高压金属氧化物半导体场效应晶体管(MOSFET)技术在过去几年中经历了很大的变化,这为电源工程师提供了许多选择。了解不同MOSFET器件的细微差别及不同切换电路的应力,能够帮助工程师避免许多问题,并实现效率最大化。经验证明,采用新型的MOSFET器件取代旧式MOSFET,除简单地导通电阻上的差异之外,更重要的是,还能实现更高的电流强度与更快的切换速度以及其他优越性能。
高压金属氧化物半导体场效应晶体管(MOSFET)技术在过去几年中经历了很大的变化,这为电源工程师提供了许多选择。了解不同MOSFET器件的细微差别及不同切换电路的应力,能够帮助工程师避免许多问题,并实现效率最大化。经验证明,采用新型的MOSFET器件取代旧式MOSFET,除简单地导通电阻上的差异之外,更重要的是,还能实现更高的电流强度与更快的切换速度以及其他优越性能。
本文将会广泛地讨论有关数字技术应用于功率转换及管理方面的技术性问题,以迎合市场趋势及不同市场领域的需求。我们还会谈到这种技术相对于模拟控制的应用和挑战。 功率转换属于功率系统 (反馈环路) 的运作,而功
最实用基本图解电路50幅,电路设计分析绝对佳作!仅供参考学习!
620)this.width=620;" />
场效应管放大电路原理及应用一、偏置电路 有自生偏置和混合偏置两种方法,表1电路I利用漏极电ID通过Rs所产生的IdRs作为生偏置电压,即Ugs=-IdRso可以稳定工作点。|IdRs|越大,稳定性能越好,但过负的偏置电压,会
焊接绝缘栅(或双栅)场效应管以及CMOS集成块时,因其输入阻抗很高、极间电容小,少量的静电荷即会感应静电高压,导致器件击穿损坏。笔者通过长期实践摸索出下述焊接方法,取得令人满意的效果。1.焊绝缘栅场效应管。
1 引言 长期以来,直流电机以其良好的线性特性、优异的控制性能等特点成为大多数变速运动控制和闭环位置伺服控制系统的最佳选择。 特别随着计算机在控制领域,高开关频率、全控型第二代电力半导体器件
1 引言 长期以来,直流电机以其良好的线性特性、优异的控制性能等特点成为大多数变速运动控制和闭环位置伺服控制系统的最佳选择。 特别随着计算机在控制领域,高开关频率、全控型第二代电力半导体器件
对于电子产品来说,制程的提升意味着性能、体积和功耗同时变得更好,所以很多半导体厂商都在制程提升上做出很多努力。近日,东芝提出了16nm制程工艺的方法。目前大多数存储芯片处于30nm制程,而逻辑电路更是在42nm制
场效应管驱动定时循环闪光电路图:
MOSFET功放电路主要应用于大功率AV电路中。如图所示为100W的MOSFET功放电路。该电路的输入级采用JEFT输入型运放TL071,其输入阻抗大、转换速率高。VTl和VT3为运放TL071的互补恒流源负载。VT4和VT5组成典型的推动级,
如图所示电路是采用功率MOSFET管构成的功率放大器电路。电路中差动第二级采用2SJ77***率MOSFET,电流镜像电路采用2SK214。其工作电流为6mA,但电源电压较高(为±50V),晶体管会发热,因此要接人小型散热器。 functi
提出了一种新型抑制浪涌电流电路,给出了实际设计方案。
针对普通压电作动器行程较短的缺点,提出一种具有Cymbal结构的复合压电陶瓷作动器的结构设计。