解子菜单配置信息,并在网上搜索最新版本的设备驱动程序可能会让人抓狂,尤其是当供应商提供不一致的使用体验时。使用软件开发的应用程序应与其硬件系统紧密结合,使用户获得一个统一的管理解决方案来简化这种基本关系。NI通过最新版LabVIEW NXG引入了一个新的图形工具,能够以可视化方式配置物理系统。该工具称为SystemDesigner,将硬件配置、诊断和系统文档描述等功能引入LabVIEW NXG环境。这样可以最大限度地提高开发效率,同时还可以在一个环境中完整地管理硬件以及软件开发。如果没有安装特定的NI或第三方驱动程序,SystemDesigner将指导您通过NI软件包管理器(NI Package Manager)安装必要的驱动程序,这是一个基于行业标准软件包格式的新接口。 图2. LabVIEW NXG支持软件开发的硬件管理和系统文档。 完成初始设置后,下一步就更简单,也就是验证产品是否满足所有设计要求。在整个测试开发过程中,快速查看交互式测量结果是非常重要的,比如DMM读数或示波器显示的数据,这主要用于信号连接的初始测试和调试以及测量精度的验证。通过SystemDesigner,您可以启动NI模块化仪器的软面板,以交互方式监测和控制硬件。某些仪器还可直接连接到PC来加载和存储波形或针对特定设备的配置,以简化调试。但是,为了最大限度地减少人为错误和确保一致性,并最终加快产品上市,实现验证过程大部分步骤的自动化是非常有必要的。 仪器自动化 在验证某个设计的初始电路板时,某些测试需要重复运行的可能性很高。多次手动进行相同的测试不仅单调乏味,而且更重要的是从商业角度看效率低下。如果一个研发团队的基本目标是完全验证某个设计并将其快速发送给制造团队,那么团队的宝贵时间应该主要用在需求和工程设计调整上,而不是浪费在可以自动化的常规任务上。在接受这种思维模式后,主要的障碍就是测试的创建,因为硬件和测试工程师团队之间的编程经验差别很大。这里的关键就在于应用专业领域知识的同时,不会受限于所选择软件的语义和编程结构。 LabVIEW NXG提供了图形化编程方法,可让您按照脑中所想进行编程,并通过连接函数块来构建应用程序的逻辑。此外,用户界面(UI)的设计通过拖放方法进行了简化,可帮助您直观地为测试代码创建专业的用户界面。最新版本的LabVIEW NXG进一步将这些功能从桌面扩展到了网络,即使您没有Web编程经验,也可以设计和部署基于Web的UI,在任何现代Web浏览器中运行测试代码,而且无需插件或安装程序。使用LabVIEW NXG Web模块这一新功能,您可以通过各种设备和操作系统远程监控测试,并与同事共享信息,这对于长时间运行的测试特别有用。 图3. LabVIEW NXG Web模块可帮助您设计和部署基于Web的用户界面,并在任何现代Web浏览器中运行测试代码,无需插件或安装程序。 扩展至生产测试 当产品从研发验证转移到最终的生产测试时,尽可能减少器件测试时间对于最大化总单位产量至关重要。设计验证和生产之间的仪器复用可减少这两个阶段之间进行测量数据关联所需工作,同时也提高了软件扩展的效率。以相同的方式独立运行与设备验证阶段相同的测试并不能满足制造商的期望;测试方法必须进行扩展才能满足吞吐量需求。尽管大部分相同的代码可以而且应该重复利用,但仍需要一个位于软件堆栈上层的抽象测试管理工具来将所有相关的自定义测试组合成一个统一的测试序列,以更高效地测试设备,甚至同时测试多个设备,以满足其规格要求。从零开始构建这样一个测试执行软件是非常麻烦的,而使用商用现成解决方案则可节省大量开发工作,并可进一步缩短上市时间。 TestStand是一个现成即用的测试管理环境和框架,可简化生产测试系统的设计。 TestStand可以调用几乎任何编程语言编写的代码模块,使您的团队可以重复使用LabVIEW NXG和LabVIEW 2017等图形化语言以及C、C#和Python编写测试程序。该环境抽象了关键生产测试功能(如报告、数据库记录和并行执行)的开发,同时允许在需要时进行底层自定义。通过采用测试执行系统(所有不同的待测设备共用)与测试代码模块(通常针对特定测设备)分离的模块化软件架构,您将拥有一个可扩展且灵活的架构,而且从长远来看,易于开发和支持且维护成本较低。例如,摩托罗拉公司的特性分析和生产测试软件团队基于TestStand和LabVIEW对一个模块化测试应用程序进行了标准化,最终将年度维护和新产品开发成本降低了一半以上。 图4. TestStand解决了成本和效率问题,提高了测试系统的总吞吐量。 部署和维护测试装置 大多数大型测试系统并不会采用孤立的架构,它们通常代表多个测试点或整个生产车间的解决方案。完成测试后,手动部署测试序列及其所有必要的依赖关系对于工程师的逻辑要求非常高。假设您已经手动完成20台测试系统的部署安装,但却很快发现,您必须重新部署测试序列,才能对20台测试系统进行一个小的修改。想象一下测试系统的数量增加到1000台时的情况。 TestStand通过其内置的部署实用程序简化了这个过程,该实用程序在部署测试序列时会同时部署其代码模块和所需的运行驱动程序。您还可以使用自己熟悉的开发环境来创建自定义操作界面(OI),以便使用测试序列进行部署。基于用户身份验证,TestStand不仅可以让软件架构师访问底层执行细节,也可以简单到只需让操作人员单击部署测试站上自定义OI上的 “运行”按钮,并自动将合格/不合格结果保存到磁盘中。 对于大型分布式系统,SystemLink这款全新NI软件产品有助于协调大规模软件部署、跨硬件管理驱动程序版本以及监测系统诊断。中央服务器节点通过网络连接安全地管理分布式端点,并简化NI和第三方软件将软件包大规模发布到目标系统的过程,显著减少了与系统管理功能相关的管理负担和物流成本。 图5. SystemLink通过中央Web应用程序帮助管理分布式系统。 软件是关键 每个公司的产品开发周期各有其要求。许多公司会多次重复产品验证阶段,以达到确保产量的拐点,在这个过程中可能会被迫重新检查设计和配置。而有一些创业公司仅仅靠产量预测这一点并无法全面部署生产测试系统。毕竟,如果每个公司的开发周期都是一致的,每一次都是百分之百成功,那么市场如何维持一种动态的竞争意识?电子产品设计人员和制造商必须采用一个工具平台,在产品突然增加功能或提高规格以保持竞争力时,可以进行正确的调整。虽然我们当然会尽量在产品开发周期中尽可能地处于主动地位,但现实要求我们必须保持灵活性。作为工程师,我们已经意识到这个挑战,我们不能让工具成为瓶颈。 LabVIEW NXG、TestStand和SystemLink这些NI软件始终陪伴着您构建、部署和维护测试系统的整个工作流程。除了这些产品的各自创新之外,这些产品还体现了NI持续投资到软件的承诺。软件产品的独特组合及其固有的互操作性使得NI平台能够从众多平台中脱颖而出。其他供应商才刚意识到软件是关键,但NI在软件上的投资已经稳定增长了几十年。让软件之间互操作性帮助您加速工作流程,更智能地进行测试。

    时间:2020-07-20 关键词: 软件 测试系统 ni LabVIEW

  • NI LabVIEW图形化开发环境与NI硬件平台,开发无人驾驶赛车

    NI LabVIEW图形化开发环境与NI硬件平台,开发无人驾驶赛车

    挑战:为DARPA挑战赛开发一辆参赛智能车,可自动穿越郊区环境。 方案:使用NI LabVIEW图形化开发环境与NI硬件平台对智能车进行快速开发、测试以及原型,从而赢得挑战赛。 DARPA城市挑战赛要求路上车辆在城市环境中无人驾驶行驶。在整个赛程中,全自主的无人车要在不到6小时中行驶60英里,并在道路、十字路口、停车场等交通环境里行驶。比赛开始时,一份任务文档规定了比赛道路中的检查站,参赛车辆必须按规定驶过。 为了尽快到达检查站,赛车通过对限速、可能的道路阻塞、交通状况等因素的考虑,选择合适的行驶路线。赛车在行驶中还必须遵守交通规则,与有人驾驶车辆及其它无人车辆间的正确交互。赛车需在规定车道内行驶,对其它车辆的车速或超车做出安全的反应。此外,在十字路口必须依照路权规则安全行驶,规避静态或动态的障碍物,时速达到30 mph。 我们的Victor Tango车队仅有12个月用于赛车开发,且必须满足前所未有的挑战。我们将设计分为四个主要部分:基础平台、感知、规划、及通信。 每部分都充分利用了美国国家仪器公司软硬件的优势。NI硬件有助于连接车辆已有系统,为操作人员提供界面。我们采用LabVIEW 图形化编程环境来开发软件,包括通信构架、传感器处理和目标识别算法、激光测距仪和基于视觉的路况探测、高级驾驶行为、及底层车辆接口。 基础平台 Odin是由福特2005年的Escape Hybrid改装的无人驾驶车辆。通过NI CompactRIO系统与Escape的系统连接,实现对节流阀、转向装置、变速、及刹车的线传控制。车队采用LabVIEW及LabVIEW控制设计及仿真模块开发道路曲率及速度控制系统,通过LabVIEW Real-TIme及LabVIEW FPGA模块发布到CompactRIO系统,创建独立的车辆平台。我们还采用LabVIEW 触摸板模块为NI TPC-2006触摸板计算机开发用户界面,并安装于车辆仪表盘上。 感知 为满足赛车在城市挑战赛中的行为需求,Odin必须能够自行定位,探测路况周边环境及正确车道,感知道路上的所有障碍,并能正确的将障碍识别为汽车。因此,Odin上安装了许多传感器,包括在缓冲器平面上安装的三台IBEO四面激光测距仪(LRFs),在车顶架上安装的四台SICK LRF和两个计算机视觉摄像头,以及Novatel高精度GPS/IMU系统。 针对每种感知需求,设计中都采用了多个传感器,以确保最大的真实性及可靠性。为实现灵活的传感器组合,规划软件忽略了原始传感器数据,采用特定任务组件生成的独立传感器感知信息集。定位组件包括LabVIEW Kalman滤波器,用于跟踪赛车的位置及方向。道路探测组件采用NI视觉开发模块,通过摄像头及LRF数据的组合,确定临近路段的路况环境及车道位置。目标分类组件采用LabVIEW来处理IBEO数据,探测障碍并将其分类为静态或动态;动态障碍预报器预测道路及其它车辆的行驶动向。 规划 Odin上的规划软件采用混合审议-反应模型,将上层决策与下层响应分配到不同组件。两类组件以独立频率同步运行,这样车辆就能对紧急状况做出响应,同时又无需重新规划整条路径。分离决策组件后,便可独立对每个系统进行测试,并实现并行开发,这对于缩短城市挑战赛前的设计时间表来说非常重要。 路径规划组件采用A*搜索算法做出路径选择判断,从而行驶过所有检查点。驾驶行为组件采用基于行为的LabVIEW状态机构架,负责让赛车遵守交通规则,并引导赛车沿规划路径行驶。运动规划组件采用迭代轨迹搜索避免障碍,并将赛车引导到期望的路径上。然后,系统将运动方案送到车辆接口,并转换为激励器控制信号。 通信 整个通信框架的开发都采用了LabVIEW。我们实现了SAE AS-4无人系统联合体系结构(JAUS)协议,可进行自动化、动态配置,并提高了城市挑战赛软件在未来的可重用性及商业潜力。同时,我们将每个软件模块作为JAUS组件,所有模块间的交互均在该LabVIEW框架内实现。每个软件模块作为独立组件,可在Windows或Linux®操作系统中异步运行。有了这一通信主构架, LabVIEW编写的软件模块与其它语言编写的模块的交互、重用变得异常容易。 LabVIEW的优势 LabVIEW为我们的团队提供了成功的编成环境,主要有以下原因。作为主要由机械工程师组成的团队,无需计算机学科背景,就能采用LabVIEW开发高级、高层的感知及规划算法。此外,LabVIEW与硬件之间简单的交互操作,提高了实现传感器处理及车辆控制中高定时精度要求进程的能力。 LabVIEW还提供直观且易用的调试环境,可实时执行及监测源代码,轻松实现硬件在环调试。LabVIEW环境使测试时间最大化,实现了快速原型设计及大量设计循环。缩短了参加城市挑战赛及开发设计本身的时间表。这些能力对车队的成功至关重要。 我们成功通过LabVIEW及NI硬件开发了无人驾驶赛车,完成了城市挑战赛,这些对机器人技术来说是从未尝试过的挑战。Odin是仅有的一辆全面采用LabVIEW的赛车,并且取得了第三名的成绩,仅比领先者慢了几分钟。

    时间:2020-07-11 关键词: 无人驾驶 ni LabVIEW

  • NI CompactRIO和LabVIEW,现实赛车测试数据采集和实时监测

    NI CompactRIO和LabVIEW,现实赛车测试数据采集和实时监测

    挑战:开发一套可靠的赛车测试和数据采集系统,来采集并分析赛车关键点的数据,从而提升Brigham Young University SAE 方程式赛车的性能,缩短它的调整时间 方案:使用一个八模块的NI CompactRIO 系统来进行数据采集,该系统上还连接有二十几个用于实时测量的传感器。我们还添加了一个市面上可买到的简单的无线路由器,用于与一台装有NI LabVIEW 的笔记本电脑进行遥测通信,以实现实时监测 美国汽车工程师协会每年都会主办方程式SAE 学生设计竞赛。今年,七十支参赛队伍将设计、建造一辆限乘一人、开轮式公路赛车,并用其进行比赛。方程式SAE竞赛被认为是世界上最有声誉的大学工程类设计竞赛。今年,第一次有Brigham Young University 的本科生参加方程式SAE 竞赛。 对于汽车数据采集系统来说,测试是设计过程中至关重要的一个环节。通过制作一个模型汽车,我们在确定赛车的最终方案之前明确了需要改进的系统。为了验证设计,我们的测试和实验需要用到仪器、板上数据采集和统计分析。 我们之所以选择NI CompactRIO(可重复配置的输入/ 输出)数据采集系统,主要是因为它配置的灵活性和输入通道的密度(输入通道的密度等于输入通道/ 重量)。在图中,可以看到它被安装在测试赛车上。cRIO系统提供了其他设备不能提供的解决方案。cRIO系统上的各种可用模块为传感器的选择提供了灵活性。控制器的网络功能为远程赛车监测提供了无线遥测选项。确定性回路选项使得系统精确而高速地采集数据,同时低功耗的特点对维持备用电源来说也是至关重要。 这个系统的重量不超过九磅,可以配置成高达64路的模拟输入通道,并且运行时功率低于24 瓦。我们的cRIO 系统配置有两个cRIO-9211 热电偶模块、一个CRIO-9421 数字输入模块、一个cRIO-9472数字输出模块和四个cRIO-9201模拟输入模块。我们在LabVIEW中编写虚拟仪器程序来采集数据、绘制速度和加速度的图表、显示温度并记录信息。通过在cRIO系统与普通的无线路由器间建立TCP/IP 连接来实现无线遥测。我们用一个简易的12伏到5 伏的直流到直流转换器通过汽车电池为路由器供电。利用无线连接,我们可以实时地解析数据,这极大地简化了数据分析过程,并且使得我们的组员在汽车驶入凹陷路面前可以提前调整发动机或悬架。我们有27 个传感器用来测量加速度、车轮速度、空气温度、燃料温度、轮胎温度、压力、节流杆位置、刹车杆位置、操纵杆位置和悬架位移。 轮胎温度会显着地影响附着摩擦力,进而影响航迹时间。我们有三个红外传感器,它们被安装在每个轮胎前的悬臂支架上。轮胎对赛道的控制能力会随着温度的升高而提高,直到轮胎达到最佳性能,此后,轮胎对赛道的控制能力会随着温度的升高而降低。利用24 位精度的cRIO-9211 热电偶模块,我们甚至可以检测到最轻微的温度上升。我们的测试过程包括三个阶段: ● 调整悬架的外倾角和轮胎压力,直到轮胎沿着胎面均匀地受热。 ● 外加一个横向加速度计,利用LabVIEW勾画出摩擦力系数与温度间的函数关系。这这决定了轮胎控制性能峰值的温度。 ● 对悬架设置(束角和外倾角)进行实验,使轮胎温度最接近地保持在控制性能峰值的温度附近。 由于方程式SAE竞赛的技术性本质,快速的加速度和高速转弯速度是在竞赛中取胜的关键。在我们的驾驶测试中,我们使用了一个三轴的加速度计来量化转弯性能。横向加速度受静态外倾角、轮胎气压和轮胎温度影响。析因实验帮助我们找到外倾角和轮胎气压的最优设置。几个驾驶员重复进行了这个测试。 在车前的垂直端安装有一个霍尔效应传感器用来测量车轮的速度。我们在刹车制动器的转子上打下均匀间隔的孔作为目标。一周 12个孔,而车轮的速度高达每秒24转,所以最小采样速率为576 S/s是必需的。我们在LabVIEW中使用了一个高优先级的定时环路,以确保足够快的速率来采集这个数据。 在转弯时最小程度地移动重心可使得汽车具有更强的可预测性和更容易的操控性。安装在减震器上的线性电位计可以测量汽车转弯时悬梁的位移是多大。悬梁调整后,我们就可以找到在保持控制性能的前提下最小化悬梁位移的设置。 轮胎的附着摩擦力限制了横向加速度和制动加速度。一个熟练的驾驶员可以在这个最大加速度的极限内驾驶。利用一个三轴的加速度计,我们可以测量汽车加速度的大小。驾驶员可以利用节气阀位置传感器、制动压力变换器和操纵角度电位计来确定赛车的运动趋势。利用无线电通信,可以将上述信息传播给驾驶员。即时反馈可以帮助驾驶员了解汽车的限制,这在竞赛准备的训练中是很有益的。 Brigham Young University的赛车设计工程师依靠NI 公司的硬件优化了赛车性能,利用NI CompactRIO系统的灵活性和LabVIEW软件编程的高效性,使得赛车的性能在竞赛前不断提升。质量测试设备和流程最终帮助Brigham Young大学取得了第一名的好成绩。

    时间:2020-07-10 关键词: compactrio ni LabVIEW

  • labview网络蜘蛛分析和整理网页

    运用post数据来整理自己在电子发烧友论坛发布过的文章链接,首先获取自己的论坛ID,也可以是别的ID(帮别人整理),然后分析网页规律,收集网页信息,非标准转换,查询关键字,批量处理,存入表格。

    时间:2020-05-26 关键词: 爬虫 LabVIEW

  • NI发布免费版旗舰软件:LabVIEW

    NI发布免费版旗舰软件:LabVIEW

    奥斯汀,德克萨斯州—2020年5月11日— NI(Nasdaq:NATI),软件定义平台的领先供应商,致力于加速自动化测试和自动化测量系统的开发进程和性能提升,今日发布了针对个人项目使用的LabVIEW大众版和LabVIEW NXG大众版。 LabVIEW大众版将免费提供给非商业用户使用,该版本提供了与LabVIEW专业版相同的功能。其中包含LINX工具包的更新版本,以帮助工程爱好者将LabVIEW应用程序连接或部署到主流的计算硬件上,例如Arduino、Raspberry Pi和BeagleBoards等。 NI联合创始人兼LabVIEW发明者Jeff Kodosky表示:“我们很激动能够鼓励业余爱好者在家使用LabVIEW开发他们感兴趣的项目,充分激发他们的无限潜力。我们开发了LabVIEW大众版,让工程师可以免费使用该软件,通过编程的方式追求他们的个人兴趣和梦想,同时他们也能够与同行合作开发和分享IP。” LabVIEW大众版还取代了LabVIEW中学生版,并为K-12年级的学生提供了一种更有趣的方式来吸引他们在科学、技术、工程和数学领域进行探索和尝试。 LabVIEW NXG大众版还包括LabVIEW NXG Web模块,即使完全没有学习过Web开发技能的用户也可以借助该模块轻松创建Web应用程序。利用该软件的图形化编程语言,他们可以将开发的LabVIEW应用程序部署到网络中,在网页浏览器中运行,而且无需任何其他软件。此外,软件中包含的SystemLink™Cloud评估版可帮助用户托管和共享Web应用程序。 “ LabVIEW大众版和LabVIEW NXG大众版将会让越来越多的制造商和工程师认识这种直观的图形化语言,” GCentral.org的创始人兼总裁Chris Cilino(同时兼任Composed Systems公司的顾问)表示,“这些版本无疑将充分调动开发人员的主动性和创造力以及促进新的合作方式,我很期待看到未来的变化。” 在过去的几个月中,LabVIEW大众版的Beta版测试用户展示了该软件的许多新应用,包括采用众包模式的机器人、用于控制机械臂的平板电脑用户界面以及为用于仿真测试的实际设备开发数字孪生模型。 自NI 30多年前首次发布LabVIEW至今 ,该软件已经广泛应用于各行各业,为工程师开发测试、测量和控制应用提供了无缝的硬件集成以及深度的数据洞察。多年来,随着行业的发展,软件功能和性能也在不断增强来满足变化的客户需求和市场需求,如今该软件已具有: •    直观的图形化编程语言 •    丰富的IP库 •    广泛的硬件连接 •    庞大的开发者社区

    时间:2020-05-11 关键词: ni LabVIEW

  • 基于NI CompactRIO系统和LabVIEW实现桥梁结构安全监测系统的设计

    基于NI CompactRIO系统和LabVIEW实现桥梁结构安全监测系统的设计

    一. 引言 随着桥梁设计水平和施工技术的日见成熟,桥梁的建设取得了突破性的成就,一批大跨径桥梁应运而生,桥梁建设正朝着规模的大型化、形式的轻柔化、功能的复杂化发展。同时,桥梁结构的安全性与耐久性越来越受到人们的高度重视,有关大型桥梁的结构健康监测、安全评估以及寿命预测等问题已经成为当前桥梁工程界必须解决的问题。目前,随着传感测试技术、计算机信息处理技术、结构分析技术和桥梁工程技术等相关学科的进一步发展,针对特大型桥梁结构的安全监测与安全预警研究和实践成为可能。原本应用于军事领域的先进智能材料与结构技术,也在桥梁结构健康监测领域得到应用,使得对大型桥梁结构进行健康监测的技术总体上正朝着智能化和系统化的方向发展。 二.集美大桥的系统背景与设计原则 厦门集美大桥及接线工程是厦门市城市道路交通网络布局中本岛与大陆腹地跨海通道的重要组成部分,也是厦门市出岛交通路网规划中重要的跨海通道之一。大桥建成后将承担巨大的出入岛交通流,因此,结构安全监测的重要性就显得格外突出。 系统整体监测项目如下: 1)荷载源监测:主要为桥址区域环境荷载监测:① 风荷载监测;② 温度、湿度监测;③ 控制截面温度梯度监测;④ 交通荷载(与计重收费系统共用) 2)结构动、静态响应监测 ①主桥的空间位置变化监测,主要为各跨跨中下挠监测;②主、引桥控制截面静应力监测;③主、引桥体外预应力监测;④主、引桥体内预应力监测;④主、引桥结构动力及振动特性及其变化监测 三.桥梁结构监测安全预警系统的总体设计 根据系统的功能要求本系统包括以下子系统: 1) 自动化传感测试子系统,其包括以下几大模块: ① 传感器子模块 通过传感器将各类监测转换为电(光)信号。 ② 数据采集与传输模块 将监测信号转换为数字信号并完成远程传输。 ③ 数据处理与控制模块 将监测信号进行预处理以向其它子系统提供有效的监测数据,根据需要控制监测参数的采集。 以上3部分构成自动化传感测试子系统。 2) 电子化人工巡检养护管理子系统 3) 综合安全评估子系统 4) 中心数据库子系统 5) 用户界面子系统 其结构示意图如图1所示: 图1桥梁结构安全监测系统结构示意图 接下来将重点介绍监测系统的数据采集、传输、预处理与控制的子系统。 1. 自动化传感测试子系统各类信号采集、处理方案 整个系统共设置3个cRIO采集站。采集站在左右两幅桥各布置一个,BRT桥布置一个。 实现的采集工作包括加速度同步采集压力变送器、温湿度仪、风速仪、振弦式应力计、磁通量索力计信号和串口信号的采集。这些传感器输出信号种类多种多样,大大增加了采集系统构筑的难度。系统针对不同类型的传感器,选用合适的采集设备和方案。系统结构组成如图2所示。 图2 自动化传感子系统结构示意图 cRIO可编程工业I/O系统具有嵌入式控制器和机箱,选配多种功能的信号采集卡,完全工业级的设计。 * 采用的cRIO控制器NI9014为嵌入式控制器。 * 采用的cRIO机箱NI-9104为8槽嵌入式机箱,具有-40-70°C的操作温度范围,3百万可重新配置I/O(RIO),FPGA核心具有高超的处理能力,使用LabVIEW自动生成自定义控制和信号处理电路。 * 采用cRIO的4通道高速同步数据采集卡NI-9215对于单向和三向加速度计进行电压信号采集。 * NI-9401八通道高速数字I/O信号,100ns超高速数字输入输出,用于加速度同步。 * NI-9871标准RS485通讯卡,磁通量传感器采用磁弹仪进行采集,其输出为485信号,接入NI-9871。 * NI-9871标准RS485通讯卡,超声波三向风速仪直接输出485信号,接入标准RS485通讯卡NI-9871。 * NI-9203采用8通道模拟电流采集模块,压力变送器和温湿度仪输出信号分别为4-20mA电流,对于这类输出为标准电流信号的传感器接入NI-9203。 * 光纤光栅温度传感器与应变传感器采用光纤光栅传感网络分析仪进行采集,其输出为以太网信号。 本系统的监测项目梁体振动加速度需要较好的同步性和实时性,我们采用GPS精确授时技术、在每个采集站安装GPS时钟接收机,借助NI-9401 100ns超高速数字同步卡,通过软件方法和采集策略的配置保证加速度数据采集的同步性。 2. 数据采集传输与控制 采集站实现的采集工作于LabVIEW-RT实时系统环境下,在终端硬件的支持下主要完成对信号数据的采集和传输。用户一般不直接与其进行交互,但其提供一系列的标准接口和命令与用户所在的控制终端、监测终端和数据存储终端进行交互。采集站状态与控制如图3所示。 数据处理与控制系统服务器通过向cRIO采集站发送网络命令报文实现数据采集和控制功能: 1) 控制传感器启动、停止数据采集; 2) 查询传感器和采集单元、调理器、其它采集设备的工作状态; 3) 查看、修改采集单元和调理器的参数,标签等信息; 4) 通过修改配置文件上传至采集站实现采集任务、存储任务的配置和更改。 图3 数据采集站状态与控制界面 3. 数据处理与控制模块 采集系统收集到的数据必须经过数据处理与控制模块(子系统)对其进行预处理方能够提交给后续子系统使用。本子系统由数据采集控制模块,数据分类、抽取模块,监测数据库及用户界面4部分组成。系统关系结构如图4所示。 图4 数据采集、处理与控制子系统关系结构图 1) 反映结构状态的特征参数确定及其提取方案 结构状态特征参数是指能够反映结构特征的物理量,比如:挠度,应力,索力等;而传感器-采集系统所获得是传感器的读数,这些读数一般反映的是电信号。将传感器获得的电信号向结构特征参数转换是极其重要的过程。具体流程如图5所示。 a) 传感器电信号向测试物理量的转换 传感器电信号向测试物理量的转换通常利用标定证书提供的曲线或参数可以完成传感器读数向物理量的转换。 b) 测试物理量向结构特征参数的转换 测试物理量向结构特征参数的转换需要其它传感器的配合,需要进行数据的分析处理。 c) 各种参数有效数据的抽取 d) 数字滤波 对于静态数据需要进行活载及风振的过滤,经过过滤后的静态参数将仅包含温度对结构的影响,这种过滤一般可以采用低通滤波的方式,实现的时候可以采用幅值域分析的方式。对于动态参数则应考虑所需要测试的频率范围进行带通滤波。 图5 数据处理与控制软件流程图 2) 数据存储 a) 数据存储引擎将指定的数据按照时间标签存入数据文件。 每个数据包中包含一个测点(对应一个数据采通道)一段时间(定为1秒)连续采集数据的内容。数据文件的文件名包括以下信息:采样数据开始时间(小时-分-秒)、数据存储模式(数据触发说明)、采样率、数据点数、数据最大值、最小值、均值、方差。文件内容包括各点采样数据。 b) 数据文件的存储策略根据数据存储模式的不同而异,具体如下: 间断存储时,每个通道每段连续的信号数据保存为一个文件;触发存储时,被触发的每个通道每段连续的信号数据保存为一个文件;人工连续存储时,如果某通道要保存的连续数据很大,根据数据文件的大小,可以每10分钟自动更换一个文件保存;根据硬盘空间的大小,自动删除部分(一周)以前的数据文件。 四.软件实现与现场成果 1. 系统软件结构 软件系统主要分为两个部分: 1) 数据采集软件(下位机FPGA部分) 作为基于LabVIEW的RT实时系统的FPGA下位机程序,能够实时进行大量数据的采集与存储和控制任务,主要实现加速度、风、温度等信号的采样与降采样和振动特征值计算、GPS对时、定时存储、采集通道设定等功能。该部分程序烧写在FPGA硬件模块上,由FPGA硬件进行实现,经过一系列的转换,最终被编译为比特流文件,并下载到FPGA模块上运行。多个采集站采用统一软件架构,实现采集任务的模块化和规范化,多机箱间的精确的同步采集,同时实现数据的本地存储。 2) 数据处理与控制软件(上位机部分) 数据传输、处理与控制软件是基于LabVIEW8.2平台开发的,数据处理与控制工作站软件平台是基于LabVIEW8.2平台下的状态机机制,通过TCP协议实时接收下位机的原始数据与设备工作站的工作状态,按照指定报文格式进行数据的接收解译与命令的发送。同时,使用LabVIEW自带的信号分析、数字滤波和统计分析等子VI,完成结构状态的特征参数提取工作。数据首先采用自定义结构体包装,通过queue队列形式完成各VI之间的数据交互,队列的先进先出机制有效的解决的数据完整性和稳定性。 3) 电力监控部分软件 软件平台采用可视性强、界面丰富的NI LabVIEW平台和数据分析技术,采用标准的数据接口。电力监测软件为用户提供一个可视化的监测界面,让用户直观、方便、快捷地了解现场传感器、UPS、磁弹仪、采集器的运行状态,并根据数据分析的结果进行运行状态的调整和负荷的控制。用户通过查询历史数据库,可以调出电力设备的历史运行状态曲线,并完成上位机对应的数据管理功能。界面如图6所示。 图6 采集站电力监控界面 2. 数据处理与控制软件界面 数据传输、处理与控制软件主要包括10大功能模块:登录模块、采集站配置模块、存储任务管理模块、采集任务管理模块、传感器状态模块、网络状态识别模块、数据下载与入库模块、电力监控模块、用户管理模块、系统帮助模块。界面如图7所示。 图7 采集站状态及控制模块界面 3. 数据实时展示与预警软件界面 承台地震动监测项目实时显示、预警软件子模块界面如图8。除了上述各个预警软件子模块共有的操作按钮和显示控件外,该模块还有从数据处理与控制服务器传过来的1秒钟数据包波形图、安装截面位置示意图、预警灯和信息,以及当前1秒钟加速度时程曲线和自功率谱曲线图。 图8地震动监测模块 偏位监测项目实时显示、预警软件子模块界面如图9。除了各个预警软件子模块共有的操作按钮和显示控件外,该模块还有从数据处理与控制服务器传过来的1秒钟数据包波形图、安装截面位置示意图、预警灯和信息,以及当前纵横桥向当前的偏位情况实时显示。 图9 偏位子模块界面 4. 现场成果 安装在现场的工作站一共有三个,主要完成就进传感器的数据收集、整理与传输。CRIO采集模块首先对安装在大桥上的各种类型传感器的信号完成必要的预调理后按一定的采样频率进行模数转换(A/D),同时在数据采集站计算机上保存,最后各种类型的传感器的模拟或数字信号经预处理、采集后从现场的数据采集站通过工业以太网有线传送至位于管理监控中心的数据处理与控制计算机上。具体安装如图10所示。 图10 现场工作站实拍图片 五.结论 从技术角度去讲,NI CompactRIO系统和LabVIEW开发环境无缝连接使用户轻松的通过图形化开发环境访问底层硬件,快速建立嵌入式系统控制和数据采集应用,大大降低了系统开发、 生产的技术风险。LabVIEW 强大的数据采集和信号处理功能极大地节省了采集终端软件的开发时间,在LabVIEW RT和LabVIEW FPGA模块的配合下使得采集终端能够实时高质量地完成数据采集、信号处理、数据传送和数据存储的工作,为整个大桥结构安全监测系统提供灵活、强大的底层数据支持。 同时,恶劣的海洋环境及桥面路况影响,对NI CompactRIO系统的环境适应性也提出了很高的要求。事实证明,NI CompactRIO系统设计精巧而坚固,满足苛刻的工业级指标,完全适用于对可靠性有严格要求的复杂恶劣海洋环境中应用。 在国内首次将LabVIEW和NI的分布式数据采集设备cRIO系列引入到桥梁结构安全监测和结构分析中去,结合先进的数据处理和信号分析技术,为大跨径特大型桥梁综合监测系统有关数据采集传输预处理与控制的建立提供了一套完备而系统的方案,在桥梁健康监测的若干问题研究中取得的一些创新性成果,对桥梁综合监测系统的发展有着重要的意义。 NI的分布式数据采集设备cRIO系列在厦门集美大桥结构安全监测系统中的实际应用是cRIO平台在国内结构安全监测领域的首次成功案例,截至目前运行正常,工作稳定,得到业内的一致好评。事实证明,NI cRIO平台是构建该采集终端的理想解决方案之一,对接下来的耗资700亿港珠澳大桥系统实施具有很强的示范性和参考价值。

    时间:2020-05-07 关键词: 监测系统 ni LabVIEW

  • 波形发生器进阶篇,在LabVIEW中控制Analog Discover波形发生器

    波形发生器进阶篇,在LabVIEW中控制Analog Discover波形发生器

    波形发生器的使用已司空见惯,对于波形发生器,想必很多朋友均有所了解。如果你想增进对波形发生器的了解,可以翻阅小编往期带来的波形发生器相关文章。而本文对于波形发生器的讲解,在于介绍如何在LabVIEW中控制Analog Discovery™波形发生器。如果你对本文即将要讲解的内容存在一定兴趣,不妨继续往下阅读哦。 步骤1:材料 必备条件:您必须已完成上一个项目中的步骤2。必须遵循上一个项目的选件2.1(即安装LabVIEW)。 硬件 模拟发现 软件 WaveForms 2.6.2或更高版本 LabVIEW(到目前为止,已经测试了2013和2014版本可以正常工作) 步骤2:前言 为正确理解该项目的功能,了解Waveforms SDK非常重要。通常,模拟发现是通过免费软件包Waveforms控制的。WaveForms还附带了一个开源开发工具包。通过该SDK,您可以访问C/C++API库,任何人都可以为Analog Discovery编写自己的软件接口。在WaveForms参考手册中可以找到API中所有可用功能的概述。 该LabVIEW项目的核心是简单地调用C/C++API函数。专用VI用于LabVIEW中的每个单独的Waveforms API函数。通过单击项目窗口中的digilent.lvllib,可以查看可用API函数的列表。该列表中的每个VI都有对应的C/C++API函数。有关每个功能如何工作的更多信息,请参考WaveForms参考手册,如上图所示。 步骤3:主GUI代码概述 在GUI Main中,该代码是GUI Main的简化派生,继承自先前的LabForms项目。为了简洁起见,许多Waveforms API调用已组合到了子VI中。在新的GUI Main中,有两个主要部分需要关注,即Device Selection Loop和Run Device Functions部分。 设备选择循环 设备选择循环有两个主要功能。首先,它使用“查找已连接的设备.vi”搜索要连接的兼容设备。添加了刷新按钮选项,因此您可以在启动GUI Main.vi之后连接设备。“查找连接的设备.vi”检查以确保没有其他应用程序正在使用您要打开的设备。如果设备已经在使用中,则对前面板控件进行配置,以便使“确定”按钮呈灰色。这样可以防止您打开已在使用的设备。如果不使用设备,则可以单击“确定”以继续进行打开过程。一旦打开过程结束,设备选择循环将终止,并启动运行设备功能部分。 运行设备功能 本节的第一部分将打开所选设备。该过程是自我解释的,不需要详细解释。有关更多信息,请参考代码中带编号的注释。打开设备后,您设计的任何自定义VI都将开始运行。在此项目中,运行“GUI自定义波形Gen.vi”。如果要调整自定义信号输出的范围,可以在选择设备之前单击“启用范围”按钮。这将从LabForms中打开标准示波器窗口。 步骤4:来自生成代码概述的自定义Wave 自定义波形发生器可以完成一些操作。首次调用时,两个波形通道W1和W2都被启用(请参见循环左上方的代码)。接下来,进行一些计算以将光标在2d框中的位置转换为波形的幅度和频率。有关详细信息,请参考代码中的注释。 从/事件结构生成波形 该项目的核心是生成模拟信号。这是使用“Generate Waveform.vi”在事件结构中完成的。该子VI仅调用了少数控制模拟发现的WaveForms API函数。上面包含了Generate Waveform。vi代码的图片。它描述了哪些API函数用于控制Analog Discovery的信号发生器。有关这些API函数如何工作的更多信息,请参阅WaveForms SDK参考手册。 为使波形生成正常工作,请务必注意调用Generate Waveform.vi的上下文。该VI应在事件结构中调用,因此仅在发生某些事件时才可激活。每次循环调用G 赋能Waveform.vi都会导致性能问题和输出波形中的 不连续。此事件结构包含两种不同的情况。 事件结构案例[0]: 第一拳是一个超时案例。重要的是,通过将一个值连接到事件结构左上方的小沙漏来提供超时持续时间。否则,可能会导致整个项目冻结。 事件结构案例[1]: 此事件案例是调用 Generate Waveform的事件案例。vi设置为在图片边界内单击鼠标,在图片边界内移动或退出图片边界时触发。如果需要,可以通过右键单击事件结构并单击相应的选项卡来编辑案例处理的事件。 在2d图片上绘制光标 如果您对如何在2d图片上绘制光标感到好奇,请查看上面的subVI代码。代码中的注释说明了如何绘制光标。 第5步:运行项目 要使事情运行,请打开LabVIEW项目。打开项目窗口后,双击“GUI Main.vi”。打开该VI的前面板后,执行此gif所示的操作以使波形发生器运行。 WaveGen/示波器的物理接线 如果要在示波器面板中查看正在生成的波形,必须将波形连接到模拟输出,然后模拟输入引脚(请参见上图)。有关引脚的详细信息,请参见Analog Discovery引脚。 正确停止项目 要使整个项目停止,您必须按下停止按钮所有弹出的窗口。GUI主窗口没有停止按钮,并且在您正确关闭其他窗口后将自动停止。 以上便是此次小编带来的“波形发生器”相关内容,通过本文,希望大家对本文讲解的内容具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!

    时间:2020-02-13 关键词: analog 波形发生器 discover LabVIEW

首页  上一页  1 2 3 4 5 6 7 8 9 10 下一页 尾页
发布文章

技术子站

更多

项目外包