• 多光谱气体传感器的抗交叉干扰设计,深度学习驱动的工业废气成分实时辨识系统

    在工业废气排放监测与污染控制,多光谱气体传感器凭借其非接触、多组分同步检测的优势,已成为实时感知气体成分的核心设备。然而,工业废气中存在的复杂气体混合物(如SO₂与NO₂的吸收光谱重叠、VOCs(挥发性有机物)与水蒸气的基线漂移)会导致传感器输出信号产生严重的交叉干扰,使得传统基于阈值比较或线性拟合的辨识方法误报率高达30%以上。深度学习驱动的抗交叉干扰设计,通过构建高维特征提取与非线性映射模型,为多光谱气体传感器的精准辨识提供了突破性解决方案,使工业废气成分的实时检测准确率提升至98%以上,为环保监管与工艺优化提供了可靠数据支撑。

  • 电源纹波测量实战:DC耦合+1MΩ终端的“黄金组合”还是陷阱?

    在电源设计验证与测试环节中,电源纹波测量是评估电源质量的核心指标之一。它直接反映了电源输出电压的波动特性,过大的纹波可能导致数字电路误触发、模拟信号失真甚至硬件永久损坏。然而,看似简单的纹波测量背后,却隐藏着探头选择、耦合方式、终端匹配等关键细节,其中“DC耦合+1MΩ终端”的组合常被工程师视为标准方案,但实际应用中却可能成为数据失真的“隐形陷阱”。

  • 电动汽车无线充电中的LLC控制创新,高频异物检测(FOD)与双向能量流协同设计

    电动汽车无线充电技术向高功率、高安全、高智能化加速演进,LLC谐振控制、高频异物检测(FOD)与双向能量流设计的协同创新,正成为突破系统效率、安全边界与功能拓展的核心路径。从静态充电到动态无线供电,从单向能量传输到车网互动(V2G),三者深度融合的技术架构正在重构无线充电系统的设计范式。

  • 电动汽车车载充电机(OBC)的LLC设计,从3.3kW到22kW的“功率跃迁”秘籍

    新能源汽车产业加速向高功率密度、高效率充电方向演进,车载充电机(OBC)的功率等级从3.3kW向22kW的跃迁,不仅考验着硬件设计的极限,更推动着LLC谐振变换器技术向高频化、集成化、智能化深度突破。从家用充电桩到超级快充站,LLC设计正以“软开关基因”为核心,重构OBC的功率拓扑与能效边界。

    汽车电子
    2025-07-16
    LLC OBC
  • 低剂量CT的“深度学习重建”算法,残差U-Net的噪声抑制、微小结节(3mm)检测灵敏度提升

    在医学影像技术飞速发展的当下,低剂量CT(LDCT)因其能有效降低患者辐射暴露风险,成为临床诊断中备受关注的成像方式。然而,降低辐射剂量不可避免地会引入噪声和伪影,影响图像质量,进而对微小结节(尤其是3mm及以下)的检测灵敏度造成挑战。深度学习重建算法的出现,为解决这些问题提供了新的思路,其中残差U-Net在噪声抑制和微小结节检测灵敏度提升方面展现出显著优势。

  • 从窄到宽范围输入,LLC变压器漏感与分布电容的“精准调控”实战指南

    LLC谐振变换器的设计,变压器漏感与分布电容的精准调控是应对窄范围到宽范围输入电压(如18V至60V或更宽)的核心挑战。漏感直接影响谐振频率与能量传递效率,而分布电容则决定高频噪声抑制与输出电压稳定性。二者若调控不当,轻则导致效率下降、温升异常,重则引发谐振失配、器件损坏甚至系统崩溃。本文结合工程实践,系统阐述从原理到实战的漏感与分布电容调控方法,为高适应性LLC电源设计提供可落地的解决方案。

  • 从原理到应用深入解析示波器输入耦合电路设计

    示波器作为电子测量领域的核心工具,其输入耦合电路设计直接决定了信号捕获的精度与适应性。从基础原理到复杂应用场景,输入耦合电路通过灵活配置直流(DC)、交流(AC)和接地(GND)三种模式,构建起连接被测信号与示波器前端放大器的关键桥梁。这一设计不仅需要解决信号保真度、噪声抑制等基础问题,更需应对高速数字信号、高频模拟信号及浮动信号等多样化测试需求。

  • 从电源纹波到眼图测试:示波器耦合与终端设置的实战手册

    在高速数字系统与精密电源设计的交叉领域,示波器作为核心测量工具,其耦合模式与终端设置的精准配置直接决定了测试结果的可靠性。从电源纹波的毫伏级波动到眼图测试的皮秒级抖动分析,工程师需掌握一套系统化的参数调优方法,以应对不同场景下的信号完整性挑战。

  • 窗口比较器在电源监控中的“双保险”设计,防止误动作与漏报警的平衡术

    在数据中心、工业自动化及新能源汽车等关键领域,电源稳定性是系统可靠运行的基石。电源电压的瞬态波动或长期漂移可能导致设备停机、数据丢失甚至硬件损坏。窗口比较器作为一种能够同时检测电压上限和下限的电路,因其独特的“双限”特性,成为电源监控的核心组件。然而,实际应用中需解决误动作(噪声干扰导致错误触发)与漏报警(电压异常未被检测)的矛盾。本文通过技术原理、典型案例及优化策略,揭示窗口比较器如何实现“双保险”设计。

  • LoRa无线模块的“抗金属衰减”封装技术,超材料的天线设计与地下管廊监测应用

    在智慧城市建设中,地下管廊作为城市“生命线”,其环境监测、设备控制依赖可靠的无线通信技术。然而,金属管壁、密集电缆等环境对无线信号产生强衰减,传统LoRa模块在管廊中传输距离骤降60%以上。为突破这一瓶颈,工程师通过“抗金属衰减封装技术”“超材料天线设计”与“场景化组网策略”三重创新,实现了LoRa在地下复杂环境中的稳定覆盖。

发布文章