当前位置:首页 > PCB设计
  • PCB设计技巧经典问答,建议收藏

    PCB设计技巧经典问答,建议收藏

    初学PCB,往往会有很多的问题,这里整理了PCB设计的经典几十问,建议大家收藏。 1、如何选择 PCB 板材? 选择 PCB 板材必须在满足设计需求和可量产性及成本中间取得平衡点。设计需求包含电气和机构这两部分。通常在设计非常高速的 PCB 板子(大于 GHz 的频率)时这材质问题会比较重要。例如,现在常用的 FR-4 材质,在几个 GHz 的频率时的介质损(dielectric loss)会对信号衰减有很大的影响,可能就不合用。就电气而言,要注意介电常数(dielectric constant)和介质损在所设计的频率是否合用。 2、如何避免高频干扰? 避免高频干扰的基本思路是尽量降低高频信号电磁场的干扰,也就是所谓的串扰(Crosstalk)。可用拉大高速信号和模拟信号之间的距离,或加 ground guard/shunt traces 在模拟信号旁边。还要注意数字地对模拟地的噪声干扰。 3、在高速设计中,如何解决信号的完整性问题? 信号完整性基本上是阻抗匹配的问题。而影响阻抗匹配的因素有信号源的架构和输出阻抗(output impedance),走线的特性阻抗,负载端的特性,走线的拓朴(topology)架构等。解决的方式是靠端接(termination)与调整走线的拓朴。 4、差分布线方式是如何实现的? 差分对的布线有两点要注意,一是两条线的长度要尽量一样长,另一是两线的间距(此间距由差分阻抗决定)要一直保持不变,也就是要保持平行。平 行 的 方式有两种,一为两条线走在同一走线层(side-by-side),一为两条线走在上下相邻两层(over-under)。一般以前者 side-by-side 实现的方式较多。 5、对于只有一个输出端的时钟信号线,如何实现差分布线? 要用差分布线一定是信号源和接收端也都是差分信号才有意义。所以对只有一个输出端的时钟信号是无法使用差分布线的。 6、接收端差分线对之间可否加一匹配电阻? 接收端差分线对间的匹配电阻通常会加, 其值应等于差分阻抗的值。这样信号品质会好些。 7、为何差分对的布线要靠近且平行? 对差分对的布线方式应该要适当的靠近且平行。所谓适当的靠近是因为这间距会影响到差分阻抗(differential impedance)的值, 此值是设计差分对的重要参数。需要平行也是因为要保持差分阻抗的一致性。若两线忽远忽近, 差分阻抗就会不一致, 就会影响信号完整性(signal integrity)及时间延迟(timing delay)。 8、如何处理实际布线中的一些理论冲突的问题 基本上, 将模/数地分割隔离是对的。 要注意的是信号走线尽量不要跨过有分割的地方(moat), 还有不要让电源和信号的回流电流路径(returning current path)变太大。 晶振是模拟的正反馈振荡电路, 要有稳定的振荡信号, 必须满足loop gain 与 phase 的规范, 而这模拟信号的振荡规范很容易受到干扰, 即使加 ground guard traces 可能也无法完全隔离干扰。 而且离的太远,地平面上的噪声也会影响正反馈振荡电路。 所以, 一定要将晶振和芯片的距离进可能靠近。 确实高速布线与 EMI 的要求有很多冲突。但基本原则是因 EMI 所加的电阻电容或 ferrite bead, 不能造成信号的一些电气特性不符合规范。 所以, 最好先用安排走线和 PCB 叠层的技巧来解决或减少 EMI的问题, 如高速信号走内层。 最后才用电阻电容或 ferrite bead 的方式, 以降低对信号的伤害。 9、如何解决高速信号的手工布线和自动布线之间的矛盾? 现在较强的布线软件的自动布线器大部分都有设定约束条件来控制绕线方式及过孔数目。各家 EDA公司的绕线引擎能力和约束条件的设定项目有时相差甚远。 例如, 是否有足够的约束条件控制蛇行线(serpentine)蜿蜒的方式, 能否控制差分对的走线间距等。 这会影响到自动布线出来的走线方式是否能符合设计者的想法。另外, 手动调整布线的难易也与绕线引擎的能力有绝对的关系。 例如, 走线的推挤能力,过孔的推挤能力, 甚至走线对敷铜的推挤能力等等。 所以, 选择一个绕线引擎能力强的布线器, 才是解决之道。 10、关于 test coupon。 test coupon 是用来以 TDR (Time Domain Reflectometer) 测量所生产的 PCB 板的特性阻抗是否满足设计需求。 一般要控制的阻抗有单根线和差分对两种情况。 所以, test coupon 上的走线线宽和线距(有差分对时)要与所要控制的线一样。 最重要的是测量时接地点的位置。 为了减少接地引线(ground lead)的电感值, TDR 探棒(probe)接地的地方通常非常接近量信号的地方(probe tip), 所以, test coupon 上量测信号的点跟接地点的距离和方式要符合所用的探棒。 11、在高速 PCB 设计中,信号层的空白区域可以敷铜,而多个信号层的敷铜在接地和接电源上应如何分配? 一般在空白区域的敷铜绝大部分情况是接地。 只是在高速信号线旁敷铜时要注意敷铜与信号线的距离, 因为所敷的铜会降低一点走线的特性阻抗。 也要注意不要影响到它层的特性阻抗, 例如在 dual strip line 的结构时。 12、是否可以把电源平面上面的信号线使用微带线模型计算特性阻抗?电源和地平面之间的信号是否可以使用带状线模型计算? 是的, 在计算特性阻抗时电源平面跟地平面都必须视为参考平面。 例如四层板: 顶层-电源层-地层-底层, 这时顶层走线特性阻抗的模型是以电源平面为参考平面的微带线模型。 13、在高密度印制板上通过软件自动产生测试点一般情况下能满足大批量生产的测试要求吗? 一般软件自动产生测试点是否满足测试需求必须看对加测试点的规范是否符合测试机具的要求。另外,如果走线太密且加测试点的规范比较严,则有可能没办法自动对每段线都加上测试点,当然,需要手动补齐所要测试的地方。 14、添加测试点会不会影响高速信号的质量? 至于会不会影响信号质量就要看加测试点的方式和信号到底多快而定。基本上外加的测试点(不用线上既有的穿孔(via or DIP pin)当测试点)可能加在线上或是从线上拉一小段线出来。前者相当于是加上一个很小的电容在线上,后者则是多了一段分支。这两个情况都会对高速信号多多少少会有点影响,影响的程度就跟信号的频率速度和信号缘变化率(edge rate)有关。影响大小可透过仿真得知。原则上测试点越小越好(当然还要满足测试机具的要求)分支越短越好。 15、若干 PCB 组成系统,各板之间的地线应如何连接? 各个 PCB 板子相互连接之间的信号或电源在动作时,例如 A 板子有电源或信号送到 B 板子,一定会有等量的电流从地层流回到 A 板子 (此为 Kirchoff current law)。这地层上的电流会找阻抗最小的地方流回去。所以,在各个不管是电源或信号相互连接的接口处,分配给地层的管脚数不能太少,以降低阻抗,这样可以降低地层上的噪声。另外,也可以分析整个电流环路,尤其是电流较大的部分,调整地层或地线的接法,来控制电流的走法(例如,在某处制造低阻抗,让大部分的电流从这个地方走),降低对其它较敏感信号的影响。 16、能介绍一些国外关于高速 PCB 设计的技术书籍和资料吗? 现在高速数字电路的应用有通信网路和计算机等相关领域。在通信网路方面,PCB 板的工作频率已达 GHz 上下,迭层数就我所知有到 40 层之多。计算机相关应用也因为芯片的进步,无论是一般的 PC 或服务器(Server),板子上的最高工作频率也已经达到 400MHz (如 Rambus) 以上。因应这高速高密度走线需求,盲埋孔(blind/buried vias)、mircrovias 及 build-up 制程工艺的需求也渐渐越来越多。 这些设计需求都有厂商可大量生产。 以下提供几本不错的技术书籍: Howard W. Johnson,“High-Speed Digital Design – A Handbook of Black Magic”; Stephen H. Hall,“High-Speed Digital System Design”; Brian Yang,“Digital Signal Integrity”; lDooglas Brook,“Integrity Issues and printed Circuit Board Design”。 17、两个常被参考的特性阻抗公式: 微带线(microstrip) Z={87/[sqrt(Er+1.41)]}ln[5.98H/(0.8W+T)] 其中,W 为线宽,T 为走线的铜皮厚度,H 为走线到参考平面的距离,Er 是 PCB 板材质的介电常数(dielectric constant)。此公式必须在0.1<(W/H)<2.0 及 1<(Er)<15 的情况才能应用。 带状线(stripline) Z=[60/sqrt(Er)]ln{4H/[0.67π(T+0.8W)]} 其中,H 为两参考平面的距离,并且走线位于两参考平面的中间。此公式必须在 W/H<0.35 及 T/H<0.25 的情况才能应用。 18、差分信号线中间可否加地线? 差分信号中间一般是不能加地线。因为差分信号的应用原理最重要的一点便是利用差分信号间相互耦合(coupling)所带来的好处,如 flux cancellation,抗噪声(noise immunity)能力等。若在中间加地线,便会破坏耦合效应。 19、刚柔板设计是否需要专用设计软件与规范?国内何处可以承接该类电路板加工? 可以用一般设计 PCB 的软件来设计柔性电路板(Flexible Printed Circuit)。一样用 Gerber 格式给 FPC厂商生产。由于制造的工艺和一般 PCB 不同,各个厂商会依据他们的制造能力会对最小线宽、最小线距、最小孔径(via)有其限制。除此之外,可在柔性电路板的转折处铺些铜皮加以补强。至于生产的厂商可上网“FPC”当关键词查询应该可以找到。 20、适当选择 PCB 与外壳接地的点的原则是什么? 选择 PCB 与外壳接地点选择的原则是利用 chassis ground 提供低阻抗的路径给回流电流(returning current)及控制此回流电流的路径。例如,通常在高频器件或时钟产生器附近可以借固定用的螺丝将 PCB的地层与 chassis ground 做连接,以尽量缩小整个电流回路面积,也就减少电磁辐射。 21、电路板 DEBUG 应从那几个方面着手? 就数字电路而言,首先先依序确定三件事情: 1. 确认所有电源值的大小均达到设计所需。有些多重电源的系统可能会要求某些电源之间起来的顺序与快慢有某种规范。 2. 确认所有时钟信号频率都工作正常且信号边缘上没有非单调(non-monotonic)的问题。 3. 确认 reset 信号是否达到规范要求。 这些都正常的话,芯片应该要发出第一个周期(cycle)的信号。接下来依照系统运作原理与 bus protocol 来 debug。 22、在电路板尺寸固定的情况下,如果设计中需要容纳更多的功能,就往往需要提高 PCB 的走线密度,但是这样有可能导致走线的相互干扰增强,同时走线过细也使阻抗无法降低,请专家介绍在高速(>100MHz)高密度 PCB 设计中的技巧? 在设计高速高密度 PCB 时,串扰(crosstalk inteRFerence)确实是要特别注意的,因为它对时序(timing)与信号完整性(signal integrity)有很大的影响。以下提供几个注意的地方: 控制走线特性阻抗的连续与匹配。 走线间距的大小。一般常看到的间距为两倍线宽。可以透过仿真来知道走线间距对时序及信号完整性的影响,找出可容忍的最小间距。不同芯片信号的结果可能不同。 选择适当的端接方式。 避免上下相邻两层的走线方向相同,甚至有走线正好上下重迭在一起,因为这种串扰比同层相邻走线的情形还大。 利用盲埋孔(blind/buried via)来增加走线面积。但是 PCB 板的制作成本会增加。 在实际执行时确实很难达到完全平行与等长,不过还是要尽量做到。 除此以外,可以预留差分端接和共模端接,以缓和对时序与信号完整性的影响。 23、模拟电源处的滤波经常是用 LC 电路。但是为什么有时 LC 比 RC 滤波效果差? LC 与 RC 滤波效果的比较必须考虑所要滤掉的频带与电感值的选择是否恰当。因为电感的感抗(reactance)大小与电感值和频率有关。如果电源的噪声频率较低,而电感值又不够大,这时滤波效果可能不如 RC。但是,使用 RC 滤波要付出的代价是电阻本身会耗能,效率较差,且要注意所选电阻能承受的功率。 24、滤波时选用电感,电容值的方法是什么? 电感值的选用除了考虑所想滤掉的噪声频率外,还要考虑瞬时电流的反应能力。如 果 LC 的输出端会有机会需要瞬间输出大电流,则电感值太大会阻碍此大电流流经此电感的速度,增加纹波噪声(ripple noise)。电容值则和所能容忍的纹波噪声规范值的大小有关。纹波噪声值要求越小,电容值会较大。而电容的ESR/ESL 也会有影响。 另外,如果这 LC 是放在开关式电源(switching regulation power)的输出端时,还要注意此 LC 所产生的极点零点(pole/zero)对负反馈控制(negative feedback control)回路稳定度的影响。 25、如何尽可能的达到 EMC 要求,又不致造成太大的成本压力? PCB 板上会因 EMC 而增加的成本通常是因增加地层数目以增强屏蔽效应及增加了 ferrite bead、choke等抑制高频谐波器件的缘故。除此之外,通常还是需搭配其它机构上的屏蔽结构才能使整个系统通过 EMC的要求。以下仅就 PCB 板的设计技巧提供几个降低电路产生的电磁辐射效应。 尽可能选用信号斜率(slew rate)较慢的器件,以降低信号所产生的高频成分。 注意高频器件摆放的位置,不要太靠近对外的连接器。 注意高速信号的阻抗匹配,走线层及其回流电流路径(return current path), 以减少高频的反射与辐射。 在各器件的电源管脚放置足够与适当的去耦合电容以缓和电源层和地层上的噪声。特别注意电容的频率响应与温度的特性是否符合设计所需。 对外的连接器附近的地可与地层做适当分割,并将连接器的地就近接到 chassis ground。 可适当运用 ground guard/shunt traces 在一些特别高速的信号旁。但要注意 guard/shunt traces 对走线特性阻抗的影响。 电源层比地层内缩 20H,H 为电源层与地层之间的距离。 26、当一块 PCB 板中有多个数/模功能块时,常规做法是要将数/模地分开,原因何在? 将数/模地分开的原因是因为数字电路在高低电位切换时会在电源和地产生噪声,噪声的大小跟信号的速度及电流大小有关。如果地平面上不分割且由数字区域电路所产生的噪声较大而模拟区域的电路又非常接近,则即使数模信号不交叉, 模拟的信号依然会被地噪声干扰。也就是说数模地不分割的方式只能在模拟电路区域距产生大噪声的数字电路区域较远时使用。 27、另一种作法是在确保数/模分开布局,且数/模信号走线相互不交叉的情况下,整个 PCB板地不做分割,数/模地都连到这个地平面上。道理何在? 数模信号走线不能交叉的要求是因为速度稍快的数字信号其返回电流路径(return current path)会尽量沿着走线的下方附近的地流回数字信号的源头,若数模信号走线交叉,则返回电流所产生的噪声便会出现在模拟电路区域内。 28、在高速 PCB 设计原理图设计时,如何考虑阻抗匹配问题? 在设计高速 PCB 电路时,阻抗匹配是设计的要素之一。而阻抗值跟走线方式有绝对的关系, 例如是走在表面层(microstrip)或内层(stripline/double stripline),与参考层(电源层或地层)的距离,走线宽度,PCB材质等均会影响走线的特性阻抗值。也就是说要在布线后才能确定阻抗值。一般仿真软件会因线路模型或所使用的数学算法的限制而无法考虑到一些阻抗不连续的布线情况,这时候在原理图上只能预留一些terminators(端接),如串联电阻等,来缓和走线阻抗不连续的效应。真正根本解决问题的方法还是布线时尽量注意避免阻抗不连续的发生。 29、哪里能提供比较准确的 IBIS 模型库? IBIS 模型的准确性直接影响到仿真的结果。基本上 IBIS 可看成是实际芯片 I/O buffer 等效电路的电气特性资料,一般可由 SPICE 模型转换而得 (亦可采用测量, 但限制较多),而 SPICE 的资料与芯片制造有绝对的关系,所以同样一个器件不同芯片厂商提供,其 SPICE 的资料是不同的,进而转换后的 IBIS 模型内之资料也会随之而异。也就是说,如果用了 A 厂商的器件,只有他们有能力提供他们器件准确模型资料,因为没有其它人会比他们更清楚他们的器件是由何种工艺做出来的。如果厂商所提供的 IBIS 不准确,只能不断要求该厂商改进才是根本解决之道。 30、在高速 PCB 设计时,设计者应该从那些方面去考虑 EMC、EMI 的规则呢? 一般 EMI/EMC 设计时需要同时考虑辐射(radiated)与传导(conducted)两个方面. 前者归属于频率较高的部分(>30MHz)后者则是较低频的部分(<30MHz). 所以不能只注意高频而忽略低频的部分.一个好的EMI/EMC 设计必须一开始布局时就要考虑到器件的位置, PCB 迭层的安排, 重要联机的走法, 器件的选择等, 如果这些没有事前有较佳的安排, 事后解决则会事倍功半, 增加成本. 例如时钟产生器的位置尽量不要靠近对外的连接器, 高速信号尽量走内层并注意特性阻抗匹配与参考层的连续以减少反射, 器件所推的信号之斜率(slew rate)尽量小以减低高频成分, 选择去耦合(decoupling/bypass)电容时注意其频率响应是否符合需求以降低电源层噪声. 另外, 注意高频信号电流之回流路径使其回路面积尽量小(也就是回路阻抗loop impedance 尽量小)以减少辐射. 还可以用分割地层的方式以控制高频噪声的范围. 最后, 适当的选择PCB 与外壳的接地点(chassis ground)。 31、如何选择 EDA 工具? 目前的 pcb 设计软件中,热分析都不是强项,所以并不建议选用,其它的功能 1.3.4 可以选择 pads或 cadence 性能价格比都不错。 PLD 的设计的初学者可以采用 PLD 芯片厂家提供的集成环境,在做到百万门以上的设计时可以选用单点工具。 32、请推荐一种适合于高速信号处理和传输的 EDA 软件。 常规的电路设计,INNOVEDA 的 PADS 就非常不错,且有配合用的仿真软件,而这类设计往往占据了 70%的应用场合。在做高速电路设计,模拟和数字混合电路,采用 Cadence 的解决方案应该属于性能价格比较好的软件,当然 mentor 的性能还是非常不错的,特别是它的设计流程管理方面应该是最为优秀的。 33、对 PCB 板各层含义的解释 Topoverlay ----顶层器件名称, 也叫 top silkscreen 或者 top component legend, 比如 R1 C5, IC10.bottomoverlay----同理 multilayer-----如果你设计一个 4 层板,你放置一个 free pad or via, 定义它作为multilay 那么它的 pad 就会自动出现在 4 个层 上,如果你只定义它是 top layer, 那么它的 pad 就会只出现在顶层上。 34、2G 以上高频 PCB 设计,走线,排版,应重点注意哪些方面? 2G 以上高频 PCB 属于射频电路设计,不在高速数字电路设计讨论范围内。而 射 频电路的布局(layout)和布线(routing)应该和原理图一起考虑的,因为布局布线都会造成分布效应。而且,射频电路设计一些无源器件是通过参数化定义,特殊形状铜箔实现,因此要求 EDA 工具能够提供参数化器件,能够编辑特殊形状铜箔。Mentor 公司的 boardstation 中有专门的 RF 设计模块,能够满足这些要求。而且,一般射频设计要求有专门射频电路分析工具,业界最著名的是 agilent 的 eesoft,和 Mentor 的工具有很好的接口。 35、2G 以上高频 PCB 设计,微带的设计应遵循哪些规则? 射频微带线设计,需要用三维场分析工具提取传输线参数。所有的规则应该在这个场提取工具中规定。 36、对于全数字信号的 PCB,板上有一个 80MHz 的钟源。除了采用丝网(接地)外,为了保证有足够的驱动能力,还应该采用什么样的电路进行保护? 确保时钟的驱动能力,不应该通过保护实现,一般采用时钟驱动芯片。一般担心时钟驱动能力,是因为多个时钟负载造成。采用时钟驱动芯片,将一个时钟信号变成几个,采用点到点的连接。选择驱动芯片,除了保证与负载基本匹配,信号沿满足要求(一般时钟为沿有效信号),在计算系统时序时,要算上时钟在驱动芯片内时延。 37、如果用单独的时钟信号板,一般采用什么样的接口,来保证时钟信号的传输受到的影响小? 时钟信号越短,传输线效应越小。采用单独的时钟信号板,会增加信号布线长度。而且单板的接地供电也是问题。如果要长距离传输,建议采用差分信号。LVDS 信号可以满足驱动能力要求,不过您的时钟不是太快,没有必要。 38、27M,SDRAM 时钟线(80M-90M),这些时钟线二三次谐波刚好在 VHF 波段,从接收端高频窜入后干扰很大。除了缩短线长以外,还有那些好办法? 如果是三次谐波大,二次谐波小,可能因为信号占空比为 50%,因为这种情况下,信号没有偶次谐波。这时需要修改一下信号占空比。此外,对于如果是单向的时钟信号,一般采用源端串联匹配。

    时间:2020-06-22 关键词: PCB pcb设计

  • PCB设计布局规则技巧和布局检查

    PCB设计布局规则技巧和布局检查

    本文主要介绍4点PCB设计布局3点布局技巧以及七点布局检查。 1、在通常情况下,所有的元件均应布置在电路板的同一面上,只有顶层元件过密时,才能将一些高度有限并且发热量小的器件,如贴片电阻、贴片电容、贴片IC等放在低层。 2、在保证电气性能的前提下,元件应放置在栅格上且相互平行或垂直排列,以求整齐、美观,在一般情况下不允许元件重叠;元件排列要紧凑,元件在整个版面上应分布均匀、疏密一致。 3、电路板上不同组件相临焊盘图形之间的最小间距应在1MM以上。 4、离电路板边缘一般不小于2MM.电路板的最佳形状为矩形,长宽比为3:2或4:3.电路板面尺大于200MM乘150MM时,应考虑电路板所能承受的机械强度。 PCB设计布局技巧 在PCB的布局设计中要分析电路板的单元,依据起功能进行布局设计,对电路的全部元器件进行布局时,要符合以下原则: 1、按照电路的流程安排各个功能电路单元的位置,使布局便于信号流通,并使信号尽可能保持一致的方向。 2、以每个功能单元的核心元器件为中心,围绕他来进行布局。元器件应均匀、整体、紧凑的排列在PCB上,尽量减少和缩短各元器件之间的引线和连接。 3、在高频下工作的电路,要考虑元器件之间的分布参数。一般电路应尽可能使元器件并行排列,这样不但美观,而且装旱容易,易于批量生产。 PCB设计布局检查 1、电路板尺寸和图纸要求加工尺寸是否相符合。 2、元器件的布局是否均衡、排列整齐、是否已经全部布完。 3、各个层面有无冲突。如元器件、外框、需要私印的层面是否合理。 4、常用到的元器件是否方便使用。如开关、插件板插入设备、须经常更换的元器件等。 5、热敏元器件与发热元器件距离是否合理。 6、散热性是否良好。 7、线路的干扰问题是否需要考虑。 以上就是PCB的布局规则技巧和布局检查了。

    时间:2020-06-22 关键词: PCB pcb设计

  • 常规的PCB应该设计的层数

    常规的PCB应该设计的层数

    首先PCB分为单面和双面和多层板,每一种类的要求时不一样的,我们一个个来看。 一、单面板 单面PCB主要用在非常简单的消费电子产品上的,毕竟工艺简单,现在还用原始电路板材料便宜(FR-1或FR-2)和薄铜包层。单面板设计通常包含许多跳线来模拟双面板上的电路布线。一般用在低频电路比较多。因为这种类型的设计很容易受到辐射噪声的影响。所以设计这种类型的电路板会比较麻烦,如果不是很注意的话,会出现很多问题的。虽然在复杂的设计中也有成功的案例,但都是需要经过深思熟虑以及不断验证才有实现的可能。举一个一个例子,比如一个电视机,它将所有模拟电路放在机箱底部的单面板上,并使用金属化CRT将电路板屏蔽在靠近电池组顶部的单独数字调谐板上。如果需要大批量、低成本的生产PCB,那就需要自行发挥了。 二、双面板 相对于单面板来说,复杂一点的就是双面板。有一些双面板还是用FR-2材料,但目前更常用的是FR-4材料来生产。FR-4材料强度的增加更好地支持了过孔。因为有两层箔,所以双面板更容易布线,并且可以通过在不同层上交叉走线来规划信号。但是,模拟电路不建议使用交叉走线。在可能的情况下,底层尽可能保持完整当做地平面,所有其他信号应在顶层布线。底层做地平面有几个好处: 1、接地通常是电路中最常见的连接。可以把整板所有的GND网络放在底层来连接。 2、增加了电路板的机械强度。 3、降低了电路中所有接地连接的阻抗,从而减少了信号的传导噪声。 4、为电路中的每个网络增加了分布电容-有助于抑制辐射噪声。 5、可以屏蔽来自电路板下方的辐射噪声。 三、多层板 双面板尽管有其优点,但并不是最好的构造方法,特别是对于敏感或高速电路设计来说。所以对于高速设计我们通常会使用多层板来进行设计,最常见的板厚为1.6毫米,材料为FR-4,还会有独立的GND或者POWER层等等。多层板本身需要注意的PCB设计事项就很多,下面我们要理清楚使用多层板设计的一些明显原因: 1、拥有独立的电源和接地连接布线层。如果电源也在一个平面上,则其他的相同的电源网络只需添加过孔就可以连接在一起了。 2、其他层可用于信号布线,这样可以为布线提供更多走线空间。 3、电源和接地层之间将存在分布电容,从而降低高频噪声。 然而,多层板的其他原因可能并不明显或不直观,主要有如下几点: 1、更好的EMI/RFI抑制。由于图像平面效应,自Marconi时代以来就已为人所知。当导体靠近平行导电表面放置时,大部分高频电流将直接返回导体下方,沿相反方向流动。平面内导体的镜像形成传输线。由于在传输线中电流相等且相反,因此它相对不受辐射噪声的影响。而是非常有效地耦合信号。图像平面效果与地面和电源平面同样有效,但它们必须是连续的。任何间隙或不连续性都会导致有益效果迅速消失。 2、减少小批量生产的总体项目成本。虽然多层板的制造成本较高,但FCC或其他机构的EMI/RFI要求可能需要对设计进行昂贵的测试。如果存在问题,可能需要推倒来重新进行PCB设计,从而进行额外的测试。与2层板PCB相比,多层板PCB的EMI/RFI性能可提高20dB。如果产量很小,那么首先设计更好的的PCB是有意义的。 3、有效防止各种信号层之间的串扰问题。 4、生产工艺要求相对来说比较高,比起2层板设计,就不是那么一丁点的难度了。

    时间:2020-06-22 关键词: PCB pcb设计

  • 十步设计出一个PCB电路板

    十步设计出一个PCB电路板

    在设计电路板时,往往需要很多繁杂的步骤。无论是微处理铜和焊料的基础知识,还是试图确保电路板最终都印刷完,或者遇到更具体的设计问题,例如通孔技术或带有通孔,焊盘和任意数量的布局的设计信号完整性问题,则需要确保您拥有正确的设计软件。那么下面将通过10步,告诉你怎么设计PCB。 如果您已经这样做数十年了,就不需要我告诉您了解设计软件对正确设计PCB线路板的价值。如果没有从原理图捕获到布局的准确而可靠的集成,为布线和铜线布置走线或管理焊料所需的层会变得困难。 步骤1:创建原理图 无论是从模板生成设计还是从头开始创建电路板,最好都是从原理图开始。原理图与新设备的蓝图相似,了解原理图中显示的内容非常重要。首先,原理图向您显示以下内容: 设计中使用了哪些组件 组件如何连接在一起 不同原理图中的组件组之间的关系 上面的最后一点非常重要,因为复杂的设计可能会使用分层示意图。如果您采用分层方法进行设计并将不同的电路块放置在不同的原理图中,则可以在新板上加强重要的组织。您可以在OnTrackPodcast上从CarlSchattke了解更多有关精心设计的原理图的价值。 与直接在板上进行设计相比,不仅电路互连更容易定义和编辑,而且将原理图转换为电路板布局要容易得多。对于组件,PCB设计软件具有广泛的零件库数据库 步骤2:创建空白PCB布局 创建原理图后,需要使用PCB设计软件中的原理图捕获工具来开始创建PCB布局。在此之前,您需要创建一个空白的PCB文档。创建电路板需要生成一个PcbDoc文件。可以从设计软件的主菜单轻松完成此操作 如果已经确定了电路板的PCB形状,尺寸和层堆叠,则可以立即进行设置。如果您现在不想执行这些任务,请不要烦恼,您可以在以后更改电路板的形状,尺寸和叠层(请参见下面的步骤4)。通过编译SchDoc,原理图信息可用于PcbDoc。编译过程包括验证设计并生成几个项目文档,以便您在转移到PcbDoc之前检查并更正设计。强烈建议您此时检查并更新用于创建PcbDoc信息的项目选项。 在设计电路板时,有时似乎似乎到达最终设计将是漫长而艰巨的旅程。无论是微处理铜和焊料的基础知识,还是试图确保电路板最终都印刷完,或者遇到更具体的设计问题,例如通孔技术或带有通孔,焊盘和任意数量的布局的设计信号完整性问题,则需要确保您拥有正确的设计软件。 如果您已经这样做数十年了,就不需要我告诉您了解设计软件对正确设计PCB线路板的价值。如果没有从原理图捕获到布局的准确而可靠的集成,为布线和铜线布置走线或管理焊料所需的层会变得困难。 步骤1:创建原理图 无论是从模板生成设计还是从头开始创建电路板,最好都是从原理图开始。原理图与新设备的蓝图相似,了解原理图中显示的内容非常重要。首先,原理图向您显示以下内容: 设计中使用了哪些组件 组件如何连接在一起 不同原理图中的组件组之间的关系 上面的最后一点非常重要,因为复杂的设计可能会使用分层示意图。如果您采用分层方法进行设计并将不同的电路块放置在不同的原理图中,则可以在新板上加强重要的组织。您可以在OnTrackPodcast上从CarlSchattke了解更多有关精心设计的原理图的价值。 与直接在板上进行设计相比,不仅电路互连更容易定义和编辑,而且将原理图转换为电路板布局要容易得多。对于组件,PCB设计软件具有广泛的零件库数据库 步骤2:创建空白PCB布局 创建原理图后,需要使用PCB设计软件中的原理图捕获工具来开始创建PCB布局。在此之前,您需要创建一个空白的PCB文档。创建电路板需要生成一个PcbDoc文件。可以从设计软件的主菜单轻松完成此操作,如下所示。 如果已经确定了电路板的PCB形状,尺寸和层堆叠,则可以立即进行设置。如果您现在不想执行这些任务,请不要烦恼,您可以在以后更改电路板的形状,尺寸和叠层(请参见下面的步骤4)。通过编译SchDoc,原理图信息可用于PcbDoc。编译过程包括验证设计并生成几个项目文档,以便您在转移到PcbDoc之前检查并更正设计,如下所示。强烈建议您此时检查并更新用于创建PcbDoc信息的项目选项。 步骤3:原理图捕获:链接到PCB PCB设计软件中的所有工具都可以在一个统一的设计环境中使用,在该设计环境中,原理图,PCB和BOM相互关联并且可以同时访问。其他程序会迫使您手动编译原理图数据,要将SchDoc信息传输到新创建的PcbDoc,请单击设计»更新PCB{新PCB的文件名}.PcbDoc。将打开“工程变更单”(ECO)对话框,列出原理图中的所有组件和网络。 步骤4:设计PCB叠层 当您将原理图信息传输到PcbDoc时,除了指定的电路板轮廓外,还会显示组件的封装。在放置组件之前,您应该使用如下所示的“层堆叠管理器”定义PCB布局(即形状,层堆叠)。 如果您不熟悉PCB设计,尽管可以在PCB设计软件中定义任意数量的层,但大多数现代设计都将从FR4上的4层板开始。您还可以利用材料堆叠库;这样一来,您就可以从各种不同的层压板和独特的板材中进行选择。 如果您要进行高速/高频设计,则可以使用内置的阻抗分析器来确保电路板中的阻抗控制。阻抗曲线工具使用Simberian集成的电磁场求解器来定制迹线的几何形状,以达到目标阻抗值。 步骤5:定义设计规则和DFM要求 PCB设计规则类别的种类很多,您可能不需要为每个设计使用所有这些可用规则。您可以通过在下面的PCB规则和约束编辑器中的列表中右键单击有问题的规则来选择/取消选择单个规则。 您确实使用的规则,尤其是用于制造的规则,应符合PCB制造商设备的规格和公差。诸如阻抗控制设计和许多高速/高频设计之类的高级设计可能需要遵循非常具体的设计规则,以确保您的产品正常工作。始终检查您的组件数据表以了解这些设计规则。 步骤6:放置组件 目前主流的PCB设计软件提供了很大的灵活性,并允许您快速将元件放置在电路板上。您可以自动排列组件,也可以手动放置它们。您还可以一起使用这些选项,从而可以利用自动放置的速度,并确保按照良好的组件放置准则对电路板进行布局。 步骤7:插入钻孔 在布线之前,最好先放置钻孔(安装和过孔)。如果您的设计很复杂,则可能需要在走线布线过程中至少修改一些通孔位置。可以通过“属性”对话框轻松完成此操作。 您在此处的偏好应遵循PCB制造商的制造设计(dfm)规范。如果您已经将PCBdfm要求定义为设计规则(请参见步骤5),则当您在布局中放置过孔,钻孔,焊盘和走线时,PCB设计软件将自动检查这些规则。 步骤8:布线跟踪 放置完组件和任何其他机械元件之后,就可以准备走线了。确保使用良好的布线指南,并利用PCB设计软件工具简化该过程,例如通过布线突出显示网络和颜色编码。 步骤9:添加标签和标识符 验证电路板布局后,您就可以在电路板上添加标签,标识符,标记,徽标或任何其他图像。对组件使用参考标识符是一个好主意,因为这将有助于PCB组装。另外,包括极性指示器,引脚1指示器和任何其他有助于识别组件及其方向的标签。对于徽标和图像,最好咨询您的PCB制造商,以确保您使用的字体可读。 步骤10:生成设计Gerber文件 在创建制造商可交付成果之前,始终最好通过运行设计规则检查(DRC)来验证电路板布局。 电路板通过最终DRC后,您需要为制造商生成设计文件。设计文件应包括构建电路板所需的所有信息和数据;包括任何注释或特殊要求,以确保您的制造商清楚您的要求。对于大多数制造商来说,您将可以使用如下所示的Gerber文件集;但是,某些制造商更喜欢其他CAD文件格式。 通过以上十步,就可以设计出一个PCB了,去动手试试吧。

    时间:2020-06-22 关键词: PCB pcb设计

  • PCB软硬结合板是什么?

    PCB软硬结合板是什么?

    PCB软硬结合板,也就是刚柔PCB板,他是在应用中结合了柔性和刚性电路板技术的电路板。大多数刚挠性板由多层挠性电路基板组成,这些挠性电路基板从外部和/或内部附接到一个或多个刚性板上,具体取决于应用程序的设计。柔性基板被设计为处于恒定的挠曲状态,并且通常在制造或安装期间形成为挠曲曲线。 刚性-Flex设计比典型的刚性板环境的设计更具挑战性,因为这些板是在3D空间中设计的,这也提供了更高的空间效率。通过能够在三个维度上进行设计,刚性挠性设计者可以扭曲,折叠和卷起柔性板基材,以达到最终应用包装所需的形状。 刚柔性PCB制造应用 刚-柔性PCB提供了从智能设备到手机和数码相机的广泛应用。刚挠性板制造已经越来越多地用于诸如起搏器之类的医疗设备中,以减小其空间并减轻重量。刚性挠性PCB的使用具有相同的优势,可以应用于智能控制系统。 在消费类产品中,PCB软硬结合板不仅使空间使用最大化和重量最小化,而且还大大提高了可靠性,从而消除了对焊接接头以及易出现连接问题的脆弱易碎接线的许多需求。这些只是一些示例,但刚柔结合的PCB可以使几乎所有先进的电气应用受益,包括测试设备,工具和汽车。

    时间:2020-06-22 关键词: PCB pcb设计

  • PCB设计需要学会的基础知识

    PCB设计需要学会的基础知识

    你知道PCB设计需要学会的基础知识有哪些吗?现在网上有许多关于PCB电路的经验与知识,让人目不暇接,像信号完整性这类问题准会把你搞晕。一个PCB工程师到底需要做什么?下面跟着小编一起来了解一下,读完这篇文章,相信你就很清晰了。 1、总体思路 设计PCB电路,大框架要搞清楚,但要做到这一点还真不容易。有些大框架也许是别人已经想好,自己只是把思路具体实现;但也有些要自己设计框架的,那就要搞清楚要实现什么功能,然后找找有否能实现同样或相似功能的参考电路板。 2、理解电路 如果找到了参考设计,那么就可以节约很多时间了(包括前期设计和后期调试),花时间看懂理解了,一方面能提高电路理解能力,而且能避免设计中的错误。如果没有找到参考设计也没关系,先确定大IC芯片,找datasheet,看其关键参数是否符合要求,哪些才是需要的关键参数,以及能否看懂这些关键参数,都是PCB工程师的能力的体现,这也需要长期地慢慢地积累。 3、原理图设计 硬件电路设计主要是三个部分,原理图、pcb、物料清单(BOM)表,原理图设计就是将前面的思路转化为电路原理图。 pcb涉及到实际的电路板,它根据原理图转化而来的网表(网表是沟通原理图和pcb之间的桥梁),而将具体的元器件的封装放置在电路板上,然后根据飞线连接其电信号。完成了pcb布局布线后,要用到哪些元器件应该有所归纳,这里将用到BOM表。 4、设计工具 Protel,也就是altium容易上手,在国内也比较流行,应付一般的工作已经足够,适合初入门的设计者使用。以上就是PCB设计需要学会的基础知识,希望能给大家帮助。

    时间:2020-05-13 关键词: 信号完整性 pcb设计 总体思路

  • PCB层压板问题以及它的相关解决方案

    PCB层压板问题以及它的相关解决方案

    什么是PCB层压板?它有什么作用?PCB层压板是会经常出现问题的,那么用什么方法可以去解决这些问题呢?一旦遇到PCB层压板问题,就应该考虑影响它的几个因素,下面我们一起看看是哪些因素呢? 1、要有合理的走向 如输入/输出,交流/直流,强/弱信号,高频/低频,高压/低压等,它们的走向应该呈线形(或分离),不相互交融,目的是防止相互干扰。最好的走向是按直线,但一般不易实现,最不利的走向是环形,所幸的是可以设隔离带来改善。对于是直流,小信号,低电压PCB设计的要求可以低些。 2、选择好接地点 小小的接地点非常重要,一般情况下要求共点地,如:前向放大器的多条地线应汇合后再与干线地相连,现实中因受各种限制很难完全办到,但应尽力遵循。 3、合理布置电源滤波/退耦电容 一般在原理图中仅画出若干电源滤波/退耦电容,但未指出它们各自应接于何处。其实这些电容是为开关器件(门电路)或其它需要滤波/退耦的部件而设置的,布置这些电容应尽量靠近这些元部件,离得太远就没有作用了。有趣的是,当电源滤波/退耦电容布置的合理时,接地点的问题就显得不那么明显。 4、线条有讲究 有条件做宽的线决不做细,高压及高频线应圆滑,不得有尖锐的倒角,拐弯也不得采用直角。地线应尽量宽,最好使用大面积敷铜,这对接地点问题有相当大的改善。以上就是PCB层压板解析,希望能给大家帮助。

    时间:2020-05-13 关键词: PCB pcb设计 pcb层压板问题

  • PCB焊接检测方法,你知道吗?

    PCB焊接检测方法,你知道吗?

    什么是PCB焊接检测方法?关于PCB焊接有很多方法,我们主要介绍主流的回流焊接,可以区分为单面板回焊及双面板回焊,单面回焊目前很少人使用,因为双面回焊可以节省电路板的空间,也就是说可以让产品做到更小,所以市面上看到的板子大多属于双面回焊制程。在对PCB焊接部检查的时候,我们可以用到下面四种方法。 1、PCB三角测量法(光切断法,光构造化法) 检查立体形状的方法一般为三角测量法。已经开发了利用三角测量法检出焊料引线部的截面形状的装置。然而因为三角测量法是从光入射的不同方向进行观测,本质上在对象物面为光扩散性的情况下,这种方法最适宜。焊料面接近于镜面条件的情况下,这种方法不适宜。 2、光反射分布测量法 光反射分布测量法是采用市售的焊接部检查装置的代表性检查方法,从倾斜方向入射光,在上方设置TV摄像进行检出。这时为了知道PCB焊料表面的角度,有必要知道照射的光的角度信息,点灭各种角度的灯,根据各灯的色彩来获得角度信息。相反,从上方照射光束,测量由焊料面反射的光的角度分布,检查焊料表面的倾斜。 3、使用变换角度的多个摄像的检查图像的方法 检查装置具有变换角度的多个(5台)摄像和由多个LED构成的照明。通常使用多个图像,采用接近目测的条件进行检查,可以提高可靠性。 4、焦点检出利用法 对于高密度化的安装基板,不是所希望的条件。比如多段焦点法,由于可以直接的检出焊料表面的高度,它是实现高精度的检出法。设置了10个焦点面检出器,通过求出最大输出所获得的焦点面,检知出焊料表面的位置。采用微细激光束照射对象物,在z方向上错开配置1 0个具有针孔的焦点位置检出器,可以成功地检查0.3mm节距引线的安装。以上就是PCB焊接检测方法,希望能给大家帮助。

    时间:2020-05-13 关键词: pcb设计 回流焊接 pcb三角测量法

  • 智能手环的PCB设计,你知道吗?

    智能手环的PCB设计,你知道吗?

    关于智能手环的PCB设计,你知道多少?越来越多的新科技涌现,在众多产品中智能手环脱颖而出,受到不同人群的关注,那么在智能手环里面的PCB设计需要注意哪些?随着小编一起去了解下~ 一个智能手环通常由射频电路单元、时钟电路单元、存储器电路单元、传感器电路单元和主控MCU单元等组成,而电路PCB通常集中在较小的范围内,进行单面或者双面贴片,电路板为4层或者6层为主。既然那么多功能集中在一个较小的PCB板上,那么在手环的布局和布线中我们要进行格外的注意,现在总结一些注意事项,以供参考。 PCB各部分电路分区布局,注意走线保护 从上面的PCB电路板中可以看出,智能手环的各个部分电路(不同颜色方框标记)有很好的分区:由于智能手环是数字电路元件集合在一起,在电路设计中只要做好配套的电阻和电容分布,就可以完成一定功能的电路模块,由此使得电路设计更加简洁和便于查找。 虽然有些传感器电路单元采用模拟电路技术进行数据采集,一旦将该模块设计为模块,那么,通过相应的连接接口即可完成数据的通信和信息的传递。 在电路模块布局时,一方面需要注意时钟电路和晶振电路要经过最短的路径到达目标管教,另一方面,在时钟走线时还要注意避让数据线,防止干扰影响系统的稳定。 在走线时,需要对关键走线进行保护,比如时钟产生电路,晶振电路等是否进行敷铜保护,是否进行环地保护等,一般在设计中会进行保护,对于晶振部分是需要挖铜处理。 PCB设计中处理好射频电路 智能手环在使用时需要和手机进行联动,因此,无线射频部分是关键部分,在这部分设计中,一定要格外注意。现在市面上的智能手环无外乎都是基于蓝牙进行的无线数据传输,因此重点说蓝牙射频的处理。 如果智能手环只是用于数据传输而不需要进行声音和音乐的传递,那么低功耗蓝牙是最优选择,在设计时,蓝牙天线形状,天线布局,智能手环外壳材料等都是影响智能手环性能的重要因素。在智能手环PCB设计过程中,一位优秀的射频天线工程师显得格外重要。 做好ESD防护设计 在之前的文章中也说过电路ESD方面的一些技术和知识,今天重要说下ESD对智能手环类产品的重要性。不同国家和地区对不同的产品或者同样的产品ESD要求有不同的标准,为了使产品通过相关的检测,在设计时要进行ESD保护设计,在设计完成之后还要进行ESD的检测,确保通过产品适应当地市场的电子检测。 预留系统升级接口 一款智能手环的功能升级是否方便对于使用者或者说智能手环狂热粉丝来说有着重要的意义。若一款产品在适当的时候进行软件的升级(可能是前期硬件设计到某些功能而为了追赶市场软件没有跟上,也可能是修复了一些软件的BUG),这说明产品还在不停的研发过程中,这对于使用者来说是一种良好的心理补偿。现在智能手环的软件升级通常有两种方法:通过USB接口和无线推送的方法。至于采用哪种方法,需要在前期规划和软硬件规划是进行确定。以上就是智能手环的PCB设计,希望能给大家帮助。

    时间:2020-05-12 关键词: 智能 pcb设计 手环

  • 高速PCB设计布局细节,你需要知道

    高速PCB设计布局细节,你需要知道

    什么是高速PCB设计布局细节?高速PCB设计的过程中,一定要对整体布局设计给予足够的重视。那么,在具体设计的过程中,可以从以下几个方面展开: 1、一般情况下,电子电路都由输入级、中间级、输出级等方面构成。因此,在高速PCB设计的过程中,整体布局应该按照信号流程,对电路单元位置进行合理的布局这样可以保证各种信号传输的稳定性。 2、在各个功能单元电路布局设计的过程中,主要是以元件为主,围绕着这个中心点进行相应的布局,进而保证高速PCB设计的完整性。 3、针对特殊元件的布局设计,应当根据其特殊性设置相对合适的位置。 4、在高速PCB设计的过程中,若是有一些相对较重元件的话,应当设计固定支架的位置,并且注重各个部分的平衡性,这样为后期的的生产,提供了相对便利的条件。 5、针对发热性能相对较高的元器件,一定设置相应的散热性,或者采取相应的散热方式,来保证元器件的稳定性。 总结:以上就是高速PCB设计布局细节,希望能给大家帮助。

    时间:2020-05-12 关键词: PCB 高速 pcb设计

  • PCB设计的高速信号走线准则,你知道吗?

    PCB设计的高速信号走线准则,你知道吗?

    什么是PCB设计的高速信号走线准则?硬件工程师做久了自然有自己处理电路板的一套方法,也许不是最好的办法,自己却能理解其中的意义。但是工作中还是要按照最完美的办法进行操作,本期我们就来了解一下关于高速信号走线准则到底有哪几条是你不清楚的? 原则一:高速信号走线屏蔽规则 在高速的PCB设计中,时钟等关键的高速信号线,走需要进行屏蔽处理,如果没有屏蔽或只屏蔽了部分,都是会造成EMI的泄漏。 建议屏蔽线,每1000mil,打孔接地。 原则二:高速信号的走线闭环规则 由于PCB板的密度越来越高,很多PCB LAYOUT工程师在走线的过程中,很容易出现这种失误,如下图所示: 时钟信号等高速信号网络,在多层的PCB走线的时候产生了闭环的结果,这样的闭环结果将产生环形天线,增加EMI的辐射强度。 原则三:高速信号的走线开环规则 原则二提到高速信号的闭环会造成EMI辐射,同样的开环同样会造成EMI辐射,如下图所示: 时钟信号等高速信号网络,在多层的PCB走线的时候产生了开环的结果,这样的开环结果将产生线形天线,增加EMI的辐射强度。在设计中我们也要避免。 原则四:高速信号的特性阻抗连续规则 高速信号,在层与层之间切换的时候必须保证特性阻抗的连续,否则会增加EMI的辐射,如下图: 也就是:同层的布线的宽度必须连续,不同层的走线阻抗必须连续。 原则五:高速PCB设计的布线方向规则 相邻两层间的走线必须遵循垂直走线的原则,否则会造成线间的串扰,增加EMI辐射,如下图: 相邻的布线层遵循横平竖垂的布线方向,垂直的布线可以抑制线间的串扰。 原则六:高速PCB设计中的拓扑结构规则 在高速PCB设计中有两个最为重要的内容,就是线路板特性阻抗的控制和多负载情况下的拓扑结构的设计。在高速的情况下,可以说拓扑结构的是否合理直接决定,产品的成功还是失败。 就是我们经常用到的菊花链式拓扑结构。这种拓扑结构一般用于几Mhz的情况下为益。高速的拓扑结构我们建议使用后端的星形对称结构。 原则七:走线长度的谐振规则 检查信号线的长度和信号的频率是否构成谐振,即当布线长度为信号波长1/4的时候的整数倍时,此布线将产生谐振,而谐振就会辐射电磁波,产生干扰。 原则八:回流路径规则 所有的高速信号必须有良好的回流路径。近可能的保证时钟等高速信号的回流路径最小。否则会极大的增加辐射,并且辐射的大小和信号路径和回流路径所包围的面积成正比。 原则九:器件的退耦电容摆放规则 退耦电容的摆放的位置非常的重要。不合理的摆放位置,是根本起不到退耦的效果。退耦电容的摆放的原则是:靠近电源的管脚,并且电容的电源走线和地线所包围的面积最小。以上就是PCB设计的高速信号走线准则,希望能给大家帮助。

    时间:2020-05-12 关键词: PCB pcb设计 高速信号

  • PCB设计关键因素简化,你知道多少?

    PCB设计关键因素简化,你知道多少?

    PCB设计关键因素,你知道多少?对于PCB设计,各位工程师更有发言权。PCB板是各种电子元器件的承载库,在电路板上起着由于关键的作用,器件与器件之间还要想着是否兼容的作用,不能互相排斥,很好的规避了人工排线与接线造成的混乱和差错现象。 本文对电源设计当中的PCB电路板的五大设计关键点进行详尽的介绍。 1、PCB设计要有合理的走向 如输入/输出、交流/直流、强/弱信号、高频/低频、高压/低压等。它们的走向应该是呈线形的(或分离),不得相互交融。其目的是防止相互干扰。最好的走向是按直线,但一般不易实现,最不利的走向是环形,所幸的是可以设隔离带来改善。对于是直流,小信号,低电压PCB设计的要求可以低些。所以“合理”是相对的。 2、PCB设计选择好接地点:接地点往往是最重要的 小小的接地点不知有多少工程技术人员对它做过多少论述,足见其重要性。一般情况下要求共点地,如:前向放大器的多条地线应汇合后再与干线地相连等等。现实中,因受各种限制很难完全办到,但应尽力遵循。这个问题在实际中是相当灵活的,每个人都有自己的一套解决方案,如果能针对具体的电路板来解释就容易理解。 3、PCB设计合理布置电源滤波/退耦电容 一般在原理图中仅画出若干电源滤波/退耦电容,但未指出它们各自应接于何处。其实这些电容是为开关器件(门电路)或其它需要滤波/退耦的部件而设置的,布置这些电容就应尽量靠近这些元部件,离得太远就没有作用了。有趣的是,当电源滤波/退耦电容布置的合理时,接地点的问题就显得不那么明显。 4、PCB设计线条线径有要求埋孔通孔大小适当 有条件做宽的线决不做细;高压及高频线应园滑,不得有尖锐的倒角,拐弯也不得采用直角。地线应尽量宽,最好使用大面积敷铜,这对接地点问题有相当大的改善。焊盘或过线孔尺寸太小,或焊盘尺寸与钻孔尺寸配合不当。前者对人工钻孔不利,后者对数控钻孔不利。容易将焊盘钻成“c”形,重则钻掉焊盘。导线太细,而大面积的未布线区又没有设置敷铜,容易造成腐蚀不均匀。即当未布线区腐蚀完后,细导线很有可能腐蚀过头,或似断非断,或完全断。所以,设置敷铜的作用不仅仅是增大地线面积和抗干扰。 5、PCB设计过孔数目焊点及线密度 有些问题在电路制作的初期是不容易被发现的,它们往往会在后期涌现出来,比如过线孔太多,沉铜工艺稍有不慎就会埋下隐患。所以,PCB设计中应尽量减少过线孔。同向并行的线条密度太大,焊接时很容易连成一片。所以,线密度应视焊接工艺的水平来确定。焊点的距离太小,不利于人工焊接,只能以降低工效来解决焊接质量。否则将留下隐患。所以,焊点的最小距离的确定应综合考虑焊接人员的素质和工效。 如果能够完全理解并掌握上述的PCB电路板设计注意事项,就能够很大程度上提高设计效率与产品质量。在制作中就纠正存在的错误,将能节省大量的时间与成本,节省返工时间与材料投入。以上就是PCB设计关键因素解析,希望能给大家帮助。

    时间:2020-05-12 关键词: PCB pcb设计 电源滤波

  • PCB打样设计的一些挑战,你知道多少?

    PCB打样设计的一些挑战,你知道多少?

    你知道PCB打样设计的一些挑战吗?关于PCB设计我们之前阐述过设计技巧、学习思路等相关知识,我们今天的主题是关于PCB打样的。这个里面有什么样的学问,对于出于茅庐的你应该注意哪些,赶紧收藏吧! PCB设计篇:PCB打样设计有何难度? 一、PCB打样加工层次定义不明确 单面板设计在TOP层,如不加说明正反做,也许制出来板子,装上器件而不好焊接。 二、PCB打样大面积铜箔距外框距离太近 大面积铜箔距外框应至少保证0.2mm以上间距,因在铣外形时如 铣到铜箔上容易造成铜箔起翘及由其引起阻焊剂脱落问题。 三、PCB打样用填充块画焊盘 用填充块画焊盘在设计线路时能够通过DRC检查,但对于加工是不行,因此类焊盘不能直接生成阻焊数据,在上阻焊剂时,该填充块区域将被阻焊剂覆盖,导致器件焊装困难。 四、PCB打样电地层又是花焊盘又是连线 因为设计成花焊盘方式电源,地层与实际印制板上图像是相反,所有连线都是隔离线,画几组电源或几种地隔离线时应小心,不能留下缺口,使两组电源短路,也不能造成该连接区域封锁。 五、PCB打样字符乱放 字符盖焊盘SMD焊片,给印制板通断测试及元件焊接带来不便。字符设计太小,造成丝网印刷困难,太大会使字符相互重叠,难以分辨。 六、PCB打样表面贴装器件焊盘太短 这是对通断测试而言,对于太密表面贴装器件,其两脚之间间距相当小,焊盘也相当细,安装测试针,必须上下交错位置,如焊盘设计太短,虽然不影响器件安装,但会使测试针错不开位。 七、单面焊盘孔径设置 单面焊盘一般不钻孔,若钻孔需标注,其孔径应设计为零。如果设计了数值,这样在产生钻孔数据时,此位置就出现了孔座标,而出现问题。单面焊盘如钻孔应特殊标注。 八、PCB打样焊盘重叠 在PCB打样钻孔工序会因为在一处多次钻孔导致断钻头,导致孔损伤。多层板中两个孔重叠,绘出底片后表现为隔离盘,造成报废。 九、PCB打样设计中填充块太多或填充块用极细线填充 产生光绘数据有丢失现象,光绘数据不完全。因填充块在光绘数据处理时是用线一条一条去画,因此产生光绘数据量相当大,增加了数据处理难度。 十、图形层滥用 在一些图形层上做了一些无用连线,本来是四层板却设计了五层以上线路,使造成误解。 违反常规性设计。设计时应保持图形层完整和清晰。以上就是PCB打样设计的一些挑战,希望能给大家帮助。

    时间:2020-05-12 关键词: PCB pcb设计 pcb打样

  • PCB设计的设计原理图技巧,你知道多少?

    PCB设计的设计原理图技巧,你知道多少?

    你知道PCB设计的设计原理图技巧有哪些吗?作为PCB工程师,每天面对着各种各样的电路板,以及各种参数的元器件,还要有清楚的头脑去设计原理图,这样的枯燥的工作中不免会出问题,本文总结了一些问题,大家看看是不是你常出错的地方~ PCB设计绘图时,使用ERC出现“Multiple Net Identifiers”错误提示: 解决办法:可能是由于pcb设计时不同的网络标号连在了一起,或同一根连线上给了不同的网络标号。如果为单张原理图,在图上查找带有错误标号的位置即可;为多张原理图时,要查找所有图;尤其是多层原理图时,很有可能错误是在子图中。 1.PCB原理图常见错误: (1)ERC报告管脚没有接入信号。 a. 创建封装时给管脚定义了I/O属性。譬如,把输入端口和输出端口连在一起就会报错。其实,若不用protel做电路仿真,就无需对管脚的I/O属性进行定义。 b. 建元件或放置元件时修改了不一致的grid属性,管脚与线没有连上。 c. 建元件时pin方向反向,必须非pin name端连线。 (2)ERC报告重复的网络标号(Error: Multiple Net Identifiers)。 可能是由于不同的网络标号连在了一起,或同一根连线上给了不同的网络标号。需要注意的是,PROTEL指出的错误处不一定是真正的错误处,也可能错在其他的原理图上(若是层次电路图时) (3)元件跑到图纸界外:没有在元件库图表纸中心创建元件。 (4)创建的工程文件网络表只能部分调入pcb:生成netlist时没有选择为global。 (5)当使用自己创建的多部分组成的元件时a,千万不要使用annotate。 2.PCB中常见错误: (1)网络载入时报告NODE或FootPrint没有找到。 a. 在装载网络表时,事先没有加载对应的PCB封装库。 b. 原理图中的元件使用了pcb库中没有的封装。 c. 原理图中的元件使用了pcb库中名称不一致的封装。 d. 原理图中的元件使用了pcb库中pin number不一致的封装。如三极管:sch中pin number 为e,b,c, 而pcb中为1,2,3;二极管:sch中pin number 为a,k,而pcb中为1,2,改成一致就可以了。 (2)在PCB中导入元器件后,发现个别器件不在显示屏范围内,即时缩小图纸显示比例,也看不到,这往往是因为在创建PCB元器件封装时没有设定参考点所致,一般地,“set reffrence”到“pin 1”即可。 3. 复制局部ProtelSch原理图,想把它贴到Word里方法如下(针对protel 99,protel dxp应可以类比,未试过): tools-preferences-graphical editing:add template to clipboard的选项,去掉它就可以了。 4. 关于走线宽度 系统默认走线为10mil,一般可以设到8mil,再细的话(如低于6mil),一般性的小电路板厂家就不能制造了,找大厂做成本就高,具体情况具体衡量。注:100mil(英制)=2.54mm(公制),以上就是PCB设计的设计原理图技巧,希望能给大家帮助。

    时间:2020-05-12 关键词: PCB 原理图 pcb设计

  • PCB设计的电源平面处理的外力,你知道多少?

    PCB设计的电源平面处理的外力,你知道多少?

    什么是PCB设计的电源平面处理的外力?它有什么影响?PCB设计看似简单,其实里面的门道很多,不深入研究不会发现里面这些细致的问题。不是简简单单的把板子焊接好就是万事大吉了!还需要了解各个器件是否兼容等问题,本文就对电源平面处理需要考虑的因素在此阐述一下,希望对平时大家工作中能有所帮助~ 1、做电源处理时,首先应该考虑的是其载流能力,其中包含2个方面。 (a)电源线宽或铜皮的宽度是否足够。要考虑电源线宽,首先要了解电源信号处理所在层的铜厚是多少,常规工艺下PCB外层(TOP/BOTTOM层)铜厚是1OZ(35um),内层铜厚会根据实际情况做到1OZ或者0.5OZ。对于1OZ铜厚,在常规情况下,20mil能承载1A左右电流大小;0.5OZ铜厚,在常规情况下,40mil能承载1A左右电流大小。 (b)换层时孔的大小及数目是否满足电源电流通流能力。首先要了解单个过孔的通流能力,在常规情况下,温升为10度。 单个10mil的过孔可承载1A的电流大小,所以在做PCB设计时,若电源为2A电流,使用10mil大小过孔打孔换层时,至少要打2个过孔以上。一般在做PCB设计时,会考虑在电源通道上多打几个孔,保持一点裕量。 2、 其次应考虑电源路径,具体应考虑以下2个方面。 (a)电源路径应该尽量短,如果走的过长,电源的压降会比较严重,压降过大会导致项目失败。 (b)电源平面分割要尽量保持规则,不允许有细长条及哑铃形分割。 (c)电源分割时,电源与电源平面分割距离尽量保持在20mil左右,如果在BGA部分区域,可局部保持10mil距离的分割距离,如果电源平面与平面距离过近,可能会有短路的风险。 (d)如若在相邻平面处理电源,要尽量避免铜皮或者走线平行处理。主要是为了减少不同电源之间的干扰,特别是一些电压相差很大的电源之间,电源平面的重叠问题一定要设法避免,难以避免时可考虑中间隔地层。 3、做电源分割时应尽量避免相邻信号线跨分割情况,信号在跨分割(红色信号线有跨分割现象)处因参考平面不连续会有阻抗突变情况产生,会产生EMI、串扰问题,在做高速设计时,跨分割会对信号质量影响很大。以上就是PCB设计的电源平面处理的外力,希望能给大家帮助。

    时间:2020-05-11 关键词: 电源 pcb设计 平面处理

  • PCB设计里面的安全间距,你知道吗?

    PCB设计里面的安全间距,你知道吗?

    你知道PCB设计里面的安全间距吗?人与人之间要保持距离,是给彼此的空间。同样的道理,PCB设计中有诸多需要考虑到安全间距的地方。在此,暂且归为两类:一类为电气相关安全间距,一类为非电气相关安全间距。 电气相关安全间距 1 导线间间距 就主流PCB生产厂家的加工能力来说,导线与导线之间的间距最小不得低于4mil。最小线距,也是线到线,线到焊盘的距离。从生产角度出发,有条件的情况下是越大越好,比较常见的是10mil。 2 焊盘孔径与焊盘宽度 就主流PCB生产厂家的加工能力来说,焊盘孔径如果以机械钻孔方式,最小不得低于0.2mm,如果以镭射钻孔方式,最小不得低于4mil。而孔径公差根据板材不同略微有所区别,一般能管控在0.05mm以内,焊盘宽度最小不得低于0.2mm。 3 焊盘与焊盘的间距 就主流PCB生产厂家的加工能力来说,焊盘与焊盘之间的间距不得低于0.2mm。 4 铜皮与板边的间距 带电铜皮与PCB板边的间距最好不小于0.3mm。在Design-Rules-Board outline页面来设置该项间距规则。 如果是大面积铺铜,通常与板边需要有内缩距离,一般设为20mil。在PCB设计以及制造行业,一般情况下,出于电路板成品机械方面的考虑,或者为避免由于铜皮裸露在板边可能引起卷边或电气短路等情况发生,工程师经常会将大面积铺铜块相对于板边内缩20mil,而不是一直将铜皮铺到板边沿。 这种铜皮内缩的处理方法有很多种,比如板边绘制keepout层,然后设置铺铜与keepout的距离。此处介绍一种简便的方法,即为铺铜对象设置不同的安全距离,比如整板安全间距设置为10mil,而将铺铜设置为20mil,即可达到板边内缩20mil的效果,同时也去除了器件内可能出现的死铜。 非电气相关安全间距 01 字符宽度高度及间距 文字菲林在处理时不能做任何更改,只是将D-CODE小于0.22mm(8.66mil)以下的字符线条宽度都加粗到0.22mm,即字符线条宽度L=0.22mm(8.66mil)。 而整个字符的宽度W=1.0mm,整个字符的高度H=1.2mm,字符之间的间距D=0.2mm。当文字小于以上标准时,加工印刷出来会模糊不清。 02 过孔到过孔的间距 过孔(VIA)到过孔间距(孔边到孔边)最好大于8mil。 03 丝印到焊盘距离 丝印不允许盖上焊盘。因为丝印若盖上焊盘,在上锡的时候丝印处将不能上锡,从而影响元器件装贴。一般板厂要求预留8mil的间距为好。如果PCB板实在面积有限,做到4mil的间距也勉强可以接受。如果丝印在设计时不小心盖过焊盘,板厂在制造时会自动消除留在焊盘上的丝印部分以保证焊盘上锡。 当然在设计时具体情况具体分析。有时候会故意让丝印紧贴焊盘,因为当两个焊盘靠的很近时,中间的丝印可以有效防止焊接时焊锡连接短路,此种情况另当别论。 04 机械上的3D高度和水平间距 PCB上器件在装贴时,要考虑到水平方向上和空间高度上会不会与其他机械结构有冲突。因此在设计时,要充分考虑到元器件之间、PCB成品与产品外壳之间和空间结构上的适配性,为各目标对象预留安全间距,保证在空间上不发生冲突即可。以上就是PCB设计里面的安全间距,希望能给大家帮助。

    时间:2020-05-10 关键词: 安全 pcb设计 间距

  • 制约PCB设计的布局的方法,你知道哪些?

    制约PCB设计的布局的方法,你知道哪些?

    你知道PCB布局布线吗?如何做?对于PCB布局布线而言,原则和方法是越来越复杂。集成电路中晶体管数量还在按摩尔定律预计的速度不断上升,从而使得器件速度更快且每个脉冲沿上升时间缩短,同时管脚数也越来越多——常常要到500~2,000个管脚。所有这一切都会在设计PCB时带来密度、时钟以及串扰等方面的问题。 如今PCB设计考虑的因素越来越复杂,如时钟、串扰、阻抗、检测、制造工艺等等,这经常使得PCB设计人员要重复进行大量的布局布线、验证以及维护等工作。参数约束编辑器能将这些参数编到公式中,协助PCB设计人员在PCB设计和生产过程中更好地处理这些有时甚至还会互相对立的参数。 几年前,大部分PCB上只有不多的几个“关键性”节点(net),通常是指在阻抗、长度及间隙等方面受到一些约束,PCB设计人员一般先对这些走线进行手工布线,然后再用软件对整个电路作大规模自动布线。如今的PCB上常常会有5,000个甚至更多的节点,而其中50%以上都属于关键性节点。由于面临着上市时间的压力,此时采用手工布线已不可能。此外,不仅仅关键性节点的数量有所增加,每个节点的约束条件也在增加。 这些约束条件主要是由于参数相关性以及PCB设计要求越来越复杂而产生的,例如两条走线的间隔可能取决于一个和节点电压及线路板材料都有关的函数,数字IC上升时间减小对高时钟速度和低时钟速度的PCB设计都会产生影响,由于脉冲产生更快而使建立及保持时间更短,另外互连延时作为高速电路PCB设计总延时的重要部分对低速PCB设计也同样非常重要等等。 如果电路板能设计得更大一点,上面有些问题就比较容易解决,但现在的发展趋势却正好相反。由于在互连延时及高密度封装上的要求,电路板正在不断变小,从而出现了高密度电路PCB设计,同时还必须遵循小型化PCB设计规则。上升时间减小再加上这些小型化PCB设计规则,使串扰噪声问题变得越来越突出,而球栅格阵列和其它高密度封装本身也会加重串扰、开关噪声及地线反弹等问题。 固定约束存在的限制 对付这些问题的传统做法是凭经验、缺省值、数表或计算方法将电气和工艺要求转化为固定的约束参数。例如工程师PCB设计电路时也许先确定一个额定阻抗,然后根据最后的工艺要求“估算”出一个能达到所需阻抗的额定线宽,或者利用计算表格或算术程序对干扰进行测试,再求出长度约束条件。 这种方法通常需要PCB设计出一整套经验数据作为PCB设计人员的基本指导原则,以便在用自动布局布线工具进行PCB设计时能够利用这些数据。该方法的问题在于经验数据只是一个一般性原则,大部分情况下它们都是正确的,但有些时候却不起作用或导致错误的结果。 我们以上面确定阻抗的例子来看看这种方法可能造成的误差。和阻抗有关的因素包括电路板材料的电介质特性、铜箔高度、各层到地/电源层间的距离及线宽,由于前三个参数一般由生产工艺决定,所以PCB设计师通常是靠线宽来控制阻抗。由于每一线路层到地或电源层的距离各不相同,因此对每一层都用同一个经验数据显然是错误的。此外在开发过程中采用的生产工艺或电路板特性可能随时会改变,所以问题还会更加复杂。 大多数时候这些问题会在样机制作阶段暴露出来,一般是找出问题后通过对线路板修补或重新进行板子PCB设计来解决。这样做成本比较高,并且修补经常还会带来额外的问题而需要作进一步调试,最后由于延误上市时间而造成收入上的损失更是远远高于调试成本。几乎每家电子生产商都面临着这样的问题,最终都归结到传统的PCB设计软件无法跟上当前对电气性能要求的实际情况,在这一点上它不像机械PCB设计的经验数据那么简单。 解决方案:参数化约束 目前PCB设计软件供应商们试图通过在约束条件上增加参数的办法来解决这个问题。这种方法最先进的地方在于能够详细说明完全反映各种内部电气特性的机械指标,只要将其加入到PCB设计中,PCB设计软件就可利用这些信息对自动布局布线工具进行控制。 当后续生产工艺改变时也不需要重新作PCB设计,PCB设计人员只需简单地更新工艺特性参数,即可自动改变相关约束条件。PCB设计人员然后可以运行DRC(PCB设计规则检查)确定新工艺是否还违反了其它PCB设计规则,并找出应该对PCB设计的哪些方面进行更改才能纠正所有错误。 约束条件可以用数学表达式的形式输入,包含常数、各种运算符、向量以及其它PCB设计约束,为PCB设计人员提供一个参数化规则驱动系统。约束条件甚至能以查表的形式输入,将它们存放在PCB或原理图的PCB设计文件中。PCB布线、铜箔区位置及布局工具都要遵照这些条件生成的约束规则,DRC则验证整个PCB设计是否都符合这些约束,包括线宽、间隔及空间方面的要求(如面积和高度限制)等。 一个很简单的例子是上升时间约束,一般将其设置为常数1.5ns,根据此条件就可得出最大走线长度的约束,即用5,800mil/ns乘以上升时间1.5ns。稍为复杂一点的例子是元件间隔,它通过将检测角的正切值乘以器件高度来决定,该算式可算出元件最小间隔值。 分级管理 参数化约束的一个主要的好处在于它能分级进行处理。例如全局线宽规则可作为一个PCB设计约束用于整个PCB设计中,当然会有个别区域或节点不能照搬这个原则,这时就可绕过高一级约束而采用分级PCB设计中的低级约束。以ACCEL Technologies的约束条件编辑器Parametric Constraint Solver为例,共有7级约束: 1.PCB设计约束,用于所有无其它约束的对象。 2.层级约束,用于某一层上的对象。 3.节点类型约束,用于某个类型包含的所有节点。 4.节点约束,用于某一个节点。 5.类间约束,表示两类节点之间的约束。 6.空间约束,用于某个空间内的所有器件。 7.器件约束,用于某一个器件。 该软件按照从个别器件到整个PCB设计规则的顺序遵循各个PCB设计约束,并用图形的方式显示出这些规则在PCB设计中的应用次序。 例1:线宽=f(阻抗,层间距,介电常数,铜箔高度) 这里举例说明参数化约束条件如何作为PCB设计规则控制阻抗。如前所述,阻抗是介电常数、到最近线路层距离、铜线宽度及高度的函数,由于已确定了PCB设计所要求的阻抗,因此可任意取这四个参数作为相关变量重新写出阻抗公式,大多数情况下PCB设计人员能够控制的参数只有线宽。 正因为此,对线宽的约束就是阻抗、介电常数、到最近线路层距离及铜箔高度的函数。如果将该公式定义为层级约束而将制造工艺参数定义为PCB设计级约束,那么当所PCB设计的线路层改变时软件会自动调整线宽以进行补偿。同样道理,如果PCB设计的线路板用另一种工艺进行生产而使铜箔高度发生了变化,则只要改变PCB设计级里的铜箔高度参数就可使层级里的相关规则自动重新计算。 例2:器件间隔=max(默认间隔,f(器件高度,检测角度)) 同时使用参数约束和PCB设计规则检查显而易见的好处是当PCB设计修改时,参数化方法具有很好的可移植性和可监测性。本例表明如何由工艺特性及测试要求来决定器件间隔,上面的公式表示器件间隔是器件高度和检测角度的函数。 通常检测角度对整块板都是一个常数,所以可在PCB设计级进行定义。当改由不同的机器进行检测时,只需在PCB设计级中输入新的值即可更新整个PCB设计。将新机器性能参数输入之后,PCB设计人员只要简单地运行一下DRC以检查器件间隔是否与新的间隔值有冲突,即可知道PCB设计是否可行,这要比先分析再改正然后按新间隔要求硬性计算容易得多。 例3:元器件布局 除了对PCB设计对象和约束条件进行组织,PCB设计规则还可用于元器件布局,也即它能够根据约束条件检测出在哪里放置器件不会带来错误。 事实上用模块化方式生成约束条件可极大提高其可维护性和可复用性。参考前一阶段不同层的约束参数可生成新表达式,如顶层线宽取决于顶层的距离和铜线高度及PCB设计级中的变量Temp和Diel_Const。请注意PCB设计规则是按由低到高的顺序显示的,改变一个高一级约束会立刻影响参考这个约束的所有表达式。 PCB设计复用和文档 参数化约束不仅可以显著改进初始PCB设计流程,而且对工程更改和PCB设计复用更为有用,约束条件可作为PCB设计、系统和文件资料的一部分,如果不这样而只存放在工程师或PCB设计人员的头脑中,那么当他们转到其它项目时可能就会慢慢忘掉。约束文档记录了PCB设计过程中应遵循的电性能规则,可使他人有机会了解PCB设计者意图,从而易于将这些规则应用到新的制造工艺中或根据电性能要求进行改变。以后的复用者也可以知道准确的PCB设计规则,并通过输入新的工艺要求而进行更改,不必再去猜测诸如线宽是如何得到之类的问题。 本文结论 参数约束编辑器有助于多维约束条件下的PCB布局布线,这也是第一次使自动布线软件和PCB设计规则完全按照复杂的电气和工艺要求进行检查,而不是仅仅靠经验或简单没多大用处的PCB设计规则。其结果是PCB设计能够做到一次成功,减少甚至取消样机调试。以上就是PCB布局布线解析,希望能给大家帮助。

    时间:2020-05-09 关键词: 集成电路 pcb设计 布局布线

  • PCB设计常有的操作-过孔

    PCB设计常有的操作-过孔

    什么是过孔?它有什么作用?过孔是PCB设计常有的操作,也是多层PCB的重要组成部分之一,本文带大家了解下何为过孔,又对信号传输有何影响呢? 一.过孔的基本概念 过孔(via)是多层PCB的重要组成部分之一,钻孔的费用通常占PCB制板费用的30%到40%。简单的说来,PCB上的每 一个孔都可以称之为过孔。从作用上看,过孔可以分成两类: 一是用作各层间的电气连接; 二是用作器件的固定或定位。 如果从工艺制程上来说,这些过孔一般又分 为三类,即盲孔(blind via)、埋孔(buried via)和通孔(through via)。盲孔位于印刷线路板的顶层和底层表面,具有一定深度,用于表层线路和下面的内层线路的连接,孔的深度通常不超过一定的比率(孔径)。 埋孔是指位 于印刷线路板内层的连接孔,它不会延伸到线路板的表面。上述两类孔都位于线路板的内层,层压前利用通孔成型工艺完成,在过孔形成过程中可能还会重叠做好几 个内层。第三种称为通孔,这种孔穿过整个线路板,可用于实现内部互连或作为元件的安装定位孔。由于通孔在工艺上更易于实现,成本较低,所以绝大部分印刷电 路板均使用它,而不用另外两种过孔。以下所说的过孔,没有特殊说明的,均作为通孔考虑。 从设计的角度来看,一个过孔主要由两个部分组成,一是中间 的钻孔(drill hole),二是钻孔周围的焊盘区。这两部分的尺寸大小决定了过孔的大小。很显然,在高速,高密度的PCB设计时,设计者总是希望过孔越小越好,这样板上 可以留有更多的布线空间,此外,过孔越小,其自身的寄生电容也越小,更适合用于高速电路。但孔尺寸的减小同时带来了成本的增加,而且过孔的尺寸不可能无限 制的减小,它受到钻孔(drill)和电镀(plating)等工艺技术的限制:孔越小,钻孔需花费的时间越长,也越容易偏离中心位置;且当孔的深度超过钻孔直径的6倍时,就无法保证孔壁能均匀镀铜。比如,如果一块正常的6层PCB板的厚度(通孔深度)为50Mil,那么,一般条件下PCB厂家能提供的钻 孔直径最小只能达到8Mil。随着激光钻孔技术的发展,钻孔的尺寸也可以越来越小,一般直径小于等于6Mils的过孔,我们就称为微孔。在HDI(高密度 互连结构)设计中经常使用到微孔,微孔技术可以允许过孔直接打在焊盘上(Via-in-pad),这大大提高了电路性能,节约了布线空间。 过孔在传输线上表现为阻抗不连续的断点,会造成信号的反射。一般过孔的等效阻抗比传输线低12%左右,比如50欧姆的传输线在经过过孔时阻抗会减小6欧姆(具体 和过孔的尺寸,板厚也有关,不是绝对减小)。但过孔因为阻抗不连续而造成的反射其实是微乎其微的,其反射系数仅为: (44-50)/(44+50)=0.06,过孔产生的问题更多的集中于寄生电容和电感的影响。 二、过孔的寄生电容和电感 过孔本身存在着寄生的杂散电容,如果已知过孔在铺地层上的阻焊区直径为D2,过孔焊盘的直径为D1,PCB板的厚度为T,板基材介电常数为ε,则过孔的寄生电容大小近似于:C=1.41εTD1/(D2-D1) 过孔的寄生电容会给电路造成的主要影响是延长了信号的上升时间,降低了电路的速度。举例来说,对于一块厚度为50Mil的PCB板,如果使用的过孔焊盘直径 为20Mil(钻孔直径为10Mils),阻焊区直径为40Mil,则我们可以通过上面的公式近似算出过孔的寄生电容大致是: C=1.41x4.4x0.050x0.020/(0.040-0.020)=0.31pF 这部分电容引起的上升时间变化量大致为: T10-90=2.2C(Z0/2)=2.2x0.31x(50/2)=17.05ps 从这些数值可以看出,尽管单个过孔的寄生电容引起的上升延变缓的效用不是很明显,但是如果走线中多次使用过孔进行层间的切换,就会用到多个过孔,设计时就要慎重考虑。实际设计中可以通过增大过孔和铺铜区的距离(Anti-pad)或者减小焊盘的直径来减小寄生电容。 过孔存在寄生电容的同时也存在着寄生电感,在高速数字电路的设计中,过孔的寄生电感带来的危害往往大于寄生电容的影响。它的寄生串联电感会削弱旁路电容的贡献,减弱整个电源系统的滤波效用。我们可以用下面的经验公式来简单地计算一个过孔近似的寄生电感: L=5.08h[ln(4h/d)+1] 其中L指过孔的电感,h是过孔的长度,d是中心钻孔的直径。从式中可以看出,过孔的直径对电感的影响较小,而对电感影响最大的是过孔的长度。仍然采用上面的例子,可以计算出过孔的电感为: L=5.08x0.050[ln(4x0.050/0.010)+1]=1.015nH 如果信号的上升时间是1ns,那么其等效阻抗大小为:XL=πL/T10-90=3.19Ω。这样的阻抗在有高频电流的通过已经不能够被忽略,特别要注意,旁路电容在连接电源层和地层的时候需要通过两个过孔,这样过孔的寄生电感就会成倍增加。 三、如何使用过孔 通过上面对过孔寄生特性的分析,我们可以看到,在高速PCB设计中,看似简单的过孔往往也会给电路的设计带来很大的负面效应。为了减小过孔的寄生效应带来的不利影响,在设计中可以尽量做到: 1.从成本和信号质量两方面考虑,选择合理尺寸的过孔大小。必要时可以考虑使用不同尺寸的过孔,比如对于电源或地线的过孔,可以考虑使用较大尺寸,以减小阻抗,而对于信号走线,则可以使用较小的过孔。当然随着过孔尺寸减小,相应的成本也会增加。 2.上面讨论的两个公式可以得出,使用较薄的PCB板有利于减小过孔的两种寄生参数。 3.PCB板上的信号走线尽量不换层,也就是说尽量不要使用不必要的过孔。 4.电源和地的管脚要就近打过孔,过孔和管脚之间的引线越短越好。可以考虑并联打多个过孔,以减少等效电感。 5.在信号换层的过孔附近放置一些接地的过孔,以便为信号提供最近的回路。甚至可以在PCB板上放置一些多余的接地过孔。 6.对于密度较高的高速PCB板,可以考虑使用微型过孔。以上就是过孔的解析,希望能给大家帮助。

    时间:2020-05-09 关键词: pcb设计 过孔 多层pcb

  • PCB设计与焊接的需要注意的一些细节

    PCB设计与焊接的需要注意的一些细节

    什么是PCB设计与焊接?在PCB设计与焊接的部分要注意很多细节,下面我们就分项目讲解下具体内容,希望能帮助到各位! PCB线路板阻抗,指的是电阻和对电抗的参数,对交流电所起着阻碍作用。在PCB线路板生产中,阻抗处理是必不可少的,PCB线路板为什么要做阻抗? 一、pcb线路(板底)要考虑接插安装电子元件,后期的SMT贴片接插后也需要考虑导电性能和信号传输性能等问题,所以就会要求阻抗越低越好,特别是微波信号设备,对电阻率要的要求是:低于每平方厘米1&TImes;10-6以下。 二、pcb线路板在生产过程中要经历沉铜、电镀锡(或化学镀,或热喷锡)、接插件焊锡等工艺制作环节,而这些环节所用的材料都必须保证电阻率底,才能保证线路板的整体阻抗低达到产品质量要求,能正常运行。 三、pcb线路板的镀锡是整个线路板制作中最容易出现问题的地方,是影响阻抗的关键环节。化学镀锡层最大的缺陷就是易变色(既易氧化或潮解)、钎焊性差,会导致线路板难焊接、阻抗过高导致导电性能差或整板性能的不稳定。 四、pcb线路板中的导体中会有各种信号传递,当为提高其传输速率而必须提高其频率,线路本身如果因蚀刻、叠层厚度、导线宽度等因素不同,将会造成阻抗值得变化,使其信号失真,导致线路板使用性能下降,所以就需要控制阻抗值在一定范围内。以上就是PCB设计与焊接需要注意的细节,希望能给大家帮助。

    时间:2020-05-08 关键词: pcb设计 氧化 pcb焊接

  • PCB设计流程步骤,你真的知道吗?

    PCB设计流程步骤,你真的知道吗?

    你真的知道PCB设计流程步骤吗?在PCB的设计中,掌握好PCB设计流程并不难。其实在正式布线前,还要经过很漫长的步骤,下面我们一起熟知主要设计的流程: 1. 系统规格 首先要先规划出该电子设备的各项系统规格。包含了系统功能,成本限制,大小,运作情形等等。 2. 系统功能区块图 接下来必须要制作出系统的功能区块图。区块间的关系也必须要标示出来。 3. 将系统分割几个PCB 将系统分割数个PCB的话,不仅在尺寸上可以缩小,也可以让系统具有升级与交换零件的能力。系统功能区块图就提供了我们分割的依据。像是电脑就可以分成主机板、显示卡、音效卡、软碟和电源供应器等等。 4. 决定使用封装方法,和各PCB的大小 当各PCB使用的技术和电路数量都决定好了,接下来就是决定板子的大小了。如果设计的过大,那么封装技术就要改变,或是重新作分割的动作。在选择技术时,也要将线路图的品质与速度都考量进去。 5. 绘出所有PCB的电路概图 概图中要表示出各零件间的相互连接细节。所有系统中的PCB都必须要描出来,现今大多采用CAD(电脑辅助设计,Computer Aided Design)的方式。 PCB的电路概图 初步设计的模拟运作是为了确保设计出来的电路图可以正常运作,这必须先用电脑软体来模拟一次。这类软体可以读取概图,并且用许多方式显示电路运作的情况。这比起实际做出一块样本PCB,然后用手动测量要来的有效率多了。 将零件放上PCB 零件放置的方式,是根据它们之间如何相连来决定的。它们必须以最有效率的方式与路径相连接。所谓有效率的布线,就是牵线越短并且通过层数越少(这也同时减少导孔的数目)越好,不过在真正布线时,我们会再提到这个问题。下面是汇流排在PCB上布线的样子。为了让各零件都能够拥有完美的配线,放置的位置是很重要的。 测试布线可能性,与高速下的正确运作 现今的部份电脑软体,可以检查各零件摆设的位置是否可以正确连接,或是检查在高速运作下,这样是否可以正确运作。这项步骤称为安排零件,不过我们不会太深入研究这些。如果电路设计有问题,在实地导出线路前,还可以重新安排零件的位置。 导出PCB上线路 在概图中的连接,现在将会实地作成布线的样子。这项步骤通常都是全自动的,不过一般来说还是需要手动更改某些部份。下面是2层板的导线范本。红色和蓝色的线条,分别代表PCB的零件层与焊接层。白色的文字与四方形代表的是网版印刷面的各项标示。红色的点和圆圈代表钻洞与导孔。最右方我们可以看到PCB上的焊接面有金手指。这个PCB的最终构图通常称为工作底片(Artwork)。 每一次的设计,都必须要符合一套规定,像是线路间的最小保留空隙,最小线路宽度,和其他类似的实际限制等。这些规定依照电路的速度,传送讯号的强弱,电路对耗电与杂讯的敏感度,以及材质品质与制造设备等因素而有不同。如果电流强度上升,那导线的粗细也必须要增加。为了减少PCB的成本,在减少层数的同时,也必须要注意这些规定是否仍旧符合。如果需要超过2层的构造的话,那么通常会使用到电源层以及地线层,来避免讯号层上的传送讯号受到影响,并且可以当作讯号层的防护罩。 导线后电路测试 为了确定线路在导线后能够正常运作,它必须要通过最后检测。这项检测也可以检查是否有不正确的连接,并且所有连线都照着概图走。 建立制作档案 因为目前有许多设计PCB的CAD工具,制造厂商必须有符合标淮的档案,才能制造板子。标淮规格有好几种,不过最常用的是Gerber files规格。一组Gerber files包括各讯号、电源以及地线层的平面图,防焊层与网板印刷面的平面图,以及钻孔与取放等指定档案。 电磁相容问题 没有照EMC(电磁相容)规格设计的电子设备,很可能会散发出电磁能量,并且干扰附近的电器。EMC对电磁干扰(EMI),电磁场(EMF)和射频干扰(RFI)等都规定了最大的限制。这项规定可以确保该电器与附近其他电器的正常运作。EMC对一项设备,散射或传导到另一设备的能量有严格的限制,并且设计时要减少对外来EMF、EMI、RFI等的磁化率。换言之,这项规定的目的就是要防止电磁能量进入或由装置散发出。这其实是一项很难解决的问题,一般大多会使用电源和地线层,或是将PCB放进金属盒子当中以解决这些问题。电源和地线层可以防止讯号层受干扰,金属盒的效用也差不多。对这些问题我们就不过于深入了。 电路的最大速度得看如何照EMC规定做了。内部的EMI,像是导体间的电流耗损,会随着频率上升而增强。如果两者之间的的电流差距过大,那么一定要拉长两者间的距离。这也告诉我们如何避免高压,以及让电路的电流消耗降到最低。布线的延迟率也很重要,所以长度自然越短越好。所以布线良好的小PCB,会比大PCB更适合在高速下运作。以上就是PCB设计流程步骤,希望能给大家帮助。

    时间:2020-05-08 关键词: cad pcb设计 rfi

首页  上一页  1 2 3 4 5 6 7 8 9 10 下一页 尾页
发布文章

技术子站

更多

项目外包