随着数据密集型任务日益增多,宇航激光器驱动芯片的通信速率需求已达百 Gb/s量级,其主要研制难点在于克 服由抗辐照、高可靠设计引入的特殊结构极大程度造成的高频信号损耗。提出了一种自适应可调谐连续时间均衡器设 计方法,基于SiGeBiCMOS工艺对电路交流和传输特性进行理论计算及仿真验证,设计指标可满足14GHz下最高 16dB的传输损耗补偿,具备自适应增益补偿调节能力,最高支持25Gb/s的 NRZ信号传输。
在现代电子系统中,传感器作为获取外界信息的关键部件,其应用场景日益广泛。为了实现更灵活、高效的数据采集与处理,通过模拟开关来控制同时接入电路的传感器数目成为一种常见的设计思路。然而,这种设计方法在实际应用中面临着诸多问题,需要深入探讨和妥善解决。
在现代自动化控制和监测系统中,传感器作为获取外界物理量信息的关键部件,发挥着至关重要的作用。传感器的输出方式主要分为模拟输出和数字输出两种,它们各自具有独特的优缺点,在不同的应用场景中有着不同的适用性。深入了解这两种输出方式的特点,对于正确选择和使用传感器,优化系统性能具有重要意义。
ESD事件可以将非常高的电流驱动到ESD二极管中,但仅用于纳秒。尽管ESD二极管旨在承受ESD脉冲,但持续时间更长的电压事件将需要其他外部组件。大多数输入ESD保护二极管的设计旨在承受10 mA的连续电流,但是电气过力故障通常会导致电流超出10 ma极限。
在过去的十年中,电池供电的应用已变得必不可少,需要一定程度的保护才能确保安全使用。此安全性由电池管理系统(BMS)提供。 BMS监视电池和可能的故障状况,防止由于电池或其周围环境而导致的任何危险情况,并确保对电池剩余容量或电池降解水平进行准确的估计。
倾角传感器是一种用于测量物体在重力作用下倾斜程度的传感器,其测量结果通常以角度值或百分比表示。传感器的精度是评估其性能的重要指标,可以通过公差或分度值来表示。其中,分度值代表传感器的最小读数,而公差则反映了测量结果与真实值之间的误差范围。
如图1所示,电感器 - 电感电容器(LLC)串行谐振电路可以在初级侧的零电压切换和次级侧的零电流切换,以提高效率并启用更高的开关频率。通常,LLC转换器使用直接频率控制,该控制器只有一个电压循环,并通过调整开关频率来稳定其输出电压。具有直接频率控制的LLC无法实现高带宽,因为LLC小信号转移函数中有一个双极在不同的负载条件下会有所不同[1] [2]。当包含所有角落条件时,直接频率控制有限责任公司的补偿器设计变得棘手且复杂。
当AI研究人员谈论数学推理时,他们通常专注于扩展 - 更大的模型,更多参数和较大的数据集。但是在实践中,数学能力并不是关于模型的计算多少。实际上,这是关于机器是否可以学会验证自己的工作,因为至少90%的推理错误来自自信地说明错误的中间步骤的模型。
在这篇文章中,小编将为大家带来光电耦合器的相关报道。如果你对本文即将要讲解的内容存在一定兴趣,不妨继续往下阅读哦。
在下述的内容中,小编将会对差分放大电路的相关消息予以报道,如果差分放大电路是您想要了解的焦点之一,不妨和小编共同阅读这篇文章哦。
在物联网(IoT)的广阔天地中,M2M(Machine-to-Machine)通信技术扮演着至关重要的角色。它实现了机器、传感器和硬件之间的点对点直接通信,无需人工干预,为各行各业带来了前所未有的自动化和智能化水平。而M2M通信技术的核心在于无线通信技术,它决定了数据的传输速度、覆盖范围、功耗和成本等关键因素。本文将深入探讨M2M中的无线通信技术,并为你提供一些建议,帮助你选择最适合你的方案。
在电力电子领域,LLC 谐振变换器凭借其高效率、高功率密度等优势,广泛应用于开关电源、电动汽车充电等诸多场景。而 LLC 变压器作为该变换器的核心部件,其绕制方法对性能有着重要影响。三明治绕法作为一种特殊的绕制工艺,在 LLC 变压器中被不少工程师所采用,但其是否必要,需从多方面深入剖析。
内容审核对于任何数字平台都至关重要,以确保用户的信任和安全。尽管人类节制可以处理某些任务,但随着平台规模,AI驱动的实时节制变得至关重要。机器学习(ML)动力系统可以通过最小的再培训和操作成本进行有效的大规模调节内容。本分步指南概述了部署AI驱动的实时审核系统的方法。
本文中,小编将对光电耦合器予以介绍,如果你想对它的详细情况有所认识,或者想要增进对光电耦合器的了解程度,不妨请看以下内容哦。
以下内容中,小编将对光电耦合器的相关内容进行着重介绍和阐述,希望本文能帮您增进对光电耦合器的了解,和小编一起来看看吧。