当前位置:首页 > 测试测量 > 测试测量
[导读] “我使用的是一台_ 100 MHz示波器,包括一个100 MHz无源探头,我应该能够正确地测量90 MHz正弦波,对吗?示波器或者探头是不是坏了?” 以前只要稍微有点常识就能回答这个问题,但现在我总是

“我使用的是一台_ 100 MHz示波器,包括一个100 MHz无源探头,我应该能够正确地测量90 MHz正弦波,对吗?示波器或者探头是不是坏了?”

以前只要稍微有点常识就能回答这个问题,但现在我总是时不时听到这类问题。那么,它可能就不应再简单地归于常识范畴了,尤其是大多数示波器的技术资料中,不会对示波器结合特定探头使用时的“系统带宽”或有效带宽加以说明。

示波器和探头均有带宽技术指标,即输入信号幅度衰减 3 dB 的频率值。因此,如果您的技术资料中注明示波器带宽为“100 MHz”,那么您就能确保以其带宽频率测量至少约 70% 的信号幅度。探头同样如此。然而,棘手之处是,当您同时使用示波器和探头时,您的示波器+探头带宽,即“系统带宽”,可能不是 100 MHz。那么,在这种情况下系统带宽是多少?

在了解系统带宽之前,您需要知道示波器前端滤波器的响应。技术资料中可能有这个信息,也可能没有,如果没有,请致电示波器支持热线。如果您不想联系支持热线,我给您介绍一个小技巧,通过本文结尾处技术资料中计算出的上升时间技术指标推导出滤波器响应。但是,经验告诉我们,如果您的示波器带宽低于 1 GHz,那么可以认为滤波器是“高斯型”的。如果示波器的带宽为 1 GHz 或更高,那么其滤波器可能为“最大平坦响应型(接近砖墙响应)”。

如果是高斯滤波器,作为几十年来一直在模拟和数字存储示波器中使用的传统前端滤波器类型,示波器和探头的系统带宽可采用下面的公式计算。

图中文字中英对照

System Bandwidth

Scope bandwidth

Probe bandwidth

系统带宽

示波器带宽

探头带宽

我们用上面的例子来套用这个公式。由于示波器和探头的带宽均为 100 MHz,您的系统带宽将为 70.7 MHz。换言之,您的信号幅度在 70.7 MHz 衰减了 3 dB。很显然,您不会看到 90 MHz 正弦波的完整幅度!

在现实中,绝大多数示波器制造商在示波器和探头的带宽技术指标上添加了一些裕量。因此,如果您看到技术指标上写的是“100 MHz”,那么极有可能它的带宽稍大一些,比如 110 或 120 MHz。

现在,假设您使用的是具有“最 大平坦响应”型滤波器响应的示波器和探头。在 100 MHz 示波器上,矩形滤波器极为罕见,此例中我们仅为假设。在这种情况下,不能使用“平方和均方根”公式。系统带宽计算公式为:

系统带宽=最小值{示波器带宽,探头带宽}

如果我将原来的例子套用这个这个公式,您的系统带宽现在是 100 MHz,那么,您应该能够看到 90 MHz 正弦波的几乎整个幅度。

我不知道为什么大多数示波器的技术资料中不再有这个简单的公式。也许如今的大多数示波器都具有足够的带宽,工程师无需按照其上限操作。也许这个内容在学校已经教过。然而,这是一个非常有用的技巧,特别是当您看到意想不到的测量结果时。

顺便说一句,判断您的示波器使用的是“高斯型”还是“最大平坦响应型”滤波器有一个快速简单的方法。首先,找到示波器计算的上升时间信息。下面以 Keysight InfiniiVision 4000X示波器为例。

表格中文字中英对照

InfiniiVision 4000 X-Series scopes oscilloscopes

Bandwidth * (-3dB)

Calculated rise time (10-90%)

InfiniiVision 4000 X 系列示波器

带宽 * (-3dB)

计算的上升时间(10-90%)

现在,用“0.35”除以计算的上升时间值。以 200 MHz示波器(4022A)为例,得出的结果是

0.35 / 1.75 ns = 200 MHz

那么,您证实用于计算上升时间的系数是“0.35”。0.35 是“高斯型”响应滤波器的系数值,因此您知道这台 200 MHz 示波器具有一个高斯滤波器前端。另外,如果在 1 GHz示波器(4104A)上套用同一公式,

0.35 / 450 ps = 778 MHz

得出的值为 778 MHz 而非 1 GHz。那么,您现在知道这台示波器使用的系数不是 “0.35”,而是 “0.45”(0.45 / 450 ps = 1 GHz)。如果系数大于 0.35,比如说 0.4、0.45 或甚至是 0.5,那么示波器的前端的滤波器响应近似于矩形滤波器。

希望这个小技巧能更好地帮助您了解示波器。下一篇博文再见!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

示波器的存储深度是指示波器单次触发所能采集和存储的采样点数量,决定了仪器能够捕获和分析信号的时间长度和细节。

关键字: 示波器

在电子测量领域,示波器作为核心工具,其技术演进始终与信号处理需求深度绑定。随着物联网、人工智能、5G通信等技术的爆发式增长,示波器正从传统时域分析向智能化、多域融合方向转型,而智能耦合技术作为连接信号采集与处理的关键环节...

关键字: 智能耦合 示波器

在电子测量领域,示波器作为观察电信号波形的核心工具,其输入耦合方式的选择直接影响测量精度与信号完整性。示波器通常提供直流耦合(DC)、交流耦合(AC)和接地耦合(GND)三种模式,每种模式通过不同的电路设计实现对信号的处...

关键字: 示波器 输入耦合

在电子测量中,示波器耦合方式与探头衰减比的协同设置直接影响信号保真度与测量精度。某通信设备调试案例中,工程师因未协调AC耦合与10:1衰减比,导致100MHz时钟信号相位误差达15°,误判为电路设计缺陷。这一典型问题揭示...

关键字: 示波器 耦合

在电子测量领域,示波器作为观察电信号波形的核心工具,其耦合方式设置直接影响测量精度与信号完整性。然而,工程师在实际操作中常因对AC/DC耦合原理理解不足或操作习惯不当,导致测量误差甚至误判电路特性。本文结合典型案例与实验...

关键字: 示波器 耦合方式

示波器作为电子测量领域的核心工具,其输入耦合电路设计直接决定了信号捕获的精度与适应性。从基础原理到复杂应用场景,输入耦合电路通过灵活配置直流(DC)、交流(AC)和接地(GND)三种模式,构建起连接被测信号与示波器前端放...

关键字: 示波器 输入耦合

太赫兹通信与6G研发加速推进,110GHz实时示波器已成为验证信号完整性的核心工具。其终端设计面临双重终极挑战:既要实现50Ω单端匹配的极致平坦性,又需攻克差分信号的共模抑制与阻抗一致性难题。这两项技术突破直接决定了示波...

关键字: 110GHz 示波器

是德科技(NYSE: KEYS )宣布,该公司帮助 AMD 加快了对预生产 AMD 服务器 CPU 的 PCI Express® (PCIe) 规范的电气合规性测试。通过提供先进的 PCIe CEM测试工具,是德科技帮助...

关键字: 服务器 CPU 示波器

以下内容中,小编将对示波器的相关内容进行着重介绍和阐述,希望本文能帮您增进对示波器的了解,和小编一起来看看吧。

关键字: 示波器 单踪示波器 双踪示波器

今天,小编将在这篇文章中为大家带来示波器的有关报道,通过阅读这篇文章,大家可以对它具备清晰的认识,主要内容如下。

关键字: 示波器 探头
关闭