• 心电采集系统中模拟电路的设计方案

    心电采集系统中模拟电路的设计方案

      心电信号作为心脏电活动在人体体表的表现,信号比较微弱,其频谱范围是0.05~ 200Hz,电压幅值为0~5mV,信号源的阻抗为数千欧到数百千欧,并且存在着大量的噪声, 所以心电采集系统的合理设计是能否得到正确的心电信号的关键部件。心电信号的测量条件是相当复杂的,除了受包括肌电信号、呼吸波信号、脑电信号等体内干扰信号的干扰以外还受到50HZ 市电、基线漂移、电极接触和其他电磁设备的体外干扰,因此,在强噪声下如何 有效地抑制各种干扰将成为心电采集系统设计的关键。   1 心电采集系统简介   完整的心电采集系统包括模拟和数字两部分,其中模拟部分主要完成心电信号的拾 取、放大和滤波等,数字部分将对模拟部分获得的心电信号进行分析与处理,以便医护人员 得出正确的诊断结果,因此心电采集系统中的模拟电路在心电监护系统中具有重要作用。心电采集系统的总体结构如图1 所示。      由携带在人体上的专用电极拾取的心电信号首先经前置放大器初步放大,并在对各种干扰信号进行一定抑制后送入带通滤波器,以滤除心电频率范围以外的干扰信号,然后由主放 大器将滤波后的信号进一步放大到合适范围,再经50Hz 陷波器滤除工频干扰,得到模拟的 心电信号将被送入AD 转换系统进行模数转换,转换成数字信号后由中央处理单元负责后续 的分析处理。   2 前置放大电路   从人体体表拾取的心电信号一般只有几个毫伏,为了提高其分辨率以便于后端显示和 处理,首先需要对信号进行放大。在心电信号采集过程中,前置放大电路对心电信号的影响 最大,为提高心电信号的性能,前置放大电路的放大倍数不能选择得太大(一般小于20), 否则会由于有较大的干扰信号(指电极的极化电压),致使放大器产生阻塞现象。   对于心电信号而言,采集的信号属于差模信号,所以其放大器都采用差动放大电路结 构,使用最普遍的是采用低噪声、高输入阻抗、高共模抑制比、高增益和抗干扰能力强的同 相并联差动放大电路,即通常所说的三运放仪表放大器,本系统采用通用的集成运放LM324 来构成这种放大器的。LM324 是一种4 集成运算放大器,由于价格低廉且使用方便,所以被 广泛应用于控制和信号放大处理之中。我们在实验室认真设计和反复实验,用LM324 构成的 电路成功实现了心电信号的放大处理,其主要技术指标都能满足要求。LM324 既可以单电源 使用,也可以双电源使用,电源电压可以从+5V 一直用到±15 V,而且驱动功耗低,每一组 运放差模增益可达到100dB。通过外围电路的合理设计,使得以LM324 为主要器件的放大电 路完全能满足高放大倍数、高稳定性的心电信号放大处理要求。   值得一提的是,LM324 的低电流噪声特别适用于ECG 的应用,它有很好的直流特性:输 入失调电压小于5mV,输入失调电压温漂小于7uV/℃,输入偏置电流小于40nA,共模抑制 比达100dB,而它的低功耗、低电源(低至3V)、精简封装等特性更是电池供电便携式心电监 护系统的极佳选择。放大电路原理如图2 所示。      图2 设计的放大器由两级组成,U1C 和U1D 构成第一级的差动输入输出级,U2A 为基本 型差动比例电路,总的电压增益Au,等于两级增益之积。由于第一级采用同相输入,有较 高的输入电阻,U1C 和U1D 选用相同特性的运放,使它们的共模输出电压和漂移电压也都相 等,再通过U2A 组成的第二级差分式电路,可以互相抵消,第二级差分放电路将双端输入变 单端输出,适应接地负载的需要。把两级电路级联后,它们相互取长补短,使组合后的这个 电路具有输入阻抗高、电压增益调节方便、共模抑制比高和漂移相互抵消等一系列优点。为 提高共模抑制比和降低温漂影响,进一步提高电路的性能,测量放大器采用对称结构,即严 格挑选几个外接电阻R10、R11、R12、R13、R14、R15、R16 和调节RW2,使得R11=R12、R13 =R14、R16=R15+调节后RW2。所以通过调节外接电阻RW2 的大小可以很方便地改变测量放大器的增益。   去除人体携带的交流共模干扰的一种有效方法是采用右腿驱动电路,在本图2 的系统 中,右腿RL 端不是直接接地,而是接到放大器的输出端。从驱动屏蔽的输出端检出共模电 压,它经辅助的反向放大器U0 放大后,再经过电阻R1 反馈到右腿,由此而得到右腿驱动的 名称,即人体的位移电流不再流入地,而是流向R1 和辅助放大器U0 的输出端。但是由于右 腿驱动电路存在交流干扰电压的反馈环路,而可能有交流电流流经人体,成为不安全因素, 限流电阻不能很小,通常取1M 欧以上,即R1 在这里起安全保护作用,当病人与地之间出现 很高电压时,辅助放大器U0 饱和,右腿驱动电路不起作用,U0 等效于接地,因此电阻R1 这时就起限流保护作用。干扰信号送右腿驱动放大器进行反相放大,传到右腿驱动电极RL 对于干扰信号是一种深度的负反馈,它有效地削弱了人体上感应的共模干扰信号。   3 主放大和滤波电路   心电的主放大及滤波电路如图3 所示。由于检测信号中存在的主要干扰信号有电极板 与人之间的极化电压、50Hz 工频干扰、仪器内部噪声和仪器周围电磁场干扰等等。要想获 得清晰稳定的心电信号,滤波器的设计也很关键,特别是50Hz 的带阻滤波器尤其重要。采 集到的心电信号中,200Hz 以上的干扰信号较强,而0.05Hz 以下的干扰信号相对较弱,所 以在滤波电路中采取先低通滤波取出200Hz 以下的信号,然后通过接高通的方式,从而滤除 极化电压及高频干扰。在电路中U2B 及电阻、电容组成带通滤波器,同时使电路具有较高的 输入阻抗。滤波电路采用阻容耦合电路,输入阻抗高输出阻抗低,并且输入和输出之间具 有良好的隔离。其作用主要是隔去前置放大器的直流电压和直流极化电压,耦合心电信号。 为了保证心电信号不失真地耦合到下一级,必须耦合 RC。RC 乘积越大,放大器的低频响应 越好,但RC 的取值不能无限制加大,因为 R 值受输入阻抗的限制,C 值太大不但体积大, 漏电流增加还会引起漂移,同时还会延长回路充放电时间。人体的心电信号频率较低,用 RC 滤波电路可以有效地避免有源滤波电路中由于通用型集成运放的带宽较窄而不适用于高 频范围的缺陷。      4 电平抬升电路   放大滤波后的心电信号将被送入A/D 转换电路进行模数转换,而本系统选择的AD 转换 器是单5V 供电的MAX187,所以滤波之后需加一级电平抬升电路,将心电信号抬升到0~+ 5V 的范围。电路设计很简单,如图4 所示。      5 结果分析   通过上述方法成功地设计实现了心电采集系统的模拟电路部分,其中的电平抬升电路简 单可靠,放大电路具有高增益、高输入阻抗、高共模抑制比、低噪声、低漂移、合适的带宽 和动态范围等特点,电路能在强的噪声背景下,通过体表传感器不失真地将微弱的心电信号 检测出来并放大、抬升至合适的幅度,获得较好的心电信号如图5 所示。      经试验证明,文中设计的心电信号采集电路能够得到临床上有价值的心电数据,为心电信号 的后续处理提供了可靠的保证。

    医疗电子技术文库 心电采集系统

  • PET/CT产品参数及性能对比

      自从2001年6月,市场推出PET/CT以来,PET/CT有了突飞猛进的发展,美国NBC新闻报道说PET/CT的诞生使人类向对抗疾病迈出革命性的一步。瑞典Zurich大学的研究结果表明,PET/CT较PET的诊断准确率提高20%。Lason教授(全球最早使用PET/CT)认为PET/CT对头颈部肿瘤诊断、肺癌分期和诊断、肠癌、前列腺癌和其他盆腔肿瘤淋巴结转移的诊断有很大帮助。PET/CT逐渐成为癌症早期诊断的重要手段。   一 PET/CT的主要技术参数   PET/CT的主要设计参数分CT和PET两部分。主要的技术参数有:   (一)CT部分:   (1)探测器排数、旋转速度、采集时间   这些参数主要决定空间定位的速度,如果医院对心脏疾病的检查较多,对这些参数就要提出较高的要求。一般需要16排以上的CT,旋转速度0.4s,采集100cm需要1.5s左右。速度越快有利于消除扫描过程中由于病人呼吸等运动造成的伪影。   (2)球管热容量、管电流   这些参数主要决定CT的扫描功率以及检查部位,参数越大适应范围越大,对于一些深度较大的部位诊断有一定的优势,而且图像质量相对较好。   (3)层厚、横向扫描野、孔径   这些参数也是CT的重要参数,层厚越小成像越细,一般为0.6~10mm。横向扫描野一般为45~50cm,孔径为70cm。   (二)PET部分:   (1)晶体材料与尺寸   晶体部分是PET的核心,PET主要依靠晶体接收正电子,正如摄像机的镜头一样,PET晶体就是PET的“眼睛”。晶体材料有三种,即BGO、LSO和GSO。它们对于采集511MeVγ光子的信息各具优势。BGO具有较大的原子序数和密度,使得它对γ光子具有很好的拦截能力,有效增加其灵敏度。它的主要缺点是余辉时间较长,不利于3D采集。但其成本相对较低,因此在以2D为主的PET设备上广泛的应用。LSO只有约40ns的余辉时间、高光输出量和仅比BGO低15倍的灵敏度,使得它成为非常适合3D采集的快速晶体。但LSO也有明显的缺点,其光输出与能量不成比例,而且不同批次的晶体光输出量可能相差很大。另外,LSO中存在约26%的长半衰期同位素176Lu,这造成其本底计数增加约10000cps。对常规临床检查的影响不大,但会显著增加单光子透射扫描(如用137Cs进行衰减校正时)的噪音。GSO是LSO的有力竞争者。虽然其光子的拦截能力相对略差,光输出量也较低,但其能量分辨率远高于BGO和LSO。这使得其抗散射能力较强,加上较短的余辉时间,也非常适合3D采集。   晶体尺寸的设计是对空间分辨率和灵敏度的折中。晶体切割较小,探测时的空间分辨能力会有所提高,但其灵敏度则会相应降低。目前PET晶体的环向尺寸约4~6.45mm,轴向约4~8mm,相应的最大空间分辨能力约4~6mm。晶体环数也是一个重要指标,同样的轴向扫描野,环数越多,则晶体的尺寸越小,轴向空间分辨能力越好。   (2)扫描速度、采集模式、衰减校正   这些参数在PET中具有很重要的意义。困扰PET发展的重要原因之一就是扫描速度太慢,做一次全身扫描长达数小时。采集模式主要分为2D和3D两种。用CT代替常规的透射扫描进行衰减校正是节省时间的主要方面,而PET部分多选用3D采集也是一个重要的方面。通过3D采集,一般均可将每个床位的采集时间缩短到2~3min(2D采集约5~6min),其中LSO晶体在这方面的优势最明显。另外,使用BGO晶体时如果能够尽量增加噪声等价计数率(NECR),也可以适当缩短采集时间,提高扫描速度。   (3)空间分辨率、横向扫描野、孔径   这些参数决定扫描的图像质量。空间分辨率一般为:4~6mm;横向扫描野为:55~60cm;孔径为:59~70cm。CT的孔径为70cm,而专用PET的孔径一般设计在60cm左右。PET/CT设计时将PET孔径也增加到70CM,可以减少幽闭感觉,也便于放疗定位。增大孔径一般并不挪动晶体间距,增加的空间主要来自原来放置衰减校正源和隔栅的空间,因此不会降低其空间分辨能力。   二、市场上的PET/CT产品介绍   1998年,第一台功能与解剖一体化显像仪器SPECT/CT投入临床使用; 1999年,核仪器厂家开始研制PET/CT系统,2000年第一台PET/CT在美国开始临床应用。目前,主要有三个厂家提供商品化PET/CT,分别是:SIEMENS公司和CTI公司合作生产的取名为Biograph和Reveal系列;GE公司提供Discovery LS和Discovery ST系列:Philips公司的Gemini型PET/CT。其特点主要如下:   (1)SIEMENS公司和CTI公司合作生产的Biograph和Reveal系列   PET探头采用整环探头,探测器有基于锗酸铋(BGO)晶体的ECATHR+型PET和基于硅酸镥(LSO)晶体的ECATAccel型PET。两种都不设隔栅(septum),完全用3D模式采集,而且不再使用68Ge衰减校正源,全部用CT图像进行衰减校正。CT和PET串联在同一机架上,宽和高分别为228cm和188cm,其总长度为158cm,但通过前、后的内凹设计,可使实际孔道长度减少到110cm。扫描野孔径从60cm增大到70cm,有利于放疗定位检查床进入,并减少幽闭感。一次PET和CT同时扫描的范围为145cm,后又提高到约2m。此外,控制软件已组合到一个系统内,对融合图像的显示、测量和分析等也更加方便。这一新的PET/CT被Siemens公司称为BioGraph,而被CTI称为Reveal。2002年12月,西门子又推出Biograph SensaTIon16(CTI公司对应的商品名为Reveal XVI)。它是将其16排高性能CT与基于LSO晶体的Accel型PET组合到一起。这一设计更注重提高PET的扫描速度,使多数病人(体重<81.7kg患者)可以在13min内完成检查。此后,他们又将LSO晶体缩小到4×4×20mm,从而提高图像的空间分辨率。这一改进后的设备在2003年12月推出,Siemens公司称为Biograph LSOHR,CTI公司称为Reveal HI REZ。   (2) GE公司提供Discovery LS和Discovery ST系列   GE公司在2000年底最初推出Discovery LS系列PET/CT时,也是将其已有Advance N X i型PET和Lightspeed Plus Hilite多排CT进行简单的组合,其PET均为BGO晶体,带可伸缩的隔栅(故可以选择2D或3D采集模式),并可选择使用标准的PET衰减校正源(68Ge)。其CT的孔径是70cm,而PET为59cm。较小的PET孔径限制了它在放疗定位方面的应用。2002年底,GE公司又推出其重新设计的PET/CT系列,取名Discovery ST。这一系列更注重提高其3D采集能力。新的设计改变晶体尺寸(6 2×6 2mm),增加晶体环数(24环),缩小探测器环的直径(88cm),缩短隔栅的深度,缩小符合时间窗,并将PET孔径提高到70cm。但仍选用BGO晶体,且保留2D和3D采集可选。其CT根据不同需求可以选择2、4、8或16排。   (3) Philips公司的Gemini型PET/CT   Philips公司的PET/CT称为Gemini,选用基于GSO晶体的Allegro型PET,配以MX8000D双排CT,CT部分可以升级到16排。其CT与PET是分体式的,中间有空隙,而且后面部分可以按需要移开一定的距离。这种开放式设计有效减少病人在孔道内的幽闭感,并有利于检查当中接近病人进行一些操作,如CT指导下活检等。其中CT的孔径为70cm,PET的孔径为63cm。PET没有隔栅,完全是3D采集。衰减校正既可以选择CT图像,也可以选择用137Cs点源进行。PET探测部分的设计不同于一般的晶体设计,采用专有的Pixelar技术,晶体后面通过连续的光导材料与紧密排列的六边形光电倍增管相连,对于每个事件有7个光电倍增管来确定其位置和能量,从而更有效地利用了光电倍增管。此外,其图像重建采用3D重建技术虽然需要较长的处理时间,但更有效地利用采集信息,减少图像伪影。

    医疗电子技术文库

  • 英飞凌推出MD8710高性能医疗电子设备平台解决方案

    英飞凌推出适用于高性能医疗电子设备的创新平台解决方案。英飞凌的MD8710医疗平台集成了多种标准功能。这些功能的智能部署使其适用于多种不同的医疗电子产品。具体应用领域包括电子血糖仪和血压计、电化分析仪和健身设备,它们的读数可通过移动通信方式自动传至医生或医院计算机系统。市场调研公司InMedica的分析师预计,到2013年,仅远程医疗电子设备的总销量将超过200万台。 英飞凌医疗平台针对具体客户定制的分析软件可应用于性能卓越的集成式高能效ARM Cortex R4处理器。该软件的模拟分析功能允许同步进行多个测量,确保轻松应用于光电和传感应用。英飞凌新产品采用的智能功率管理单元可节省占板空间,使电池供电的便携式设备具备极其紧凑的外形。这便于开发和制造十分经济划算的高能效医疗电子设备。除了将USB和蓝牙等标准传输技术集成至该器件以实现简单、可靠的数据传输之外,英飞凌作为康体佳健康联盟成员,还支持各种协议和标准。 “凭借这种全新的医疗平台,英飞凌可为利用尖端技术开发医疗电子设备提供大力支持,确保为患者提供经济高效的诊断和治疗。”英飞凌公司ASIC和功率IC营销高级总监Kurt Marquardt指出,“该平台使最先进的医疗测量技术应用于便携式设备成为可能。”

    医疗设备与MCU 英飞凌 医疗电子 医疗设备

  • 全球首款心电图测试手机

    病人手指轻轻一触手机,便能在30秒内测量心律跳动,把心电图(ECG)读数传给24小时运作的医疗中心,并在10分钟后获得中心的回应或给予意见指示,这就是本地公司Ephone InternaTIonal(简称EPI)研发世界首款具备心电图功能的手机的过人之处。 它也是今年第五届全国资讯通信大奖(The NaTIonal Infocomm Awards)的资讯通信科技最创新产品与服务得主之一。 EPI公司医疗主管周佑仁医生受访时说,他们把传统心电图晶片缩小,并与手机平台结合,利用流动电信GSM网络与服务中心的主机进行远程沟通,让用户随时使用特制手机捕捉心律跳动情况,从而防止因心脏病暴发而猝死的几率。 一旦发现心电图读数不寻常,医疗中心会立刻发简讯给用户,提醒他们及早求医。用户也可拨电给医疗中心,要求和值班的心脏科医生对话,进一步了解自己的病情。 一台心电图功能手机目前的售价是992元,包括6个月基本配套,每个月可测量10次心电图。病人如有需要加紧监察心跳律动,可再提升配套。 周佑仁医生说,自今年2月面市以来,它已有约500个用户,其中不乏来自马来西亚和印度尼西亚的心脏病人,因为他们对新加坡品牌深具信心。 他也透露,未来半年,公司将推出能检测其他慢性症状如哮喘和糖尿病的手机。 另一家最创新产品与服务得主是协助商家收集准确情报及舆论的品智网络科技公司(Brandtology Pte Ltd)。公司创办人兼总裁周成志说,随着互联网的社交功能日益发达,市场营销人员需要更好地掌握网谈中的情感与趋势,公司的服务便是建立在这个需求上。 品智网络科技公司的高度智能的爬虫网络(crawler network),能深入地采集网络渠道发布的信息,帮助机构客户如银行与金融公司、科技业者、电信商及公共部门,从网上挖掘所要的信息,以了解客户的想法。 全国资讯通信大奖的另一组别—最创新方式使用资讯通信科技奖,今年分别由圣淘沙名胜世界、国大医院,及创办美食搜寻网站Hungrygowhere的GTW控股公司获得。 圣淘沙名胜世界的创新与科技及营运服务部主管叶志云说,他们必须在两年内自行研发出一个平台,融合顾客、会员积分计划及整个综合度假胜地的服务系统,因此挑战性极大。 他说:“我们的中央电脑系统涵盖六大方面,包括酒店、餐饮、零售、主题公园、演出售票及停车场系统,当然还有赌场,各系统要求不一样,可是又环环相扣,目的是方便游客一卡游遍圣淘沙名胜世界。” 叶志云说,他们将在年底学校假期试验性推出手机导览服务,游客除可从手机获知主题公园情况,也能实时掌握各项游乐设施的等候时间和限制等。 国大医院自推行闭环医药管理系统(Closed Loop MedicaTIon Management)后,不小心发配过敏药物给病人的个案从前年的21起减至去年的11起,今年首五个月更是一起也没有。 医院保健系统医疗资讯总监叶伟麟医生说,新系统为每粒药丸附上条码,医生开药后、由药剂师和护士再三核对才给病人服药,使病人获得更大的保障。这项系统目前也扩大到陈笃生医院。 在昨晚举行的晚宴上,得奖者从新闻、通讯及艺术部代部长吕德耀手中接过奖项

    医疗电子技术文库 手机 心电图

  • 医院网络化视频监控的应用发展

      随着医院信息化建设的不断完善,网络化已经成为医院视频监控发展的主流方向。而网络化视频监控的灵活性、开放性以及可扩展性,也正在促进医院视频监控向更广阔的应用领域延伸。   安防监控   安防仍然是视频监控在医院中最主要的应用,涉及领域包括防火、防盗以及防止人员纠纷以及暴力事件,目的是保护医护人员、病人及家属的生命财产安全。   按照医院内部管理区域划分,医院安防监控的重点防护部位主要可以分为医疗区、医技区、后勤区、报警区、门禁区以及行政区:医疗区包括候诊大厅、挂号收费窗口、病区过道、ICU、手术室、源室、输液室、急诊大厅等;医技区包括科研楼、中心实验室、药房、药库、CT、直线加速机、检验科等;后勤区包括医院大门、主要建筑物出入口、医院围墙、院内道路、停车场、监控中心、信息中心等;报警区包括挂号收费窗口、财务科、收费处、同位素、药房、药库、食堂仓库等;门禁区包括院长办公室、ICU等重症监护室、手术室、放射源室、监控中心、信息中心、中心实验室、药房、药库、财务科、贵重仪器设备及资料存放处、挂号收费窗口等;行政区包括楼梯走道、医患沟通场所、保卫科等。   监控的区域部位不同,其防范的目的也有所差异。比如,候诊大厅监控主要防范人员纠纷及盗窃,挂号收费处监控主要防范服务及钱款纠纷,药房药库监控主要防范火灾及盗窃,围墙监控主要防范外部人员非法入侵,信息中心监控主要防范盗窃及机房环境故障,等等。   采用网络化视频监控解决方案,可以基于医院现有局域网,快速构建一个便于集中管理、可以随时随地访问、部署成本低廉的数字化医院安防系统,实现对上述所有防范区域以及防范部位的全景式实时监控与管理。   监控中心位于中控室,配备网络监控管理平台、存储和电视墙。监控点位于上述医院内外各防范区域和防范部位,配备视频编码器、摄像机以及相关外围设备。各监控点图像、声音以及报警信号经视频编码器处理后通过医院局域网集中上传至监控中心,由管理平台统一管理、分发和存储。   根据监控部位不同,其监控点配套的外围设备也会有所差异。大部分监控点比较简单,一般仅需采集现场视频进行编码上传即可,无需部署其他外围设备。而一些特殊监控点,由于防范目的不同,往往会需要部署额外的配套设备,比如:挂号收费处往往需要部署拾音器,现场声音也可以被监控,以便于更好的了解服务纠纷情况;药房药库需要部署烟感、温感、红外等防火防盗报警器,当发生火灾或人员闯入时产生报警信号,然后通过系统提供的报警联动功能自动触发监控中心产生一系列动作,包括切换监控点图像上墙、发出声光电警示以提醒监控中心工作人员,同时启动监控点录像等;信息中心需要部署机房湿度、温度、电源等动力环境参数检测设备,当参数超标时发出报警信号,自动触发监控中心联动,同时在监控图像上也可以直观的叠加这些参数信息;围墙、ICU等区域需要部署红外、门禁等设备,有非法入侵时产生报警信号,自动触发监控中心联动。   由于采用了全网络化架构,因此整个系统在监控点接入和客户端访问上都非常灵活。监控点可以通过有线方式接入医院局域网,也可以通过无线方式接入医院局域网。客户端可以基于医院内部办公网,也可以基于Internet,甚至可以基于手机访问监控图像。   远程探视   医院有一些特殊的病房,一方面因患者病情严重易受外部感染,一方面因患者本身的疾病带有极强的传染性,不能与外界直接接触。典型的如重症监护室(ICU),这是一个集中救治危重患者的特殊场所,这里收治的患者均为手术后病人和危重病人,抵抗力最低、最容易产生并发症和严重感染。但是,这一类患者往往同时又最需要家人的陪同和安慰。   为了解决这个问题,可以通过网络视频监控系统实现远程探视,这样既可以保护患者免遭外部感染或交叉传染,又可以实现患者与家人的“面对面”亲情交流。   部署上,需要在特殊病房内配备视频编码器以及摄像机、麦克风、音箱、电视机,同时在隔离区外设立远程探视室,配备视频编码器、摄像机以及PC、耳麦,这些设施通过医院局域网接入监控中心管理平台。家属或朋友在室外的探视点即可实时看到室内的患者的情况,并与患者进行交流沟通,患者也可以看到外面家属的视频。   如果将管理平台接入Internet,家属或朋友即使在家里或身在外地,也可通过PC远程登录,与患者探视对讲,既方便又快捷。   手术示教   临床教学是医院的一项重要任务,担负着培养后备医护人员的重任,以往的教学方式通常是现场观摩。但是,一方面由于现场条件或手术设备的限制,现场观摩的空间狭窄,参加人员有限,另一方面由于手术室等地方是洁净度要求很高的地方,为了减少交叉感染,一般也不允许外部人员及非手术医护人员随便出入,同时众多人员流动也会给病人的正常治疗带来不必要的麻烦。因此,现场教学、交流活动受到很大限制,效果很不理想。   而通过网络视频监控构建一个可视化的远程示教系统则可以很好的解决这个问题。在手术室配备视频编码器、摄像机或手术室本身的专业医疗摄像机以及拾音器,接入监控中心管理平台。这样,外部观摩和学习人员位于医院观摩室、示教厅即可通过PC登录监控系统进行手术全过程的远程观摩,看到实时图像、听到实时声音,甚至可以通过语音对讲与手术室人员交流。手术全过程也可通过管理平台进行录像存储,供以后网上点播学习。观摩和学习人员即使身在外地,也可通过Internet远程观摩学习。   远程医疗会诊   由于国内医疗水平发展不平衡,三级医院基本分布在大中城市,高、精、尖的医疗设备也以分布在大城市为多。病人、特别是边远地区的病人,由于当地的医疗条件比较落后,危重、疑难病人往往要被送到上级医院进行专家会诊。就诊交通费、家属陪同费用、住院医疗费等都给病人增加了经济上的负担。同时,路途的颠簸也给病人本已脆弱的病体造成了伤害,而许多没有条件到大医院就诊的病人则耽误了诊疗,给病人和家属造成了身心上的痛苦。即使在大城市,病人也希望能到三级医院接受专家的治疗,造成基层医院病人纷纷流入市级医院,加重了市级医院的负担,造成床位紧张,而基层床位闲置,结果是医疗资源分布不均和浪费。   借助于网络视频监控系统,可以通过对各级医疗机构的无边界互联组成一个有效的远程医疗网络,实现对医学资料和远程视频、音频信息的传输、存储、查询、比较、显示及共享,使边远地区的患者能方便地共享优秀医学医疗资源,很好的解决上述问题。   部署上,在医院设立远程医疗或远程会诊点,配备视频编码器、摄像机、麦克风以及音箱,接入监控中心管理平台。外部合作医院、外地专家通过PC远程登录该医院管理平台,即可对会诊点的患者进行远程诊断和远程医疗,观看患者伤情,并通过语音对讲与患者交流,既解决了一些医院专家不足的问题,又节约了患者到处寻医的费用和时间。   随着高清视频监控技术的发展,高清晰的医疗影像资料都可以基于网络进行传输。因此,远程医疗会诊在医院中将会得到越来越广泛的部署和应用。   远程医护   加强人性化以及智能化管理,随时了解每一位病人的具体情况,减轻病人心理和身体上的负担,让家属更加放心的将病人交到医生的手中,是医院提升服务理念和服务水平的关键。   利用网络视频监控实现可视化远程护理,可以有效改善传统人工叫喊效率低、混乱和无序问题,完善医院病房的语音传输及医院排队服务环境,提高医护人员的工作条件,使其能够在便捷的环境中为病人提供良好的服务,从而加快医院运作的现代化管理进程。   部署上,在病房安装视频编码器、摄像机、拾音器、音箱以及呼叫按钮,在护士站安装PC客户端和对讲设备。应用上有几种:一是患者在病房内通过呼叫按钮主动触发联动护士站客户端发出呼叫信息,护士站值班人员可即时看到该呼叫病房内图像,并与患者对讲交流,从而提供快捷的医护服务;二是护士站值班人员可主动呼叫某一病房,实时观察患者情况,并与患者交流;三是护士站值班人员可群呼或组呼多个病房,对这些患者进行广播讲话,集中通知或提醒相关事宜。   通过视频编码器与病房内相关医疗设施的结合,还可以提供更为智能和更为人性化的服务。比如与输液报警器连接,患者输液完毕时通过监控系统的报警联动自动向护士站报警,与血压仪、心电图机、床边监护仪等仪器连接,实现自动报警以及数据参数与监控图像的叠加显示,在发生异常时及时报警通知护士站医护人员。   结束语   由于网络化的到来,医院视频监控不再仅仅局限于传统的安防,而是越来越多的与医院本身的业务相结合,远程手术示教、远程探视、远程护理、远程医疗会诊都是非常典型的应用体现。而随着3G与监控的融合,在移动中传输清晰流畅的监控视频成为可能,医院视频监控将呈现出更为广阔的应用空间,医院安防市场也将迎来新的增长点。

    医疗监控系统 视频监控

  • 医学不同数字成像方法--数字X射线、磁共振成像(MRI)和超

    医学不同数字成像方法--数字X射线、磁共振成像(MRI)和超

    21 世纪数字成像技术的出现给我们带来优异的诊断功能、图像存档以及随时随地的检索功能。自 20 世纪 70 年代早期医学成像数字技术出现以来,数字成像的重要性得以日益彰显。半导体器件中混合信号设计能力方面的一些新进展,让成像系统实现了史无前例的电子封装密度,从而带来医学成像的巨大发展。同时,嵌入式处理器极大地提高了医疗图像处理和实时图像显示的能力,从而实现了更迅速、更准确的诊断。这些技术的融合以及许多新兴的电子健康记录标准为更为完善的病人护理提供了发展动力。 本文将介绍不同成像方法电子设计存在的诸多挑战和一些最新动态,具体包括数字 X 射线、磁共振成像 (MRI) 和超声波系统。 数字X射线系统 传统的 X 射线系统使用一种胶片/屏幕装置来检测发射到人身体的 X 射线。然而,探测器系统中的数字 X 射线信号链包含一个照片探测器阵列,该探测器阵列将辐射转换成电荷。其后面是一些电荷积分器电路和模数转换器 (ADC)电路,以数字化输入。图 1 显示了一个典型数字 X 射线系统结构图的例子。 图 1 数字 X 射线系统结构图示例 数字 X 射线系统性能与积分器和 ADC 模块的噪声性能密切相关。为了在低功耗条件下获得更高的图像质量,某个系统中支持大量信号通道所需的电子集成程度为技术的创新设定了一定的标准。正是由于组成探测器系统的许多高性能模拟组件以及执行高级图像处理任务的嵌入式处理器, X 射线系统才拥有了许多相对于传统 X 射线系统的优势。这种组合支持更大的动态范围,从而可以获得更好的图像对比度和更低的患者X射线辐射水平,同时产生可电子存储和传输的数字图像。 超声波系统 超声波系统的接收通道信号链包括低噪声放大器 (LNA)、可变增益放大器 (VGA)、低通滤波器 (LPF) 和高速高精度 ADC。紧跟在这些组件后面的是数字波束生成、图像和多普勒处理以及其他信号处理软件(请参见图 2)。 图 2 超声波系统结构图示例 信号链组件的噪声和带宽特性定义了系统的总性能上限。另外,在耗散更低系统功率的同时,需要在更小的区域内集成更多的高性能通道。典型的手持式超声波系统可能具有约 16 到 32 条通道,而一些高端系统可能会有 128 条以上的通道,以获得更高的图像质量。要减少占用全部这些阵列通道的印制电路板 (PCB) ,重点是在模拟前端 IC 中集成尽可能多的通道。总系统功耗是手持式系统的另一个重要性能指标。直接将接收端电子器件集成到了探针中是创新的另一个方面。 这样做有助于缩短探针中低压模拟信号源与LNAs之间的距离,从而减少信号的损耗。集成会进一步增加探针件数目,从而增强 3D 成像。除了这些模拟信号链考虑因素以外,高性能、低功耗嵌入式处理器还能够比以前更快速、高效地完成便携式设备的波束生成和图像处理任务。 MRI 如欲了解典型 MRI 通道模拟信号处理链的例子,请参见图 3。 图 3 MRI 系统结构图示例 全身 MRI 系统可能有一个多达 76 个元件或通道的线圈矩阵。另外,低压 (LV) 模拟输入沿长同轴线缆从肢体线圈传输至模拟信号链前置放大器。当谈到 MRI 接收信号链时,两个关键随之出现:如何获得高信噪比 (SNR)(至少约 84dB 或 14 位);如何实现总系统的极高总动态范围(至少 150 dB/Hz 左右)。获得高 SNR 要求一个超低噪声系数的高性能前置放大器。使用如动态增益调节或模拟输入压缩等创新方案可以达到高动态范围要求。 总之,通过增加MRI 系统中所用线圈数,既可以获得更好的图像范围,也可以缩短图像扫描时间。线圈数的增加可能会要求对线圈和前置放大器之间的信号通信进一步优化,而使用高速数字或光链路时则要求主系统进一步优化。另外,高集成度会导致不同于目前的系统划分,这可能会将电子器件更靠近于线圈。就这点来说,可能要求半导体 IC 非磁性封装,并符合更加严格的功耗和面积规定。以上要求成功的实现能使输入信号衰减降低,从而获得更高品质的医学图像。 总结 数字成像是当今医学行业中最为活跃的技术开发领域之一。IC 模拟/混合信号功能以及各种嵌入式处理所取得的巨大进步正不断推动其发展。这些技术的出现提高了成像系统的性能,同时也极大地提高了为患者提供诊断和医疗护理服务的质量。

    医疗成像与DSP 数字成像 数字x射线

  • 电子病历的应用对存储系统提出挑战

      在我国去年发布的新医改方案中,政策基本都是围绕着电子病历展开的,这也标志着电子病历在今后的医疗行业发展中扮演着重要的角色,如何应用电子病历更为有效,成了我们要思考的问题。   目前以电子病历为核心的医院信息系统备受关注。根据卫生部颁发的《电子病历基本规范(试行)》的要求,电子病历的推广应用,必将对传统的存储系统提出更高的需求。   电子病历是个人终生的医疗和健康记录,要求医院建立与之相应的电子病历系统并且能够随时随地访问该系统。这意味着:假设某个人10年前得过肝炎,在医院看过病,那么今天他再来医院看肝病的时候,医生就可以立即调阅病人在10年前的病历记录,而不用等待半个小时或一个小时,甚至更长的时间。   医院存储的五大挑战   总体看来,以电子病历为主导的应用,正在给医院存储系统带来五个最主要的挑战。   一是“存得下”。即电子病历客观上要求存储系统容量大幅度增加。特别是对于病人人满为患的大医院而言,要把所有病人的电子病历长期保存下来,对信息存储容量的需求是非常可观的。   二是“取得出”。即医院所存储的各种信息,要随时随地能够完整地取出来。而要保证所有信息都是完整无损的,就要求存储系统具备高可靠性。不能因为存储年限长了,出现数据丢失或残缺不全的问题。   三是存取速度快。电子病历系统是支撑医院日常服务运营的业务系统,使用者主要就是医生和护士。通常医护人员的业务过程都非常紧张,这就要求与电子病历系统相关的数据存储过程必须快速高效。比如,医生在计算机上调阅影像时,最好把等待的时间控制在几秒钟之内,如果调一张片子要等上几分钟,医生肯定无法忍受,电子病历系统的应用效果势必大打折扣。   四是价格低。由于技术的进步和应用的普及,各种存储介质的成本仍在不断降低,但是,电子病历对于存储系统的快速增容压力,势必导致医院存储系统投资的快速上升。医院对于存储的投入,肯定是希望控制在自身可承受的范围内,并且要凸显相比以往纸介质存储病历的成本优势。   五是周期长。按照卫生行业的相关行政法规,病人的信息资料保留的周期要足够长,至少几十年。而按照全生命周期的居民健康档案的要求,一些基本数据要求保存更长的年限。   近几年,存储技术发展变化很快。技术的发展使得电子病历的信息存储体系也在发生变化。比如,5年前,存储方式分为紧急在线、近线、离线等方式,存储体系有三、四级之分。当时离线的存储还要考虑磁带库、光盘库这些方式;现在,存储体系基本上就是一级或者两级,存储方式通常是在线和近线,而不会再去考虑磁带库或者光盘库这样离线的方式。技术的进步,使得磁盘联机存储已经成为可能。   分层应对的基本思路   根据医院的实际应用状况,我们可以将存储系统分为三个层次:最底层是存储物理层,即磁盘阵列,如:SAN阵列、NAS阵列、DAS阵列等。   中间层是存储管理层,包括备份、迁移、虚拟化等存储管理系统,负责管理存储物理设备,构建一个对应用系统透明的存储系统。   最上层是存储应用层,由应用系统对存储设备进行配置和使用。比如:数据备份可以在应用层实现,依靠应用层的软件对数据进行备份。   之所以把存储系统分为三层,就是要从不同层次去解决医院信息存储面临的挑战。也就是说,对于同一类挑战,我们可以从不同的层次考虑综合解决方案。比如:对于数据备份的问题,既可以从数据管理层寻找解决之道,也可以从应用层加以解决;对于容量的挑战,既可以通过扩充同一阵列的磁盘来解决,也可以通过扩充不同的阵列,然后从应用层配置入手加以解决,还可以通过云计算在管理层加以解决。   现在,存储管理发展的趋势是,逐渐把一些管理的功能从上层向底层迁移,让各种应用不用感知相应的信息存储细节,比如是怎么存的、存放在何地。总之,上述挑战其实是可以从不同层次解决的。

    医疗电子技术文库 存储系统 电子病历

  • B超诊断系统的结构原理及故障维修

      1、B超诊断系统的结构原理   B型超声诊断系统按其结构分:主要由探头、发射、接收电路、模拟信号处理电路、键盘控制电路、数字扫描变换器、图像显示电路以及电源电路等几个部分组成。   探头按其扫描方式的不同,可分为线阵扫描探头和相控阵扫描(扇扫)探头两种。线阵扫描的基本原理是:由若干个振子按线阵排列,组成线阵排列换能器,由电子开关控制,使之分时组合,轮流工作,从探头一侧向另一侧顺序激励,产生合成波束的发射与接收。相控阵扫描的基本原理是:对线阵排列的各振元,不同时给予激励,加于各振元的激励脉冲有一个等值的时间差,从而使合成波束的方向与振元排列平面的法线方向有一相位差,均匀改变时间差,相位差也随之均匀改变,通过时间控制,实现超声波束的相控阵扫描,即扇形扫描。   B型超声诊断仪采用辉度调制方式显示深度方向所有界面的反射回波。在水平方向上以快速扫描的方法,逐次发射和接收超声回波,便可得到垂直平面二维超声断层图像,即线扫断层图像。如以改变超声波束的角度方式快速扫描,则得到垂直扇面二维超声断层图像,即扇扫断层图像。发射电路对探头提供激励电压,通过对振元的不同排列组合的控制和激励延时,实现超声系统波束的扫描和聚焦,接收电路对超声回波信号的进行移相合成。模拟信号处理电路包括前置放大器、TGC电路、动态滤波电路、对数放大电路等等。由图像检测电路和多普勒检测电路得到的超声回波信号由扫描变换器进行进一步处理。数字扫描变换器的本质是一个带有图像存贮器的数字图像处理系统。主要功能是实现超声信号数字化。并进而进行处理,最终在监视器上实现TV显示。图像处理电路则包括灰度处理、直方图处理、数据插补处理等电路。主要目的是为了改善图像的质量。   2、B型超声诊断系统的故障维修技巧   首先,B型超声诊断系统产生故障的原因主要在于B超的工作量大,以及环境条件差,例如受温度、灰尘、电源波动及干扰等因素的影响,都可以使仪器的故障率增加,所以加强日常的维护工作是做好B型超声诊断系统维修工作的必不可少的一个环节。   在故障动手维修中,一般而言,对换彩超和黑白B超电路板可以作为查询故障的一种方式。维修中需要注意的技巧方法主要有以下几个方面:   第一、在进行具体的维修工作前,作为一个从事B超维修工作的专业工程技术人员,应该首先熟悉该种机器的工作原理和具体的电路结构,这样,有助于从故障的本质上去理解故障所表现出来的种种现象。提高维修质量。   第二、在进行具体维修之前,还应该首先熟悉仪器的主要功能和以及与维修相关的各种功能操作。这样,从各种功能以及各种功能操作之间的相互关系上,有助于压缩故障范围,发现仪器的故障部位,缩短维修时间。   第三、在进行维修之前,应仔细观察和调查故障发生前后的各种现象,特别是要向操作者详细了解故障的发生过程和背景,B型超声属于大型贵重仪器,维修工作是一项复杂工程,在未充分了解故障情况,并准确判断故障性质的情况下,不可冒然维修。   第四、电源部分是B超诊断系统中故障多发部位之一,由于电源部分功率消耗大,温度高,因而故障率也高。电源故障的表现形式也多种多样,经常表现为整个系统或系统的某一部分功能故障。由于电源部分引入干扰使仪器不能正常工作也属此类故障。在大多情况下,应首先检查电源部分的工作正常与否。   第五、B超诊断系统中的外设部分也是常出故障的部位之一,但外设部分相对直观,结构也不复杂,且各部分相对独立,故障诊断定位也就比较容易。如显示器,轨迹球,打印机等,本人在维修中体会到,这类故障的排除要相对简单。   第六、对超声诊断系统的其余组成部分,例如各种系统电路插板,由于电路的集成度高,又大多属于专用器件,通常只能做到板级维修,在故障的查找诊断过程中,应根据电路原理,结合仪器操作者对故障背景及故障现象的描述,仪器所显示的故障代码,自己对仪器故障现象所进行的了解和调查,以及其它方面进行综合判断,以便确定故障部位。在有相同或近型号的B超机器的情况下,则可找出相同的电路板进行对调,以便进行故障的查找。

    医疗电子技术文库 诊断系统 b超

  • 浅谈医用X线机电路板维修技巧

    作为医学上六大成像设备之一,X线机在临床医学领域应用广泛。目前,当新一代X线机采用计算机控制之后,由于计算机中央处理器(CPU)控制了X线机的全部工作,因此信号追踪的方法受到了很大限制,相反必须充分利用计算机能自我诊断和快速诊断的优势,用新的方法来维修设备,但同时又可能存在对计算机系统本身出现故障的判断维修问   一、如何判断CPU系统的工作是否正常 例1         东芝Model KXO-850型胃肠机。

    医疗电子技术文库 x线机

  • 碎石机结构故障全解析

         碎石机是一种非侵入式的治疗设备,因此对人体的损伤较小,治疗效果较好,在临床上得到广泛的应用。它主要由:做功(充、放电回路,冲击波源)、定位、计算机辅助及操作(操作台及床旁操作盘)等四个系统组成。   一、做功系统(Working System)   做功的原理:电磁能转化为机械能。超声波在通过不同的介质时,因介质的密度不同,会产生冲击方向上的改变。人体密度与水的密度相差不大,因而人体与水接触面上不会造成变化,而人体密度与结石密度相差很大,因而冲击波会在结石表面处产生一种机械的推与拉的作用,从而将结石粉碎。   冲击波源产生的方式可分为三类:液电式冲击波源、压电式冲击波源、电磁式冲击波源。冲击波源以液电式居多,因其发展较早,技术成熟,碎石效果好,而被广泛应用,电磁式冲击波源发展较新,能量稳定,制作工艺比压电式简单,聚焦性好,相对对人体的损伤小,因而越来越多地被采用,以下就电磁式与液电式冲击波源论述比较。电磁波碎石是通过高压电容器对一个电感线圈放电,产生的脉冲电流形成一个很强的脉冲磁场,使线圈上覆盖的振膜感应产生磁场,振膜磁场与线圈磁场相互作用产生排斥力,在水介质中振膜的另一面形成冲击波,再通过透镜(双凹面透镜)聚焦,焦点与体内结石相重合,使其粉碎。电磁冲击波是一种平面波,它全部通过透镜聚焦,不存在未经聚焦而直接冲击人体组织的冲击波,避免了直达波对人体组织的伤害;而液电冲击波是采用电极放电产生的,是一种球面波,球面波到达反射杯的部分被反射,反射后聚焦于第二焦点。反射杯是开放的,有相当一部分的冲击波没有聚焦,而是直接冲击人体,而且液电冲击波的能量相对较大,从而对人体造成一定的伤害。   电磁冲击波由磁盘放电产生,电磁盘在使用过程中只会损坏,不会产生偏差,冲击波经透镜(双凹面透镜)聚焦后,其焦点位置不会漂移,焦斑大小也不会变化,只要定位准确,冲击波能量就集中在结石上,因而不会对人体组织造成伤害。液电冲击波采用电极放电,随着电极的放电耗损,其尖端变粗,形成电极尖端的边缘发生放电现象,产生的冲击偏离第一焦点,经反射杯反射后,在聚焦点的偏差会加大数倍,第二焦点将变成一个大的焦斑,焦斑太大致使冲击波能量不能集中在结石上,部分健康的组织将受到冲击,从而造成一定的伤害。   二、定位系统(LocaTIng System)   目前采用医用X射线与B超两种定位系统进行定位。在X射线定位中,过去采用固定的双球管、双影像增强器进行定位,经济成本高,而且很难避开骨骼组织的阻挡,图像无法看清,操作也复杂,故现都采用三维可移动式C形臂单球管x光机,C形臂以冲击波焦点f为圆心可做平面转动或球面运动,X射线投影中心经过焦点f将C形臂任意转动改变一个角度,就可进行定位,此种定位系统定位准确、快捷,成本相对较低,因而优点远大于前者。该系统可对肾、输尿管结石全方位定位。   X射线定位:直观、准确、方便、快捷,是采用三维坐标定位的,成本相对较高,对人体有一定的伤害,因而要求尽可能曝光时间短,X射线的剂量尽量小,对操作房间的防护要求也较高;B超定位:是一种极坐标方式定位的,对阴、阳结石均可显示,可实时跟踪监控、对人体伤害小、对操作者技术要求很高,而且图像质量不如X光机,很难确认,不如X光机定位直观、方便、快捷,所以现在K射线定位较多,B超可以辅助定位(经济条件允许情况下)。   三、计算机辅助系统(Computer Supplementary Systerm)   计算机辅助系统是配有数字医学影像系统(DMIS:Digital Medical lmaging System)。主要功能有两个:(1)数据采集、存储(Date CollecTIon/storage)。(2)影像捕捉(Imaging Grasp),在计算机配置上增加了视频捕捉卡,即动态视频捕捉/播放卡,它能够同时抓取动态视频、音频信号,并加以压缩、存储和回放,它的功能是将PAL制式信号转换为SVGA信号(Super Video Graphic Array)。   四、经常出现的故障及注意问题   1、定位系统故障   X光机高压配电柜瓷芯保险熔断,一般是X光机高压电缆击穿,此种情况可以修理(具体修理方法不赘述,可参阅相关资料),经济条件允许下可直接更换。   不断保险,在启动手闸或脚踏时(1)mA表稍有摆动,球管灯丝亮,可能为X光机高压电缆断或阴、阳极接触不好;(2)球管灯丝不亮,mA表不摆动,此种情况很少发生,一般为球管坏;(3)发出很大响声,似空气被击穿或电极放电声,有可能是X光机球管漏油,造成空气进入球管,空气被击穿,此种情况可以修理(可参阅有关X光机维修资料)。   2、做功、放电系统故障   治疗时启动触发开关后,电容箱不放电。故障原因:(1)电容可能用久漏液、损坏,需更换新电容组;(2)触发球放电间隙太大、无法触发。处理方法:可适当调小间隙。   连续放电:(1)电容箱放电电压设置为低kV时,故障原因:金属铜触发球因高频次的放电,表面被氧化和碳化导致不洁净,间隙相对减小,引起连续打火、放电。处理方法:可将表面处用水砂纸轻微处理干净,再用无水乙醇擦拭或将间隙适当调大;(2)设置为高kv时(kV在允许范围内),故障原因:电容组使用时间长,耐压已达不到要求,需要更换电容组;或是触发球间隙相对较小,可以适当调大间隙。   3、注意问题   经常用定位针做焦点中心校准,避免定位的偏差和不准确,导致对病人造成不必要的伤害。   电容箱的接地一定要符合标准,而且要定期加工业用盐,使接地达到良好的导电功能,使漏电尽可能最小,避免对操作人员和病人的伤害。

    医疗电子技术文库 碎石机

  • 新型医疗无线健康监测系统

      在未来的无线健康监测系统中,每个人的心脏将会分配一个唯一的IP地址进行区分,这在现有的 Body Area Network (BAN,人体无线局域网)中已经初步实现。在BAN系统中,人体各个位置的传感器可以依靠连接至手机实现长期可靠的动态健康监测。   IP地址不再是电脑、笔记本等产品特有的网络标记,在未来的无线健康监测系统中,每个人的心脏也将会分配一个唯一的IP地址进行区分。这在现有的 Body Area Network (BAN,人体无线局域网)中已经初步实现,来自荷兰的研究机构IMEC近日展示了这套系统。   在BAN系统中,人体各个位置的传感器可以依靠连接至手机实现长期可靠的动态健康监测,包括心电图、脑电图、肌电图等方式都可以在这套系统中实现。而且每个被监测的人,都将会获得一个独立的IP地址,方便进行管理并在紧急情况发生时可以快速的开启应急计划。   在现有的系统中, 心电图电极被连接到一个小项链里,这里面有无线收发器和电池。无线收发器采用的是nRF24L01+网络,这样会比使用蓝牙或者近场通信更稳定并省电。下一步IMEC还将会采用超级功率射频发射器进行数据收发,这样可以提高耐力和传感器的可携性。   监测器的另一部分是手机,IMEC在一部手机的SD卡插槽中接入信号接收器以收取身上的传感器监测到的相关数据并通过WiFi、3G网络进行发送,也可以将数据以短信方式发出。   这种新型监控系统对于医疗机构和病人都有好处,病人可以正常外出并保持健康数据实时传输,医疗机构也可以随时查看相关数据并在紧急时刻收到警示信息,同样也可以在病人身上植入相关设备进行远程治疗。比如心脏病患者可以植入微型心脏起搏器,在危急时刻医生可以进行远程救援,如果这样的话,手机电池没电就有可能从烦人变成“要命”。

    医疗电子技术文库

  • 家用医疗电子设备设计指南

    家用医疗电子设备设计指南

      在医疗电子设备产业中,家庭卫生保健是发展最快的领域。受到人类平均寿命延长,慢?病患者越来越多以及保健成本越来越高等原因的推动,越来越多更“智能”、“友好”的医疗设备正在进入家庭消费市场。   这些医疗保健产品包括:血糖仪、数字血压计、血气分析仪、数字脉搏和心率监视器、数字温度计、怀孕测试仪、透皮给药系统、透析系统和氧浓缩器等。其中许多仪器可以用无线方式通过互联网连接到医护人员的办公室,实现对重症病人的持续在线监视和诊断。   由于医疗电子产品使用的技术越来越复杂,为了确保包括医护人员、病患本人以及最重要的家庭用户在内的每个人都能安全有效地使用这些产品,对这些产品的设计要求越来越高,并且其中许多要求可能存在冲突。对于设计师来说,所有这一切则意味着要在给定空间的芯片或电路板上实现更多的功能,同时尽可能低地降低功率。   “在选择用于家庭保健电子产品的IC时,设计师面临的最大的问题是如何合理地平衡各方面问题,如小尺寸、低功率、低成本、高可靠性、长寿命和高安全性等。”Microchip公司医疗电子产品部高级经理Steve Kennelly解释说,“需要多大的处理能力取决于医疗电子设备的使用者是谁。”   许多医疗电子设备的生产量都不是很大,因此很难通过自动化制造工艺取得较低的市场成本。当然一个积极的信号是这些产品中的单个电子器件(传感器、MCU、显示器、存储器等)的价格在不断下滑。   医疗电子设备面临的另外一个障碍是如何实现远高于非医疗电子设备所要求的密封性,而全面微型化使得密封性更难实现。   了解家用医疗电子设备的要求   对医生等专业人士来说操作医疗电子设备是得心应手的事,因为他们培训过这些仪器的使用。而对家庭病人来说,操作简单极其重要。幸运的是,最新的高集成度芯片、复杂的DSP和微控制器、高密度闪存和先进的微机电系统(MEMS)传感器都有助于实现这个目标。   “我们欢迎这些看起来似乎矛盾的要求,因为它们给我们提供了创新的机会。”AMI半导体公司医疗业务部副总裁Todd Schneider表示,该公司的医疗电子设计很多都使用了专用标准产品(ASSP)和专用集成电路(ASIC),“我们进入医疗电子行业已经20多年了,因此非常理解这些设备所面临的技术挑战。”   取决于具体的实际应用,每种保健医疗电子产品的性能优先级设置会有所不同。例如,对于便携式血糖计(经常使用一次性化学试验带)等产品来说,低成本是优先等级最高的参数。而便携式家用透析系统必须将可靠性和长寿命作为设计中最优先考虑的要求,成本则在其次。像起搏器等可植入设备必须具有高可靠性、小体积和长寿命,并且功耗要尽可能小,成本在这种情况下不是主要的考虑因素。   尺寸非常重要   由于人们对医疗电子产品提出了众多的性能要求,工程师不得不面对各种设计权衡。这意味着他们在决定使用何种类型的传感器、模数转换器、放大和滤波、控制和数据处理、电源、显示器以及无线收发器电路时需要仔细权衡。   尺寸通常是主要的设计约束条件,特别是对医疗植入电子产品来说,最小的组织切入是绝对必须的。这种植入产品一般包含一个传感器、一些信号处理电路或者一个发射器,所有这些器件需要装入微型导管或探针内然后插入人体组织。小尺寸也使医生或医护人员更容易将植入产品放进人的身体。   例如,一些包含了传感器、摄像机和射频发射器的智能药丸可以用来清晰和非侵入式地观察身体内部器官。DexCon公司的可植入式血糖监视器就采用了AMI半导体公司提供的超低功率ASIC系统级芯片,它通过402-405MHz频率范围内的射频传输功能连续监视糖尿病患者病情。   一次性血糖仪也将越来越小,目前的典型尺寸与手持式个人数字助理(PDA)一样大。有些血糖仪甚至只有小型腕表那么大,但内部还是包含了传感器、微控制器、液晶显示器(LCD)和电池。这些仪器通常使用光学或电气化学传感器测量血糖值。病人只需刺破手指往一次性测试带上滴一滴血,血糖仪就能读出血糖值。机器和测试带的一次性使用也必须得采用低成本设计。   无线心电图(ECG)Holter监视仪是一个很好的微型化例子。使用ADI公司现有IC设计的这个监视器非常小,可以安装在ECG电极的背部。由于具有较低的噪声和大幅降低的干扰信号,这种监视仪可以比传统设计提供更精确的信号。   降低功耗   更低功耗是医疗产品梦寐以求的目标,特别是电池供电和便携式家用设备。简单来说,功率降低意味着更长的电池寿命。它还能让设计师灵活地使用更小的电池,充分发挥具有功率管理性能的最新MCU芯片的优势。   不过,低功耗并不总是与更小的电池尺寸联系在一起。当运算能力要求很大时,就像耳蜗可植入听力设备那样,电池可能比电路的体积还要大。耳蜗可植入设备必须工作在动态模式,静态的‘睡眠’模式很难使用。这些植入产品的供电一般来自配戴在耳朵外部的感应式电源,这些产品必须使用快速时钟速率并以宽动态范围连续工作,因此要消耗大量的功率。   影响功耗的另外一个问题是IC的制造工艺。采用0.13μm工艺制造的IC具有比采用更宽线径制造的前代IC更大的漏电流和静态功耗。“我们在制造过程中通过优化IC晶圆的化学成份来降低功耗。”AMI半导体公司的Todd Schneider表示。   降低IC的工作电压以及仔细管理电容效应对减少漏电流大有帮助。这正是医疗电子系统制造商采用(三维封装中)芯片堆叠方式取代在有限大小的平面上挤压每个器件占板面积的原因。   幸运的是,有些特定的技术有助于管理功耗。例如,降低时钟速率和缩短动态模式下的工作时间都可以用来降低功耗。“关键是快速上电。”Schneider指出。唤醒芯片使其快速进入动态模式、并尽可能长地让它处于睡眠模式可以确保较低的功耗。   深入理解具体应用对IC功能的需求有很高的价值,它可以帮助设计师用门电路以硬件方式实现所有必要的功能。虽然这种方法不是非常灵活,但它确实可以明显减少芯片上任何不需要的功能,从而有效降低功耗。   TI公司最近推出了一款带有完整信号链的超低功率MCU,可用于各种便携式医疗诊断设备,如个人血压监视器、肺活量计、脉搏血氧计和心率监视仪等(图1)。这款型号为MSP430FG4270的16位精简指令集处理器(RISC)SoC集成了全面的功能链,可以帮助设计师开发出低成本的便携式医疗设备。      图1:TI开发的这款高集成度MSP430FG4270 16位RISC MCU中集成了低功率、低成本便携式医疗产品(如血糖仪)所需的主要功能模块。   共有5种低功率模式可用来延长电池寿命。在待机模式,耗电只有1.1μA,工作电压为1.8到3.6V。在1MHz和2.2V时该器件耗电特别低,只有约250μA。在1万片订量时的单价为3.78美元,是业界同类芯片中最低的,据TI公司透露。   NEC微电子公司也推出了廉价的8位MCU,如78k0/Lx3系列,其中许多功能是专门为便携式保健电子应用设计的。这个全闪存器件集成了片上LCD控制器/驱动器,消耗很少的功率,在待机模式下只消耗2.3μA的电流。   业界在为超低功率的听力应用(如助听器)开发非常高质量的声音方面也有显著进步。AMI半导体公司的Ezairo 5910 ASSP集成了一个被称为听力增强器的柔性滤波引擎,能以极低的功率提供非常高质量的声音。这个听力增强器耗电小于1mA,可以提供高质量声音所需的完全24位处理和长电池寿命。   DSP进入家用医疗电子产品   DSP在医疗电子产品中的应用也越来越广泛,它有助于处理复杂的运算和降低功耗。它们在便携式医用超声波成像设备中有很大的作用,可以用来实现比以前的二维产品更精确和更清晰的三维成像质量。   在ATM半导体公司设计的一款获得大奖的亚波段电子听诊器的核心部分中就装备有一款超低功率的DSP,该设备应用了采用过采样滤波组的信号处理技术。这款DSP提供21dB的放大性能,与衰减声音信号的传统听诊器相比性能有了极大的提高。该器件工作在1.8V电压,只消耗4.1mW功率。整个电子听诊器的功耗为47mW,其中大部分功耗(43mW)是LCD读取设备消耗的。

    医疗设备与MCU 医疗电子 医用设备

  • 云数据技术在医疗领域的应用

      由于使用不同的电脑、软件和外存储设备来存储数据和图像,不同的医疗卫生机构,如医生办公室、医院和专科门诊等,在数据互通性上出现了严重的问题,而以互联网为基础的数据共享技术很好地解决了这一难题。由于所有的资料都存储在互联网上,该项技术既可以使医疗卫生机构共享如患者化验结果和病史等简单资料,也可以让患者随时查询他们的资料。云数据技术不需要特别的设备,只需要一台电脑和网络连接。   但是医学影像资料具有其特殊性——容量巨大。因此在网络使用高峰时段,面对海量的图像存档存储系统文件,即使是高速互联网连接系统也束手无策,更别提拨号连接网络系统了。   所谓的云数据,是以拥有网络连接的电脑为基础的。其可以让用户共享其他设备上所需的资源、软件和信息。   云数据系统除了简单易用之外,还具有一些其他优势。用户可以近乎实时地共享不同设备和组织中的信息。该系统还具有很高的性价比,使用者只需为他们所用到的数据付费。而这对小型医疗操作尤其重要,因为这可以使数据存储和管理都远离实际的医疗操作区域。   医疗卫生政策的制定者们对云数据非常感兴趣。根据微软公司的Ipsos研究,他们其中五分之二的人对云数据有基本了解,而49%的人说他们的组织在利用这个系统。根据调查,在不同行业中,云数据主要用于公司合作(56%)和数据存储(48%)。   许多医疗机构都在研究以云数据为基础的技术来共享医疗图像和报告,这其中包括西雅图儿童医院、阿拉斯加州荷马市的南半岛医院及加利福尼亚州的文图拉社区纪念医院。以圣地亚哥为基础的eMix系统是厂商中立的(测试这个系统的机构使用了不同的PACS厂商),并且是以“用多少付多少”的形式进行收费。   拥有944张床位的耶鲁新天堂(CT)医院将要使用一个云数据平台来收集和共享诊断影像信息,并将其主要用于其新建的拥有168张床位的 Smilow肿瘤医院,以及需要处理从远处送来的急救患者的创伤病房。这个不需要特殊装置和存储设备的系统,即lifelMAGE在线医学影像平台,可以让患者、医生和医院采用电子手段从医院的任何部门收集、共享和使用医学诊断图像。   这个系统采用了一个诊断图像管理的操作界面,使得任何医院雇员都可以加载和浏览患者的医学影像学信息。这些图像然后被传输到该机构的PACS进行储存。   “能够在患者预约前获得其影像学资料,对于我们提高诊疗效率和改善患者护理有很大帮助。”耶鲁新天堂医院的临床影像和信息系统主管迈克尔•马修斯如是说。他还提到,由于他们医院每年有超过500,000名门诊患者,影像学和其他检查资料在相关科室间的有效获取和共享就变得尤为重要。   云数据对于需要大量医学影像学资料的专科医疗机构尤为重要。佛罗里达州坦帕市的莫菲特癌症中心、纽约的斯隆-凯特林癌症中心和波士顿的麻省总医院都在使用这一系统来传输诊断图像。患者常常在首诊时,就可以随身带着包含有他们相关资料的CD或其他移动存储设备。   位于哈特福德市的以CT为基础的安泰保险公司正在使用一种新的云数据处理和临床决定-支持方案。新方案可以使他们通过以循证医学为基础的临床决定- 支持系统,将来自电子病历、主诉、药物治疗和实验室检查结果的信息进行整合,然后将其通过IBM的云数据平台传送给医生和患者。   位于圣地亚哥的夏普公司医疗小组正在使用“协同照护”这一新方案。借助于这一方案,医生和护士可以方便地从该公司多种不同的电子病历系统中获取所需信息。   夏普公司医疗小组的首席执行官约翰•杰帝博士说道:“纸质报告、不连续的数据资料、在正确的时间和地点缺少患者的信息是医疗现状中存在的主要问题。不幸的是,其在大多数医疗机构中都不罕见。患者无法参与到他们自己的就诊活动中,并没有有效地获取自己的临床信息及和医生交流。而我们现在就是要创造一种以患者为中心的系统,将初级医疗医生、专科医生、医院和患者有机地联系在一起,从而达到降低医疗费用,提高诊疗效果的目的。”   麻省莱明斯特健康救助医院的医生,可以通过安全的无线网络技术随时随地获取包括海量PACS资料在内的所有数据。“只要你拥有网络连接和账号,就可以随时随地使用这个系统。”这家拥有150张床位的医院的副院长兼首席信息官理查德•蒙克如是说道。   新的无线数据通道可以比以前传输更大量的数据。无线网络协议(802.11n)使得在更多的设备上共享影像学资料、视频和其他海量资料成为可能。健康联盟医院就使用了Richardson公司基于TX内部无线技术的带有无线网络解决方案的数据通道。   医疗改革所需要的,是供应商与患者之间更密切的合作与沟通。尽管政府资助可以在一定程度上帮助医疗机构负担一部分电子病历的使用费用,但是资料的连接共享仍然是个悬而未决的问题。独立行医者对其尤为担心。“这是他们经济上的负担。”蒙克说道。   云数据一般说来具有很高的性价比。例如,其并不需要IT专业人员来操作和使用。   另一个使用云数据的问题是时间。学习新系统,输入数据,适应工作中遇到的新变化都需要时间,而这些情况在医生的日常工作中并不少见。蒙克这样说道: “只有你尽可能的将这项技术变得让人们可以通过自学掌握,你才会在未来的工作中变得更为轻松。”世界上不存在任何完美的程序,医生们要完全适应电子数据共享也需要一定的时间。但是蒙克认为,连简单的在线方案都不喜欢的医生正在被这一时代所抛弃。一些医生已经做好了接受这一技术的准备,一些医生正在努力适应这一技术,而其他一些医生可能永远都不会成为电子数据世界中的一员。

    医疗电子技术文库 医疗 云数据

  • 便携式超声波系统的完美设计方案

      随着世界人口的不断飙升,老龄化问题日益严重,全球范围内医疗诊断及护理设备的需求持续上升,尤其是对计算机断层扫描仪、磁共振仪、高档超声波诊断仪器等高端医疗电子产品需求的快速增长,有力带动了全球医疗电子市场规模的扩大。然而目前的医疗设备大多较为笨重,且价格昂贵,能耗巨大,不能很好地满足医护人员的需求。因此,医疗电子市场对外形小巧、能源效率较高以及极具成本效益的医疗诊断设备的需求显得尤为迫切。   超声波系统的设计挑战   便携式超声波系统是医院、诊所、救护车及偏远地区救护站的常备医疗设备。作为便携医疗设备应用广泛的一个市场,便携式超声波系统的同样面临着小型化、低功耗的设计挑战,使用者期望在满足便携尺寸和运行时间要求的同时维持可接受的图像质量。这就要求设计者尽量降低能耗,但同时必须确保设备运行时电池自始至终都能提供充足的供电,以确保影像分辨率,保证设备在现场操作时也能发挥卓越性能。   “美国国家半导体的高能效模拟技术使上述期望成为可能。”美国国家半导体亚太区市场总监吴渭强先生表示,“创新的PowerWise设计可以确保电池能够支持设备长时间运行;同时,连续时间Sigma-delta模拟/数字转换器技术及数字可变增益放大技术可以提高影像分辨率。此外,美国国家半导体先进的芯片封装工艺使得芯片具有更低噪声、更小的体积。”采用了美国国家半导体模拟子系统方案的便携式超声波系统可以实现高分辨率影像,发挥媲美大型仪器的性能,确保医生作出准确诊断,更有助于减小方案体积,降低功耗和系统成本,极具竞争优势。   完美超声波系统解决方案   美国国家半导体推出业界首款专为便携式超声波系统而设计的8通道超声波发射/接收芯片组。这款PowerWise芯片组的创新电路架构可以帮助工程师设计电池寿命更长、且影像分辨率可媲美大型超声波扫描机的便携式超声波系统。   该款8通道发射/接收芯片组由4颗芯片组成,芯片间协同工作令芯片组实现无与伦比的超高性能及效率。它内置一切超声波系统必要的电路,其中包括接收系统模拟前端电路(AFE)、发射/接收系统开关、发射系统脉冲发生器及可配置发射系统波束成形器。其高度集成的特性令系统设计师可以利用该芯片组来开发小巧轻盈、影像更清晰、更易据此作出准确诊断的128通道便携式超声波系统。   芯片组的模拟前端电路采用非常独特的架构,不但能确保出众的影像质量,还可将B模式的功耗尽量降低,甚至比最接近的竞争对手还低10%。这颗模拟前端电路还内置业界最高分辨率的数字可变增益放大器(DVGA)及低功耗的连续时间Sigma-delta (CTSD) 模拟/数字转换器(ADC)。此外,数字可变增益放大器还具有多个传统模拟可变增益放大器所没有的优点,例如,各通道之间可以更好地校准并具有更好的信号频谱性能。连续时间Sigma-deltaADC本身还有砖墙式混叠信号滤除功能。美国国家半导体为该模拟前端电路提供功能齐全的演示系统和评估套件,帮助系统开发商缩短开发周期,节省开发成本。   吴先生表示,这款凝聚了美国国家半导体公司高能效模拟技术和创新PowerWise设计的8通道超声波发射/接收芯片组的面世,必将改善传统的便携超声诊断设备成像效果劣于大型诊断设备的局面,为广大涉足医疗电子设备的系统开发商开拓展新的领域。

    便携医疗终端 超声波

  • 佳能医疗DR的多方面应用

      本文简单介绍了视频转码技术的定义、分类及实现手段,重点分析了如何在视频工程中使用转码技术,包括转码技术的使用方式及其优势所在。分析了在流方式和文件方式下如何使用转码技术。通过对移动非线性编辑系统远程传输视频数据和节目制作网络素材集中上载两个工程实例的分析,探讨了转码系统工作的灵活性和通用性。阐明了作者对在专业视频领域内,配合计算机设备及网络架构,使用转码技术前景的看法。   1 引言   从一个简单的问题开始我们的讨论:对于一个视频工程技术人员而言,工作中所需面对的视音频编码方式有多少种?   以编码和压缩方式的大类而言,我们需要面对 MoTIon-JPEG 、 MPEG 、 DV 、 H.261H.263 等不同系列的压缩编码方式;每一种编码方式我们又需面对不同的子类或子级,如讨论 DVB ,经常就要涉及 MPEG-2 MP@ML 和 MP@HL ;不同厂商的视频产品,也根据各自情况采用不同的 帧内、帧间编码关系及不同的码流; GOP 长度、 I 、 B 、 P 帧、 50 、 25 Mbps 等名词现在已经成为视频产品技术参数的重要组成部分;每个厂商在视频数据的封装上也有各自的编码方式,不同厂商开发的视频服务器,如 Grass Valley 的 Profile 系列服务器和 SONY 的 MAV 系列的服务器,虽然可以支持以相同 GOP 长度、相同码流的编码方式产生 MPEG-2 视频文件,但由于在文件封装上的不同,二者产生的视频文件是无法相互直接使用的,这种情况在数字视频领域相当普遍,有时甚至在同一厂商所开发的不同系列的视频产品中,数据流或文件也是无法相互识别的。   我们不想在这里探讨哪一种编码压缩方式更好、更优秀,本文想要讨论的是:在采用不同压缩编码方式的视频设备之间如何高质量、高效效率的共享和交换视音频数据。   现在交换视频数据的普遍做法是将编码完成的视频数据解压缩为基带信号,根据情况进行再编码,并加以适当的封装,使用相同的接口协议,以流的方式,在不同的视频产品之间进行传输共享。如在不同的视频产品间使用 SDI 连接,不论设备内部使用何种编码方式,均通过内置的 SDI 编解码器将视频数据编解码为标准的 SDI 数据流,进行传输。   无论设备 A 内部的采用何种压缩编码方式,在向设备 B 传输视频数据时,首先通过其内置的数据解码单元将视频数据解码送至 SDI 编码器,封装转换成 SDI 数据流,再通过 SDI 接口传输给设备 B 的 SDI 接口,设备 B 将其通过 SDI 解码器,送至其本身的数据编码单元,对视频数据重新编码进行处理或存储。   这种数据交换的前提,是不同的设备存在遵从相同协议的接口,如 SDI 接口,并具备相应的编解码硬件设备,使用一种可以共同识别的数据流作为中介进行视音频数据的交换。   我们换一个角度来看,这种方式本身可以看成是一个编码方式转换,即转码的过程。它将设备 A 中编码处理的视频数据解码,通过 SDI 编解码器转换成 SDI 流,传输给设备 B ,再将其传换成为设备 B 所使用的数据编码方式进行处理和存储。   在这种情况下,如果我们可以使用直接的转码手段,将基于设备 A 编码方式的视频数据转换为设备 B 可以识别并使用的数据编码格式,为设备 B 处理或存储,可以减少重复编解码所带来的设备开销和信号质量下降,并且可以利用多种的传输通道,而不局限于指定的接口通道,可以大大的提高工作效率。   这正是本文想要和大家探讨的,如何灵活的利用转码方式,在基于不同编码方式的设备间共享视频数据,提高工作效率,同时讨论在工程方面的可能会遇到的问题及解决方案。   2 视频转码技术   视频转码技术,顾名思义就是在通过某种手段改变现有视频数据的编码方式。视频转码技术使用的目的不同,其实现的手段也各不相同。大致上可以分为两类:   一、不同编码格式之间的视频数据转码   不同编码格式之间的数据转码,指通过转码方法改变视频数据的编码格式。通常这种数据转码会改变视频数据的现有码流和分辨率。   例如我们可以将基于 MPEG-2 格式的视频数据转换为 DV 、 MPEG-4 或其它编码格式,同时根据其转码目的,指定转码产生视频数据的码流和分辨率。我们可以将 MPEG-2 全 I 帧 50Mbps 的视频源数据转换为 25Mbps 码流的 DV 格式数据,用于笔记本移动编辑系统,同时产生一个 300*200 低分辨率的 MPEG-4 文件,使用 REAL 或者微软的 WMV 格式进行封装,通过互联网络传输至主管领导处用于审看。   这种转码方式设计的算法较为复杂,其实质上是一个重新编码的过程,涉及的算法复杂度和系统开销,是由转码所需图像质量要求及转码前后两种编码方式的相关度所决定的。   二、相同编码格式之间的视频数据转码   相同编码格式的数据转码,指不改变压缩格式,只通过转码手段改变其码流或头文件信息。根据其使用目的,可分为改变码流和不改变码流两种。   如我们可以将 MPEG-2 全 I 帧 50Mbps 码流的视频数据转码为 MPEG-2 IBBP 帧 8Mbps 码流的视频数据,直接用于播出服务器用于播出。或者我们将基于 SONY 视频服务器头文件封装的 MPEG-2 全 I 帧 50Mbps 码流的视频文件,改变其头文件和封装形式,使之可以在给予 MATROX 板卡的编辑系统上直接编辑使用。   这种转码方式的复杂度要小于不同编码格式转码的复杂度,而且对视频工程上而言,更加具有可操作性。   3 视频数据转码的实现   视频数据不同编码之间的相互转化有很多算法可以实现,许多运动图像专家对此也作了深入的研究,针对不同的编码方式提出了相当多可行的方案。这些方案共同的特点就是充分利用所需相互转换编码之间的共同特征,尽量减少编解码所带来的图像质量损失,同时达到时间和资源消耗的平衡。   如我们将一个 MPEG-2 的视频数据转换成 MPEG-4 的视频数据,当然可以采用的方法是先将 MPEG-2 的视频解压缩成单 帧的图像序列,再将其重新压缩编码成为 MPEG-4 的视频数据   但这种转码方式的运算复杂度的使用 SDI 数据流作为中介的运算复杂度并没有什么区别。我们可以通过一些方法提高转码的效率,降低运算复杂度,比如 MPEG-2 和 MPEG-4 在其编码算法上有很多相通的地方,在 DCT 变换, MC 运动补偿, MV 运动补偿等方面有许多可以公用的地方,我们并不需要将其完全解码成独立的图像序列,可利用不同编码方式间的相关性进行转码工作   MPEG-2 视频数据中所有的头信息被解码后都直接送到 MPEG -4 编码器中进行编码,其中少数头信息需要调整,以适应新的编码格式。而 DCT 系数和 MV 信息被重用,省去了运动估计和 DCT 的系统消耗。同时 MPEG -4 做运动补偿的时候,也可以直接利用 MPEG -2 解码器解码得出的运动矢量的信息。   我们可以看出,使用不同的转码算法在不同需求的编码转换时,可以得到不同的时间及系统消耗复杂度。这些不同复杂度算法的是否采用取决于用户对工作任务的要求。比如工作任务需要实时获得转码结果,要求高可靠性,并且对转码前后的数据的编码方式及码流指定不变。那么我们可以采用高效的转码算法,必要时牺牲一些图像质量,将算法固化在硬件芯片板卡上,从而满足任务需求。如果工作任务对转码同步性要求并不高,不要求实时输出,但对图像质量有很高的要求,我们可以采用一些效率较低,但图像质量损失较小的转码算法。可以将算法固定在硬件芯片中,也可以使用通用的计算机运算系统、存储系统和数据交换系统,使用软件算法进行转码工作,这些方式的具体应用方式在本文的后半部分会详细介绍。   下面来看一下这些转码工作是如何实现的。   一、传统面向流方式的视频转码   由于视频数据自身的特点,数据量的庞大和线性的存储格式,长期以来传统的视频编码转换都是面向数据流进行操作。其工作原理如一个制式转换器一样,输入端输入连续的 NTSC 制信号,同时在输出端输出实时的 PAL 制信号。   这种方式的优点是可以以实时或者接近实时的方式输出转码结果,转码算法固化在板卡芯片上,转码工作基本上是由硬件完成,稳定性好。但其缺点也是显而易见的,转码单元针对特定的源编码方式和目标编码方式,用户基本无法对码流的大小和附加信息进行控制,灵活性较差。而为了满足实时处理的要求,有时必须需要牺牲一些图像的质量。另外的缺点就是这种基于流方式的视频转码,输入和输出基本同步,不能以快于实时的速度进行编码转换。   随着计算机技术的日益进步,非线性存储手段日益完善,我们可以通过文件的方式存储视频数据。这样就为视频数据提供了新的,更加灵活高效的转码手段。   二、使用计算机及其相关设备面向文件方式进行视频转码   使用计算机设备改变单幅图像的编码方式已经是一个非常成熟的技术,但受到计算机运算能力和存储能力的限制,很长一段时间内,对于符合广播级要求的专业视频数据的编码转换处理一直没有什么好的解决方案。但随着计算机设备运算能力的增强和存储容量的日益扩大、其数据接口已经可以满足视频数据处理的需求,使用计算机及其相关设备处理视频数据已经成为现在的主流,同时也给视频转码提供了更好性价比的平台。我们可以使用计算机设备,利用软件手段,进行灵活高效的转码工作。   我们来看一看如何使用计算机系统进行转码工作。   这种利用计算机设备进行转码的工作方式具有非常大的灵活性,可以对以文件方式或以流方式存在的视频数据进行处理。其本质均是在计算机设备的存储器内开设足够大数据的缓存地带,将所需处理的视频数据文件或流分成许多大小适合的片段,放入其中。由软件提供转码算法,并控制计算机系统进行转码工作。图 -7 中所示的数据接口的概念也非常的灵活,它可以使计算机设备的外部接口,如千兆以太、 Fiber Channel 通道,也可以是其本身的内置存储通道接口。我们来看一下他们是如何工作的。   计算机设备先将需转换编码方式的视频数据文件放入外部存储或本地存储设备中。然后将该视频文件拆分成适合计算机设备处理的数据片段,放入高速缓存中,由软件提供转码算法,利用计算机设备的处理能力对数据片段进行编码转换。转换完成后将数据片段送入指定区域存储,同时高速缓存区获取新的数据片段。循环这种方式直到所有的拆分数据片段均得到了转码处理,合并转码完成的视频数据文件片段,输出我们所需要得到的视频数据。   这种拆分数据的方式同样也适合于以流方式存在的视频数据,比如我们可以使用数据接口直接与数字视频数据流连接,不经过任何的编解码将其存储到计算机转码设备的指定缓存区域,变线性的数据流存在方式为非线性的数据存储方式,然后可以使用图— 8 所示的数据拆分方式进行转码处理,经合并后,可以选择文件方式或依然保持流方式的数据输出。   采用这种方式的转码工作,具有很强的灵活性,数字信号接口并不需要识别接收到的数据流为何种格式编码、封装如何。只需将数据如实记录到缓存区,由转码软件决定采用何种转码手段,针对何种数据流的编码格式和封装方法进行编码转换工作。如我们在接口硬件标准相同的情况下,可以对 DV 流、 TS 流、 FTP 文件流等多种方式的数据流输入进行编码转换,并不需要更换硬件接口和编解码设备,只需更改转码软件的转码处理手段及控制手段即可   我们看一下转码软件究竟是如何进行工作的。   不同的转码软件有其各自特点,但不外乎有以下几个功能模块组成:数据接口模块、硬件接口模块、存储管理模块、转码算法模块、数据处理模块、控制管理模块和用户界面模块。   每个模块各自负责软件工作的一个或几个方面:数据接口模块负责处理数据的输入和输出,硬件接口模块负责与计算机硬件驱动程序通信,存储管理模块负责内村等存储空间的分配,转码算法模块提供转码处理工作的算法手段,数据处理模块进行转码的具体数据处理,控制管理模块进行整个转码工作的控制和信息处理,用户界面模块提供用户与转码软件的交互,提供用户对转码的编码方式、码流及其它的一些软件提供的选项进行控制。   转码算法模块可以固化到转码软件中,也可以以插件的方式存在。当转码软件处理不同的编码转换任务时,根据需要使用不同的转码算法插件,可以在不改变其它功能模块配置的情况下,灵活的扩展软件功能。   使用计算机设备配合转码软件,进行专业视频编码转换工作,具有以下一些优点:   • 硬件设施相对简单   使用计算机设备及软件进行转码工作,无需使用专用的编解码芯片或板卡。对数据的处理完全由软件来控制完成。   • 转码范围广、灵活性好   使用软件转码,可以由用户根据需求对转码设置进行控制。包括目标码流的的大小、级别、压缩方式、封装方式等方面均可以由用户来指定,根据不同的需求直接使用相应的转码算法,转码算法可以作为插件存在于软件中,便于随时更新或升级,而无需对整个系统进行改动。   三、转码的复杂度和资源消耗随需求不同发生变化。运用软件转码系统可以对不同的转码要求分别对待。有时候我们仅仅是想改变视频文件的封装方式,而不改变其压缩编码的方式,这种方式就非常适合。例如我们有这样的需求,需将 SONY 的 MAV 系列服务器中的 MPEG-2 I 帧 50M 码流 编码 的视频文件转码为 Ma trox DigiSuite DTV 板卡可支持的视频文件形式,用于节目制作网络编辑。由于 DTV 板卡支持 MPEG-2 I 帧 50M 码流的视频数据,我们在进行转码工作的时候可以仅仅只改变视频文件的封装形式,而不改变其中涉及视频数据内容的压缩编码。这样可以大大降级转码工作的复杂度和系统消耗,同时可以保证视频数据的质量不因重新编解码而受到损伤。   4 转码系统在实际工程中的应用   在电视技术工程中,已经有不少的应用转码系统的实际例子。我们下面就通过两个工程实例来进一步的分析基于计算机设备的转码系统的工作原理和应用前景。   一、转码系统在移动非线性编辑系统远程传输中的应用   随着笔记本电脑性能的日益增强,商家已经敏锐的看到使用基于笔记本电脑的移动非线性编辑系统在远程编辑传输上的应用前景。基于软件的编辑手段使编辑系统的价格大大的降低,设备的便携性使现场编辑成为可能。但这些并不是移动非编优势的全部,还有非常重要的一个吸引用户的特点:使用移动非线性编辑系统,配合相应的网络接入设备,就可以利用现有的公用通讯网络进行视频数据的传输。使利用廉价的公共互联网络、电信网络或者移动通讯网络,替代专用昂贵的、点对点的通讯线路进行视频数据传输成为可能。   移动编辑系统可以使用遍布城镇的廉价的宽带、 ADSL 线路、 GPRS 无线通讯所构成的公用互联通讯网络取代微波、光纤通道、卫星等专用昂贵的数据链接通路进行视频数据的传输。   但使用公用网络传输视频素材,不可避免的要遇到公共网络带宽的瓶颈问题,比如给予以太局域网的宽带互联网络接入,其最高传输速率一般不会超过 4Mbps ,而根据路由的不同及干线带宽的限制,实际传输的速率会更低。对于 50M 码流的 MPEG2 全 I 帧编码或 25M 码流的 DV 编码而言,公用网络的数据传输率是难以忍受的。我们以 DV 25M 码流的编码方式为例,在 Windows 操作系统下,一分钟的 DV 文件约为 220MB 左右,在互联网络上以 200KBps 的速度传输,其需要 4100 秒左右,即 68 分钟左右。即视频数据时长和传输所需时长之比是 1 : 68 。这种效率的传输方式虽然在理论上是可行的,但在实际应用中,由于不同网络状况,速度各有差别,而且在传输中任何的一次中断都有可能使整个视频文件的不可使用,从而导致必须从头重新传输。所以这种工作方式在实际工作中是不具有可操作性的。   那么如何使用公用互联通讯网络,高效,便捷的将节目视频数据传回编辑地点或者直接用于播出呢?可以利用基于软件转码的视频数据传输系统解决这个问题。   我们可以根据具体需要,将节目视频数据通过软件转码系统转换为指定格式,指定码流编码方式,以文件分割的方式分成若干个大小合适的数据包,通过公共互联网络以 FTP 的方式将这些数据包发送给异地的接收端,并提供数据校验手段。接收端在收到各个数据包后,将这些数据包和并编码为接收端指定的数据编码方式,在这个过程中如遇到数据包丢失,则接收端要求传输方重新发送该数据包,而不需重新将视频数据从头传输。   如在实际工作中遇到这样一个问题:工作任务要求将异地拍摄的突发新闻素材及时传至远方的电视台。两地之间无专用视频信号传输线路或专用线路租金过于昂贵,公用互联网络接入却很方便。拍摄的原素材为 DV 的压缩编码格式,电视台的编辑和播出系统使用的是 MPEG-2 的压缩编码格式。为了达到快速、高效、廉价的将节目素材传回电视台,可以采用以下的工作方式。   首先使用移动非线性编辑系统本机上的软件转码系统将源视频数据( DV )转码为用户指定编码方式和码流的视频数据文件。编码方式和码流的指定根据用户的具体需要,如对注重内容性的突发新闻和一些不需要进行再次复杂编辑的视频数据,用户可以选择适当的牺牲视频数据图像质量来换取更高的压缩比的文件用于在公共互联网络上传输,比如将每分钟 220MB 左右的 DV 文件转码为每分钟 60MB 的高压缩比的 MPEG-4 文件。在网络状况不变的情况下,其传输时间可以减少为直接传输 DV 文件所需花费时间的四分之一,代价是牺牲图像质量,但其图像质量的损失肉眼几乎不能区别。随后将 MPEG-4 文件拆分为若干个数据包。通过 FTP 方式将这些数据包发送到远端的电视台接收端。接收端将这些文件合并后得到的 MPEG-4 文件,根据用户指定的码流和编码方式,通过转码系统将该文件转码为指定封装格式的 MPEG-2 文件,直接用于编辑或播出。   采用这种传输方式有以下特点:用户可以控制所需传输文件的大小,根据自身需要及网络状况进行灵活调整;用户可以对视频数据图像质量进行控制,可以在传输数据的同时改变图像的分辨率及编码方式;将视频数据文件拆分成若干的数据包进行传输,可以充分的利用公用互联通讯网络的资源,同时具有断点续传的功能;用户在拆分和合并数据包时可以加入自定义的加密解密方式,可以使数据在互联网上的传输更加安全;拆分文件、编码传输、合并文件等工作可以同时进行,如在编码的过程中可以将已经编码完成的部分拆分成数据包,直接发送到接收端,接收端可以边接收边合并,并将已经合并的数据进行编码工作,可以大大的提高工作效率。   值得一提的是,图像质量损失的大小是在用户指定传输的编码方式和码流的大小时确定的。在传输至目的地时将收到的视频数据转码为高码流的编码方式时,只会在视频数据中加入冗余信息,而不能改变图像质量。因此用户可以根据自己的需求,通过调整传输码流的大小控制图像质量和传输时间的平衡关系。   转码系统在这个工程中主要用于改变视频数据的编码方式及码流大小,以适合使用低速网络进行传输,并且在传输过程中通过控制编码方式和码流的大小,对传输的图像质量进行控制。在下面的一个工程例子中,我们通过对如何利用转码系统进行高效的视频素材数据的收录工作的分析,从而探讨转码系统应用的另外一种侧重,即对视频数据编码的封装方式和冗余信息的转码,而较少的触及视频数据内容本身的编码方式和码流大小,提高不同数字视频设备产生的视频数据的通用性,并且减少传输中的编解码环节对视频数据质量的影响。   二、转码系统在集中收录系统中的应用   我们在基于 Ma trox DigiSuite DTV 板卡的节目制作网络中,设计一个集中上载系统,目的是改变传统使用编辑板卡本身进行上载工作的方式,利用视频服务器的多通道,高稳定性和编码的灵活性进行视频数据的集中上载。通过转码系统将服务器产生的视频文件格式转换为编辑系统可以使用的视频数据格式,同时将卫星收录、已经存在的视音频文件及其它途径获取的视频源通过转码系统引入编辑网络中。从而提高视频数据上载的效率及灵活性,减少编辑站点有于上载工作所花费的非编辑占机时间,并且将不同压缩编码格式的视频数据方便的引入编辑系统中来。   该方案的工作原理是利用带存储单元的多通道视频服务器,作为集中上载的第一个环节,视频输入通道分别与录像机、摄像机、切换台等传统前期节目相连。录制控制工作站通过 422 控制矩阵控制视频服务器的输入通道进行节目素材上载,以视频服务器所提供的视频文件格式存储在服务器本机存储单元内。视频服务器利用千兆异步接口通过网关与千兆以太交换机连接,利用标准的 FTP 协议将服务器内的视频文件,通过转码系统传输至节目制作网络的硬盘存储阵列中,提供给编辑环境进行编辑制作工作。   这种工作方式建立后,具有极强的灵活性。传统使用 SDI 、模拟复合分量接口的设备可以使用视频服务器连接上载,而对提供千兆以太接口的设备,如硬盘录像机、 SONY 的带标准以太接口的录像机设备及基于文件系统的蓝光盘摄录设备、 P2 卡设备等,都可以通过标准的千兆以太接口和集中上载系统中的千兆交换机连接,通过 422 控制或以太网络和控制环节连接。可以方便的利用 FTP 方式进行高速文件上载的工作,并且在加入这些设备时,对集中上载的系统配置和控制操作无需进行大的调整或更改。转码系统在集中收录系统中处于核心地位。   转码系统是由转码服务器、转码调度服务器、用户控制界面和相应的以太网络及 Fiber Channel 网络联接交换设备组成。其中具体负责转码工作的转码服务器是一台或几台带有千兆以太及 FC 接口的高性能计算机设备。视频数据通过千兆以太接口进入转码服务器,经过转码处理后通过 FC 端口输出至节目制作网络的硬盘存储阵列或者其它存储机构。用户通过用户控制界面对转码调度服务器进行配置调整,指定转码的编码方式及码流。转码调度服务器通过以太连接控制转码服务器进行转码工作。转码服务器可以在视频数据从千兆以太接口输入到从 Fiber Channel 接口输出的数据迁移过程中,改变视频数据的编码方式或文件封装的格式,将视频数据文件由视频服务器所支持的文件格式转换为编辑环境所识别和可使用的视频文件格式。同样的,对于可以提供千兆异步接口的视频设备均可通过网关和千兆以太网络连接,在数据迁移中进行视频数据的转码工作   在这种工作方式下,转码系统可以尽可能的减少对视频数据本身的编码方式和码流大小进行改变。比如对服务器中的 MPEG-2 文件,可以改变其封装方式和头文件直接用于编辑工作站使用。同样,所有编辑站点可以处理使用的编码方式,如 DTV 板卡支持处理 MPEG-2 、 DV25 和 DV50 的编码方式,基于这些编码方式的视频数据,均可以高效、方便的引入编辑系统中,而不需要对视频数据的内容数据进行重复的编解码工作,从而避免了由于传输环节造成的图像质量损失。   由于纯粹的转码运算工作在这项任务中已经不是转码速度的瓶颈,转码时间的大小取决于数据接口的速度,如理论上可提供千兆左右传输速度的千兆以太和 FC 接口,在只改变文件包装方式的情况下,实际上可以将 MPEG-2 全 I 帧 50M 码流的文件以 1/5~1/10 于文件时长的时间进行收录引入工作,从而大大减少了由于素材上载而带来的时间消耗   总结   上面两个工程实例代表了转码系统在两个侧重方向上的应用,转码系统在移动非线性编辑传输视频数据时,通过改变码流减少了码流的大小,从而提高了传输的速度,并通过文件拆分的方式,将大块整体的数据转变为小块分散的数据,从而降低了由通道的不稳定带来的传输风险。而在集中收录系统应用转码系统时,利用高速稳定的传输通道,使用改变文件或流封装的方式来提高视频数据的通用性。并且可以利用高速的 FTP 的传输方式以超实时的速度将视频素材引入编辑环境中。   通过对这两个具体工程中的应用分析,可以看到转码系统在视频领域内的应用前景是非常广阔的。以前必须使用昂贵的专业硬件设备才能进行的视频数据编解码、码流转换等工作,现在通过日益强大的计算机技术,可以利用转码软件来完成。同时转码技术在视频数据的传输、存储和通用性增强方面也可以提供很好的解决方案。   专业视频领域中的转码技术是从通用技术脱身发展而来,反过来可以大大的降级专业视频设备投入的成本,增强其通用性和灵活性。这种借用它山之石,将通用产品技术专业化的成功范例在业内已经有相当多的成功例子,如千兆以太接口和光盘技术在硬盘录像机和蓝光盘设备上的应用,如半导体存储设备在 P2 卡上的应用等等。我们相信,这种基于软件的转码系统的工作模式将会是专业视频领域内的下一个成果范例,并会带来视频领域内的另一场变革。

    医疗电子技术文库 佳能医疗

发布文章