详细介绍了PADS中CAM输出的相关设置,现在介绍给大家学习 首先导入一个标准的CAM输出文档,由IMPORT输入一个模板,该模板由他人提供,也可自己生成。 在CAM输出界面,进入DRILL DRWAING,按OPTION
引言 由于RF电路的工作频率不断提升,片式电感在应用方面的性能特点发生了明显变化,已经开始显现出低端微波频段的工作特性。因此,为有效提升片式电感的电性参数,改善RF电路性能,必须进一步分析其低频特性与高频
数字信号主要的频率分量都位于它的转折频率以下。转折频率FKNEE与脉冲上升时间TR相关,而与传播延迟、时钟速率或转换频率无关: 信号传播的整个路径,包括器件封装、电路板布局以及连接器等,如果要它们正确地分发转
电压容限是逻辑驱动器的保证输出与逻辑接收器在最坏的情况下的灵敏度之间的差值。工作基于接收电压的逻辑系列产品都有电压容限,如同光学逻辑器件有光子容限,或者机械设备在BABBAGE引擎中有机械联运容限一样。图2.1
图2.16描绘了一个理想逻辑器件管芯引线连接的四引脚双列直插式封装器件。包含一个发送电路和一个电路。发送电路是推拉输出电路,而事实上任何构造的电路在高速情况下都同样会出现这一问题。假定输出驱动器的开关B刚刚
图2.17说明了地弹的情形。设想一个TTL D型八触发器,由单一时钟输入,驱动一组32个存储器的芯片组,以每条输入线5PF计算,每条地址线的负载为160PF。假设进入D触发器输入点的数据建立时间较长而保持时间较短,图2.17
让我们通过一个具体例子来看看地弹脉冲到底会有多大。例:地弹的测量为了这一测量我们将使用一个四触发器,通过配置,使它输出中的3个处于触发状态,而第4个输出固定保持为零。我们可以使3个有交输出中的任何一个都能
为了对地弹进行有效的预测,需要知道4个要素:逻辑器件的10~90%转换时间,负载电容或电阻,引脚电感和转换电压。对于一个阻性负载R,可以用式:得到的电流变化率以及由式:定义的电感来计算地弹的幅值:对于一个容性
逻辑器件相邻引脚之间的寄生电容能够在敏感的输入法引脚上耦合出噪声电压。图2.21描述了一个互容CM使得逻辑器件中引脚1和引脚2产生耦合的情形。可以用式:计算由电路1传入电路2的串扰百分比:串扰=R2CM/T10%-90%其中
为了避免过于理论化,我们从一个实验入手看看功耗与温度之间是如何相互关联的。在14引脚的双列直插式封装外壳里装入一个1欧电阻,电阻的两端连接到引脚7和14,另外还要将一个温度传感器连接到引脚1和2,以便我们能了
这是一款德国人用NE5532设计的高保真立体声耳机放大器,NE5532 是广大音响. 爱好者所熟知的HI-FI 级前置放大集成电路,其出色的音质表现被广大发烧友所推崇;虽然采用单电源供电,但实际听音效果还是很不错的,有兴趣
引言不论是传统工艺制作的经典传感器,还是半导体工艺制作的现代传感器,都存在交叉敏感。交叉敏感是引起单传感器系统不稳定的主要因素,表现为传感器标称的目标参量恒定不变,而其它非目标参量变化时,该传感器的输
振动、温度、压力和光等现实世界的信号需要精确的信号调理和信号转换,然后才能在数字域中进行进一步数据处理。为了克服当前高精度应用的多种挑战,需要一个精心设计的低噪声模拟前端来实现最佳信噪比(SNR)。许多系统
由于能源成本上升和人们积极应对全球变暖,电力电子设备的能源效率已经变得越来越重要。为了提升电力电子设备的能源效率,具有较低功率损耗的功率半导体器件技术是关键所在。在半导体器件中,功率损耗的降低可以改善
作为消费、工业、科学和其他应用的基本组成部分,运算放大器是最广泛应用的电子元器件。对大多数低端应用来说,设计要求明确,因而元件的选择也相对容易。但在用于实现许多高端传感器的输入处理设计时,如何选择最佳