当前位置:首页 > 晶体管
  • 只需8张图,让你彻底理解三极管的开关功能

    晶体管(三极管)的功能之一就是作为开关,利用其截止特性,实现开关功能。但是很多人并不能很好的理解三极管的开关功能,下面以8个实例图片,生动的阐述三极管作为开关的功能。 1 低边开关 2 高边开关 3 基极电阻 4 非门电路 5 与门 6 或门 7 H桥 8 振荡器 版权归原作者所有,如有侵权,请联系删除。 免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

    时间:2021-02-20 关键词: 三极管 晶体管 电子元器件

  • 你对晶体管有多了解?这5种晶体管你都知道吗?

    你对晶体管有多了解?这5种晶体管你都知道吗?

    以下内容中,小编将对晶体管的相关内容进行着重介绍和阐述,主要将向大家简单介绍5种不同类型的晶体管。希望本文能帮您增进对晶体管的了解,和小编一起来看看吧。 一、电力晶体管 GTR是一种电流控制的双极双结大功率、高反压电力电子器件,具有自关断能力,产生于上个世纪70年代,其额定值已达1800V/800A/2kHz、1400v/600A/5kHz、600V/3A/100kHz。它既具备晶体管饱和压降低、开关时间短和安全工作区宽等固有特性,又增大了功率容量,因此,由它所组成的电路灵活、成熟、开关损耗小、开关时间短,在电源、电机控制、通用逆变器等中等容量、中等频率的电路中应用广泛。GTR的缺点是驱动电流较大、耐浪涌电流能力差、易受二次击穿而损坏。在开关电源和UPS内,GTR正逐步被功率MOSFET和IGBT所代替。 二、绝缘栅双极型晶体管 IGBT(Insulated Gate Bipolar Transistor),绝缘栅双极型晶体管,是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件, 兼有MOSFET的高输入阻抗和GTR的低导通压降两方面的优点。GTR饱和压降低,载流密度大,但驱动电流较大;MOSFET驱动功率很小,开关速度快,但导通压降大,载流密度小。IGBT综合了以上两种器件的优点,驱动功率小而饱和压降低。非常适合应用于直流电压为600V及以上的变流系统如交流电机、变频器、开关电源、照明电路、牵引传动等领域。 三、光晶体管 光晶体管是由双极型晶体管或场效应晶体管等三端器件构成的光电器件。光在这类器件的有源区内被吸收,产生光生载流子,通过内部电放大机构,产生光电流增益。光晶体管三端工作,故容易实现电控或电同步。光晶体管所用材料通常是砷化镓(GaAs),主要分为双极型光晶体管、场效应光晶体管及其相关器件。 双极型光晶体管通常增益很高,但速度不太快,对于GaAs-GaAlAs,放大系数可大于1000,响应时间大于纳秒,常用于光探测器,也可用于光放大。场效应光晶体管响应速度快(约为50皮秒),但缺点是光敏面积小,增益小(放大系数可大于10),常用作极高速光探测器。 四、磁敏晶体管 磁敏晶体管又称磁敏三极管或磁三极管,是70年代发展起来的新型半导体磁电转换器件,主要用于磁检测、无触点开关和近接开关等。在锗磁敏晶体管的发射极一侧用喷砂方法损伤一层晶格,设置载流子复合速率很大的高复合区r,而在硅磁敏晶体管中未设置高复合区。锗磁敏晶体管具有板条状结构,集电区和发射区分别设置在板条的两面,而基极设置在另一侧面上。硅磁敏晶体管具有平面结构,基极均设置在硅片表面。磁敏晶体管的一个主要特点是基区宽度W大于载流扩散长度,因此它的共发射极电流放大系数小于1,无电流增益能力。另外,发射极-基区-基极是NPP 型或P NN 型长二极管,即NPP 型或PNN 型磁敏二极管。因此,磁敏晶体管是在磁敏二极管的基础上设计的长基区晶体管。 五、双极晶体管 由两个背靠背PN结构成的以获得电压、电流或信号增益的晶体三极管。起源于1948年发明的点接触晶体三极管,50年代初发展成结型三极管即现在所称的双极型晶体管。双极型晶体管有两种基本结构:PNP型和NPN型。在这3层半导体中,中间一层称基区,外侧两层分别称发射区和集电区。当基区注入少量电流时,在发射区和集电区之间就会形成较大的电流,这就是晶体管的放大效应。 以上便是小编此次带来的全部内容,十分感谢大家的耐心阅读,想要了解更多相关内容,或者更多精彩内容,请一定关注我们网站哦。

    时间:2021-01-30 关键词: 双极晶体管 磁敏晶体管 晶体管

  • Nerissa Draeger博士:全包围栅极结构将取代FinFET

    Nerissa Draeger博士:全包围栅极结构将取代FinFET

    在每个技术节点,设备制造商可以通过缩小晶体管的方法来降低器件面积、成本和功耗并实现性能提升,这种方式也称为PPAC(功率、性能、面积、成本)缩放。然而,进一步减小FinFET的尺寸却会限制驱动电流和静电控制能力。 此外,虽然“鳍”的三面均受栅极控制,但仍有一侧是不受控的。随着栅极长度的缩短,短沟道效应就会更明显,也会有更多电流通过器件底部无接触的部分泄露。因此,更小尺寸的器件就会无法满足功耗和性能要求。 全包围栅极(GAA)是一种经过改良的晶体管结构,其中通道的所有面都与栅极接触,这样就可以实现连续缩放。采用这种结构的晶体管就被称为全包围栅极(GAA)晶体管,目前已经出现多种该类晶体管的变体。 然而,和鳍片一样,随着技术进步和特征尺寸持续降低,薄片的宽度和间隔也会不断缩减。当薄片宽度达到和厚度几乎相等的程度时,这些纳米薄片看起来会更像“纳米线”。 制造方面的挑战 具体而言,在构建方面的主要挑战源于结构的复杂性。要制造GAA晶体管首先需要用Si和SiGe外延层交替构成超晶格并用其作为纳米薄片结构的基础,之后则需要将电介质隔离层沉入内部(用于保护源极/漏极和确定栅极宽度)并通过刻蚀去除通道的牺牲层。去除牺牲层之后留下的空间,包括纳米片之间的空间,都需要用电介质和金属构成的栅极填补。今后的栅极很可能要使用新的金属材料,其中钴已经进入评估阶段;钌、钼、镍和各种合金也已被制造商纳入考虑范围之内。 持续的进步 从最早的平面结构开始,晶体管架构已经取得了长足的进步并有效推动了智能互联的大发展,这一切都是早期的行业先驱们所难以想象的。随着全包围栅极晶体管的出现,我们也热切期待它能为世界带来更令人惊叹的终端用户设备和功能。

    时间:2021-01-27 关键词: 芯片 FinFET 晶体管

  • 意法半导体MasterGaN®系列新增优化的非对称拓扑产品

    意法半导体MasterGaN®系列新增优化的非对称拓扑产品

    中国,2021年1月18日——基于MasterGaN®平台的创新优势,意法半导体推出了MasterGaN2,作为新系列双非对称氮化镓(GaN)晶体管的首款产品,是一个适用于软开关有源钳位反激拓扑的GaN集成化解决方案。 两个650V常关型GaN晶体管的导通电阻 (RDS(on))分别是150mΩ和225mΩ,每个晶体管都集成一个优化的栅极驱动器,使GaN晶体管像普通硅器件一样便捷易用。集成了先进的驱动功能和GaN本身固有性能优势,MasterGaN2可进一步提升有源钳位反激式变换器等拓扑电路的高能效、小体积和轻量化优势。 MasterGaN电力系统级封装(SiP)系列在同一封装中整合两个GaN高电子迁移率晶体管(HEMT)和配套的高压栅极驱动器,并内置了所有的必备的保护功能。设计人员可以轻松地将霍尔传感器和DSP、FPGA或微控制器等外部设备直连MasterGaN器件。输入兼容3.3V-15V逻辑信号,有助于简化电路设计和物料清单,允许使用更小的电路板,并简化产品安装。这种集成方案有助于提高适配器和快充充电器的功率密度。 GaN技术正在推进USB-PD适配器和智能手机充电器向快充方向发展。意法半导体的MasterGaN器件可使这些充电器缩小体积80%,减重70%,而充电速度是普通硅基解决方案的三倍。 内置保护功能包括高低边欠压锁定(UVLO)、栅极驱动器互锁、专用关闭引脚和过热保护。9mm x 9mm x 1mm GQFN是为高压应用优化的封装,高低压焊盘之间的爬电距离超过2mm。 MasterGaN2现已量产。

    时间:2021-01-18 关键词: 意法半导体 MasterGaN 晶体管

  • 关于图腾柱驱动的点点滴滴

    为什么取名图腾柱?  由于此结构画出的电路图有点儿像印第安人的图腾柱,所以叫图腾柱式输出(也叫图腾式输出)。输出极采用一个上电阻接一个NPN型晶体管的集电极,这个管子的发射极接下面管子的集电极同时输出;下管的发射极接地。两管的基极分别接前级的控制。就是上下两个输出管,从直流角度看是串联,两管联接处为输出端。上管导通下管截止输出高电平,下管导通上管截止输出低电平,如果电路逻辑可以上下两管均截止则输出为高阻态。在开关电源中,类似的电路常称为“半桥”。 一种比较有意思的解释: 图腾大多是出于部落中对生殖器官及其能力的崇拜,因为古时人类的寿命很短,生存困难,所以对能增加生存能力的生殖力很看重,说到男性身上就是这个人的那个能力很强,部落里的人就会很佩服他。图腾柱驱动在电路上也具备了同样的能力:向上向下的推动和下拉力量很强,速度很快,而且只要有电就不知疲倦。 图腾柱驱动的作用与原理 图腾柱驱动的作用: 图腾柱型驱动电路的作用在于:提升电流驱动能力,迅速完成对于门极电荷的充电或者放电的过程。 什么情况下用到图腾柱驱动? 某些管子可能需要比较大的驱动电流或者灌电流,这时候就需要用到图腾柱电路。 分析一下图腾柱提升驱动的原理 器件作用说明: Qn:N BJT Qp:P BJT Qmos:待驱动NMOS Rb:基极电阻 Cb:加速电容 Rc:集电极电阻 Rg:驱动电阻 原理分析: 左边一个输入驱动信号Drv_b(驱动能力很弱)通过一个图腾柱输出电路,从三极管的发射极公共端出来得到驱动能力(带载能力)大大增强的信号Drv_g;从能量的角度来讲,弱能量信号Drv_b通过Qn和Qp的作用,从Vcc取电(获取能量),从而变成了携带高能量的Drv_g信号;在这个能量传递的过程中,Qn和Qp分别交替工作在截至和饱和状态; 具体工作过程(逻辑分析)如下: 这里以方波为例,1代表高电平,0代表零电平,-1代表负电平;Vb表示Qn和Qp的公共基极电压,Vqn_c表示Qn管子的集电极电压,Vqn_be表示Qn管子基极-发射极电压,Vqp_be表示Qp基极-发射极电压 当输入驱动信号Drv_b=1则Vb=1,Vqn_be=1,由于:Qn两端有一个Vcc电压,即Vqn_ce=1,所以,Qn管饱和导通,Qn管电流主要由集电极流向发射极,Drv_g=1,这时MOS管结电容迅速充电;(Qn管饱和导通,能量由Vcc提供驱动能力大大增强) 当输入电压为低电平Drv_b=0则Vb=0,Vqp_be=-1,由于MOS管上的结电容存在电压,即Vqp_ec=1,所以,Qp管饱和导通,Qp管电流主要由发射极流向集电极,Drv_g=0;这时MOS管结电容迅速放电;(Qp管饱和导通,MOS管放电速度加快) 实际分析一个图腾柱驱动电路的驱动能力 电路描述 图腾柱放大电路由两个三极管Q2和Q3构成,上管是NPN型三极管,下管是PNP型三极管;NPN型三极管的集电极接变压器辅助绕组供电输出端,与R7相连,与芯片共用同一VCC,供电电压为20V,该电路从直流角度看是串联的,两对管共射联接处为输出端,本电路结构类似于乙类推挽功率放大器OCL。 理论分析 GATE输出的方波信号正负两个半周(高-低电平)分别由推挽输出级Q2、Q3的两“臂”轮流运算放大,每一“臂”的导电时间为脉冲的半个周期,此处方波脉冲的工作频率为25-50KHz(该频率根据负载的不同而变化)。电路工作的逻辑过程是,高电平输入,上管导通下管截止,输出高电平;低电平输入,下管导通上管截止,输出低电平;当电路逻辑的上下两管均截止时,则输出为高阻态。在开关电源电路中,类似的电路常称为“半桥”。图腾柱简化及等效电路图如下 理论计算如下: A、工作状态分析 静态:Vi=Vo→→Q2、Q3均不工作,Vo=0V 动态:Vi=H(高电平)→→Q2导通、Q3截止;Vi=L(低电平) Q3导通、Q2截止;两只三极管分别在半个周期内工作,该电路的工作原理类似于乙类推挽功放。 由等效电路可知:驱动电流Io=C×(Vgs÷Dt)=(Vcc-Vgs)÷R,由此推出如下关系式: Vcc=Vgs*(1+RC/Dt)    ∵て=RC

    时间:2020-12-23 关键词: 电路图 晶体管

  • 采用氮化镓场效应晶体管(eGaN®FET)实现薄型且高效的同步降压转换器

    采用氮化镓场效应晶体管(eGaN®FET)实现薄型且高效的同步降压转换器

    随着计算机、显示器、智能电话和其它消费类电子系统变得越来越纤薄且功能越来越强大,对更纤薄的DC/DC功率解决方案的需求日益增长之同时,需要保持高功率密度和高效率。同步降压转换器是DC/DC降压功率转换的最受欢迎的拓扑之一,因为它简单、易于控制且低成本。本文介绍采用同步降压拓扑的超薄型功率解决方案所面对的设计挑战和权衡。我们采用氮化镓场效应晶体管并添加简单的散热器,设计6.5 mm、44~60 V转到20 V、12.5 A输出电流、250 W的同步降压转换器,其上升温度低于40°C和满载效率为98.2%。 面向消费类电子产品的薄型DC/DC功率解决方案的设计挑战和权衡 实现更纤薄的DC/DC降压转换器的瓶颈主要在于无源元件。通常在输入和输出端需要使用大型电容器,以减少电压纹波并满足瞬态响应的规范。 在某些情况下,磁性元件可以被嵌入或沉入电路板中,从而减小解决方案的厚度。 增加开关频率是缩小转换器中无源元件的尺寸的最有效方法之一。 它不仅减小元件的高度、增加功率密度,而且实现更高的控制环路带宽和更快的瞬态响应。 但是,开关损耗和与AC有关的损耗会随着开关频率而增加,从而降低效率并增加散出的热量 。对于笔记本电脑、平板电脑和智能手机,表面温度是一个关键、直观的性能指标,而且通常只有很少或甚至没有强制空气进行冷却,因此高功率效率和良好的散热管理是最为重要的。 与同步降压转换器相比,在相同的开关频率下,先进拓扑诸如开关电容转换器、多电平转换器、LLC拓扑谐振转换器和ZVS降压转换器都具有更低的开关损耗,但其设计更为复杂,在此不再赘述。要实现薄型功率解决方案,低成本的同步降压转换器要面对的权衡是薄型元件、具有高功率密度、高效和良好的散热性能。然而,具有优越品质因数(FOM)的氮化镓场效应晶体管 (eGaN FET)在高频时可以有机会实现更低的功耗。因此,要实现薄型功率解决方案,基于GaN FET的同步降压转换器值得我们去探究。 采用GaN FET让同步降压转换器变得更纤薄 基于GaN FET的同步降压转换器的电路原理图如图1所示。对于44~60 V转到20 V、12.5 A输出电流的功率级,我们选择导通电阻为3.2 mΩ的100 V 氮化镓场效应晶体管(EPC2218),并且采用具有高驱动强度的uPI1966A栅极驱动器来驱动各个FET。由于栅极驱动器的内部自举二极管会将高侧栅极驱动电压降至4.6 ~ 4.7 V,因此添加了同步自举电路,从而确保高侧GaN FET的栅极驱动电压为4.9 V。我们采用数字控制,可实现低于10 ns的死区时间和开发控制电路的灵活性。此外, 最大限度地缩减死区时间而同时确保没有直通,有助于降低功耗。 最后,采用两个小型板载开关电源电路,分别用于为栅极驱动器和数字控制器生成5 V和3.1 V的内部电压。 图1. 基于氮化镓场效应晶体管(eGaN FET)的同步降压转换器的简化电路原理图。 如上所述,所选的开关频率决定输出电感器的高度,而电感器是同步降压转换器中的最高元件,并须考虑其对效率和散热性能的影响和必须取得平衡。在400 kHz对转换器的开关频率进行优化,以足够高的开关频率才可以使用6.5 mm高、4.8 µH的电感器并同时保持低开关损耗,从而保持整体高效和良好的散热性能。 为了使电感器更纤薄,可将开关频率提高到800 kHz,就可以使用3.5 mm高、2.4 µH的电感器,但是功耗和上升温度将因此而更高。 散热管理对于确保器件正确和可靠地运行非常重要。由于eGaN FET采用晶圆级芯片级封装(WLCSP),因此易于冷却。添加散热片或散热器可以显着降低转换器的表面温度。为了添加散热片或散热器,电路板的设计备有三个机械垫片,可容纳M2*0.4 mm螺纹螺钉和可轻松地安装散热片/散热器,如图3所示。只需热界面材料(TIM)、定制形状的散热器/散热器和带有露出的导体(例如电容器、电阻器和螺钉)的元件的绝缘薄层。图2展示出如何安装散热片。 具有较高导热性的热界面材料可以实现较高的散热性能 。热界面材料在安装散热器时被压缩并在FET上施加应力。建议最大压缩率为2:1以实现最佳的散热性能,并需限制可最大化热机械可靠性的机械力。由于eGaN FET的背面连接到电源电位,因此上方的FET将连接到开关节点。 因此,热界面材料必须绝缘以防止上方的FET因为接地而发生短路。我们采用的热界面材料是t-Global的500 µm TG-X。 图2. 如何安组装散热片的示意图。 实验结果 图3所示的同步降压转换器EPC9153带有散热片以验证设计。由于使用数字控制器,因此无需更新任何额外硬件,即可改变开关频率和输出电感器。以上提到的两个电感器都将在转换器中试用。 图3. 采用6.5 mm电感器、44~60 V转到20 V、250 W的同步降压转换器。左图没有安装散热器,右图安装了散热器。 使用4.8 µH电感器时,元件厚度为6.5 mm。从图4展示在12.5 A输出电流时的开关节点电压VSW波形图,我们可以看到开关是快速且干净的。图5和图6分别显示在不同输入电压和20 V输出,以及在不同输出电压和48 V输入下工作的同步降压转换器的整体功效和功耗。 图4. 在12.5 A输出电流时的开关节点电压VSW波形图。 图5. 整个系统效率,包括20 V输出和不同输入电压下的内部管理功耗。 图6. 整个系统效率,包括在48 V输入和不同输出电压下的内部管理功耗。 图7展示转换器在带有散热片和没有强制风冷的情况下,56 V转到20 V、12.5 A输出电流时的热图像。温度仅上升了37°C。 可以看出,在更高的上升温度或强制通风的情况下,FET能够承载更大的电流。 图7. 工作在56 V~20 V,输出电流为12.5 A、安装了散热片且没有强制空气的同步降压转换器的热像图,其散热状态稳定。 在800 kHz开关频率时,元件高度减小为3.5 mm,而且功率密度也因电路面积小很多而增加,如图8所示。但是,满载效率降低到96.4%和安装散热片后的温度上升到60°C。为了进行比较,在使用相同电感器的情况下,三电平转换器可以提高满载效率达97.8%。 图8. 安装了3.5 mm电感器和散热片的44~60 V转到20 V、250 W的同步降压转换器的照片。 结论 面向薄型DC/DC功率解决方案,我们设计了基于氮化镓场效应晶体管(eGaN FET)、44~60 V转到20 V并具有12.5 A输出电流的同步降压转换器。如果使用6.5 mm电感器,可实现98.2%的峰值效率和低于40°C的温升。如果使用3.5 mm电感器,可用增加功率密度,但会降低效率和使升温进一步升高。在这两种情况下,都可以将电感器嵌入/沉入PCB中,从而进一步减小电路板的整体厚度。 eGaN FET具备快速开关的优势,可提高整体效率,而且它采用晶圆级芯片级封装,使其易于冷却和减少升温。

    时间:2020-11-23 关键词: 氮化镓 同步降压转换器 晶体管

  • 什么是晶体管测试仪?晶体管测试仪如何正确使用?

    什么是晶体管测试仪?晶体管测试仪如何正确使用?

    一、晶体管测试仪作用 可测试仪性能稳定,能自动读出准确数据,使用方便,适用于电子爱好者、电子开发者、设计者、与电子维修者必需小仪器。它可测各种二极管,三极管,可控硅,MOS场效应管;能判断器件类型,引脚的极性,输出HFE,阀电压,场效应管的结电容,附加条件可测电容和电阻等。特别适合晶体管配对和混杂表贴元件识别。 二、什么是晶体管测量仪器? 众所周知,晶体管测量仪器是以通用电子测量仪器为技术基础,以半导体器件为测量对象的电子仪器。用它可以测试晶体三极管(NPN型和PNP型)的共发射极、共基极电路的输入特性、输出特性;测试各种反向饱和电流和击穿电压,还可以测量场效管、稳压管、二极管、单结晶体管、可控硅等器件的各种参数。 下面以XJ4810型晶体特性图示仪为例介绍晶体管图示仪的使用方法。 三、XJ4810型晶体管特性图示仪面板功能介绍 XJ4810型晶体管特性图示仪面板示: 1. 集电极电源极性按钮,极性可按面板指示选择。 2. 集电极峰值电压保险丝:1.5A。 3. 峰值电压%:峰值电压可在0~10V、0~50V、0~100V、0~500V之连续可调,面板上的标称值是近似值,参考用。 4. 功耗限制电阻:它是串联在被测管的集电极电路中,限制超过功耗,亦可作为被测半导体管集电极的负载电阻。 5. 峰值电压范围:分0~10V/5A、0~50V/1A、0~100V/0.5A、0~500V/0.1A四挡。当由低挡改换高挡观察半导体管的特性时,须先将峰值电压调到零值,换挡后再按需要的电压逐渐增加,否则容易击穿被测晶体管。 AC挡的设置专为二极管或其他元件的测试提供双向扫描,以便能同时显示器件正反向的特性曲线。 6. 电容平衡:由于集电极电流输出端对地存在各种杂散电容,都将形成电容性电流,因而在电流取样电阻上产生电压降,造成测量误差。为了尽量减小电容性电流,测试前应调节电容平衡,使容性电流减至最小。 7. 辅助电容平衡:是针对集电极变压器次级绕组对地电容的不对称,而再次进行电容平衡调节。 8. 电源开关及辉度调节:旋钮拉出,接通仪器电源,旋转旋钮可以改变示波管光点亮度。 9. 电源指示:接通电源时灯亮。 10. 聚焦旋钮:调节旋钮可使光迹最清晰。 11. 荧光屏幕:示波管屏幕,外有座标刻度片。 12. 辅助聚焦:与聚焦旋钮配合使用。 13. Y轴选择(电流/度)开关:具有22挡四种偏转作用的开关。可以进行集电极电流、基极电压、基极电流和外接的不同转换。 14. 电流/度&TImes;0.1倍率指示灯:灯亮时,仪器进入电流/度&TImes;0.1倍工作状态。 15. 垂直移位及电流/度倍率开关:调节迹线在垂直方向的移位。旋钮拉出,放大器增益扩大10倍,电流/度各挡IC标值&TImes;0.1,同时指示灯14亮。 16. Y轴增益:校正Y轴增益。 17. X轴增益:校正X轴增益。 18.显示开关:分转换、接地、校准三挡,其作用是: ⑴转换:使图像在Ⅰ、Ⅲ象限内相互转换,便于由NPN管转测PNP管时简化测试操作。 ⑵接地:放大器输入接地,表示输入为零的基准点。 ⑶校准:按下校准键,光点在X、Y轴方向移动的距离刚好为10度,以达到10度校正目的。 19. X轴移位:调节光迹在水平方向的移位。 20. X轴选择(电压/度)开关:可以进行集电极电压、基极电流、基极电压和外接四种功能的转换,共17挡。 21. “级/簇”调节:在0~10的范围内可连续调节阶梯信号的级数。 22. 调零旋钮 :测试前,应首先调整阶梯信号的起始级零电平的位置。当荧光屏上已观察到基极阶梯信号后,按下测试台上选择按键“零电压”,观察光点停留在荧光屏上的位置,复位后调节零旋钮,使阶梯信号的起始级光点仍在该处,这样阶梯信号的零电位即被准确校正。 23. 阶梯信号选择开关:可以调节每级电流大小注入被测管的基极,作为测试各种特性曲线的基极信号源,共22挡。一般选用基极电流/级,当测试场效应管时选用基极源电压/级。 24. 串联电阻开关:当阶梯信号选择开关置于电压/级的位置时,串联电阻将串联在被测管的输入电路中。 25. 重复--关按键:弹出为重复,阶梯信号重复出现;按下为关,阶梯信号处于待触发状态。 26. 阶梯信号待触发指示灯:重复按键按下时灯亮,阶梯信号进入待触发状态。 27. 单簇按键开关:单簇的按动其作用是使预先调整好的电压(电流)/级,出现一次阶梯信号后回到等待触发位置,因此可利用它瞬间作用的特性来观察被测管的各种极限特性。 28. 极性按键:极性的选择取决于被测管的特性。 29. 测试台。 30. 测试选择按键: ⑴“左”、“右”、“二簇”:可以在测试时任选左右两个被测管的特性,当置于“二簇”时,即通过电子开关自动地交替显示左右二簇特性曲线,此时“级/簇”应置适当位置,以利于观察。二簇特性曲线比较时,请不要误按单簇按键。 ⑵“零电压”键:按下此键用于调整阶梯信号的起始级在零电平的位置,见(22)项。 ⑶“零电流”键:按下此键时被测管的基极处于开路状态,即能测量ICEO特性。 31、32. 左右测试插孔:插上专用插座(随机附件),可测试F1、F2型管座的功率晶体管。 33、34、35.晶体管测试插座。 36. 二极管反向漏电流专用插孔(接地端)。 37. 二簇移位旋钮:在二簇显示时,可改变右簇曲线的位置,更方便于配对晶体管各种参数的比较。 38. Y轴信号输入:Y轴选择开关置外接时,Y轴信号由此插座输入。 39. X轴信号输入:X轴选择开关置外接时,X轴信号由此插座输入。 40. 校准信号输出端:1V、0.5V校准信号由此二孔输出。 四、测试前注意事项 为保证仪器的合理使用,既不损坏被测晶体管,也不损坏仪器内部线路,在使用仪器前应注意下列事项: 1. 对被测管的主要直流参数应有一个大概的了解和估计,特别要了解被测管的集电极最大允许耗散功率PCM、最大允许电流ICM和击穿电压BVEBO、BVCBO 。 2. 选择好扫描和阶梯信号的极性,以适应不同管型和测试项目的需要。 3. 根据所测参数或被测管允许的集电极电压,选择合适的扫描电压范围。一般情况下,应先将峰值电压调至零,更改扫描电压范围时,也应先将峰值电压调至零。选择一定的功耗电阻,测试反向特性时,功耗电阻要选大一些,同时将X、Y偏转开关置于合适挡位。测试时扫描电压应从零逐步调节到需要值。 4. 对被测管进行必要的估算,以选择合适的阶梯电流或阶梯电压,一般宜先小一点,再根据需要逐步加大。测试时不应超过被测管的集电极最大允许功耗。 5. 在进行ICM的测试时,一般采用单簇为宜,以免损坏被测管。 6. 在进行IC或ICM的测试中,应根据集电极电压的实际情况选择,不应超过本仪器规定的最大电流。 7. 进行高压测试时,应特别注意安全,电压应从零逐步调节到需要值。观察完毕,应及时将峰值电压调到零。 五、基本操作步骤 1. 按下电源开关,指示灯亮,预热15分钟后,即可进行测试。 2. 调节辉度、聚焦及辅助聚焦,使光点清晰。 3. 将峰值电压旋钮调至零,峰值电压范围、极性、功耗电阻等开关置于测试所需位置。 4. 对X、Y轴放大器进行10度校准。 5. 调节阶梯调零。 6. 选择需要的基极阶梯信号,将极性、串联电阻置于合适挡位,调节级/簇旋钮,使阶梯信号为10级/簇,阶梯信号置重复位置。 7. 插上被测晶体管,缓慢地增大峰值电压,荧光屏上即有曲线显示。 六、测试实例 1. 晶体管hFE和β值的测量 以NPN型3DK2晶体管为例,查手册得知3DK2 hFE的测试条件为VCE =1V、IC=10mA。将光点移至荧光屏的左下角作座表零点。 2.晶体管反向电流的测试 以NPN型3DK2晶体管为例,查手册得知3DK2 ICBO、ICEO的测试条件为VCB、VCE均为10V。测试时,仪器部件的置位详见表A-5。 逐渐调高“峰值电压”使X轴VCB=10V,读出Y轴的偏移量,即为被测值。 PNP型晶体管的测试方法与NPN型晶体管的测试方法相同。可按测试条件,适当改变挡位,并把集电极扫描电压极性改为“—”,把光点调到荧光屏的右下角(阶梯极性为“+”时)或右上角(阶梯极性为“—”时)即可。 3.晶体管击穿电压的测试 以NPN型3DK2晶体管为例,查手册得知3DK2 BVCBO、BVCEO、BVEBO的测试条件IC分别为100μA、200μA和100μA。 逐步调高“峰值电压”,被测管的接法,Y轴IC=0.1mA时,X轴的偏移量为BVCEO值;被测管按图A-30(b)的接法,Y轴IC=0.2m A时,X轴的偏移量为BVCEO值;被测管按图A-30(c)的接法,Y轴IC=0.1mA时,X轴的偏移量为BVEBO值。 PNP型晶体管的测试方法与NPN型晶体管的测试法相似。 4.稳压二极管的测试 以2CW19稳压二极管为例,查手册得知2CW19稳定电压的测试条件IR=3mA。测试时。 逐渐加大“峰值电压”,即可在荧光屏上看到被测管的特性曲线。 读数:正向压降约0.7V,稳定电压约12.5V。 5.整流二极管反向漏电电流的测试 以2DP5C整流二极管为例,查手册得知2DP5的反向电流应≤500nA。。 逐渐增大“峰值电压”,在荧光屏上即可显示被测管反向漏电电流特性。 读数:IR=4div&TImes;0.2μA×0.1(倍率)=80 nA 测量结果表明,被测管性能符合要求。 七、晶体管测试仪使用注意事项 ①使用仪器前,应检查仪器有关旋钮位置, “测试选择”  开关置于“关”, “峰值电压”旋钮调至零, “阶梯作用”置于“关”。 ②开启电源,指示灯亮,预热5min。调整“标尺亮度”,观察时用红色标尺,摄影时用黄色标尺。调整“辉度”,使屏幕上光点和线条至适中的亮度。调整“聚焦”及“辅助聚焦”  旋钮,使屏幕上显示清晰的线条或亮点。 ③进行基极阶梯信号调零。将光点移至屏幕左下角作为坐标零点,进行基极阶梯信号调零。当荧光屏上出现基极阶梯信号后,按下测试台上的“零电压”键,观察光点停留在荧光屏上的位置。复位后调节“阶梯调零”旋钮,使阶梯信号的起始级光点仍在该处,则基极阶梯信号的零位即被校准。 ④根据被测管的类型(PNP型或NPN型)和接地形式(E接地或B接地),选择“极性”开关位置,然后插上被测晶体管。 ⑤根据需要显示的醢线和需要测试的参数,选择相应的作用开关以及合适的量程,即可进行有关图形显示和参数测定。 大家都知道晶体管测量仪是各种家电维修的利器 电桥万用表级别好工具,维修时候经常判断已知损坏元件后 在更换新元件的同时 还不能解决故障 很多维修人员苦恼不堪,用这种仪器可以轻松判断电容 电阻 等元件 品质等 自动检测三极管 NPN PNP 晶体管 N P 沟道场效应管,可控硅自动显示在显示屏上以及放大倍数,在应用的过程中,你喜欢用哪款晶体管测量仪器呢? 【更多关于晶体管测量仪阅读】 电子测量仪器类型及其应用 晶体管测量仪电路d 晶体管测量仪电路b 晶体管测量仪电路a 晶体管图示仪,现在还都是电子管做的吗? 新型晶体管特性图示仪扫描信号发生器电路设计

    时间:2020-11-22 关键词: 晶体管测试仪 晶体管

  • 采用氮化镓场效应晶体管(eGaN®FET)实现薄型且高效的同步降压转换器

    采用氮化镓场效应晶体管(eGaN®FET)实现薄型且高效的同步降压转换器

    随着计算机、显示器、智能电话和其它消费类电子系统变得越来越纤薄且功能越来越强大,对更纤薄的DC/DC功率解决方案的需求日益增长之同时,需要保持高功率密度和高效率。同步降压转换器是DC/DC降压功率转换的最受欢迎的拓扑之一,因为它简单、易于控制且低成本。本文介绍采用同步降压拓扑的超薄型功率解决方案所面对的设计挑战和权衡。我们采用氮化镓场效应晶体管并添加简单的散热器,设计6.5 mm、44~60 V转到20 V、12.5 A输出电流、250 W的同步降压转换器,其上升温度低于40°C和满载效率为98.2%。 面向消费类电子产品的薄型DC/DC功率解决方案的设计挑战和权衡 实现更纤薄的DC/DC降压转换器的瓶颈主要在于无源元件。通常在输入和输出端需要使用大型电容器,以减少电压纹波并满足瞬态响应的规范。 在某些情况下,磁性元件可以被嵌入或沉入电路板中,从而减小解决方案的厚度。 增加开关频率是缩小转换器中无源元件的尺寸的最有效方法之一。它不仅减小元件的高度、增加功率密度,而且实现更高的控制环路带宽和更快的瞬态响应。 但是,开关损耗和与AC有关的损耗会随着开关频率而增加,从而降低效率并增加散出的热量 。对于笔记本电脑、平板电脑和智能手机,表面温度是一个关键、直观的性能指标,而且通常只有很少或甚至没有强制空气进行冷却,因此高功率效率和良好的散热管理是最为重要的。 与同步降压转换器相比,在相同的开关频率下,先进拓扑诸如开关电容转换器、多电平转换器、LLC拓扑谐振转换器和ZVS降压转换器都具有更低的开关损耗,但其设计更为复杂,在此不再赘述。要实现薄型功率解决方案,低成本的同步降压转换器要面对的权衡是薄型元件、具有高功率密度、高效和良好的散热性能。然而,具有优越品质因数(FOM)的氮化镓场效应晶体管 (eGaN FET)在高频时[5]可以有机会实现更低的功耗。因此,要实现薄型功率解决方案,基于GaN FET的同步降压转换器值得我们去探究。 采用GaN FET让同步降压转换器变得更纤薄 基于GaN FET的同步降压转换器的电路原理图如图1所示。对于44~60 V转到20 V、12.5 A输出电流的功率级,我们选择导通电阻为3.2 mΩ的100 V 氮化镓场效应晶体管(EPC2218),并且采用具有高驱动强度的uPI1966A栅极驱动器来驱动各个FET。由于栅极驱动器的内部自举二极管会将高侧栅极驱动电压降至4.6 ~ 4.7 V,因此添加了同步自举电路,从而确保高侧GaN FET的栅极驱动电压为4.9 V。我们采用数字控制,可实现低于10 ns的死区时间和开发控制电路的灵活性。此外, 最大限度地缩减死区时间而同时确保没有直通,有助于降低功耗。 最后,采用两个小型板载开关电源电路,分别用于为栅极驱动器和数字控制器生成5 V和3.1 V的内部电压。 图1. 基于氮化镓场效应晶体管(eGaN FET)的同步降压转换器的简化电路原理图。 如上所述,所选的开关频率决定输出电感器的高度,而电感器是同步降压转换器中的最高元件,并须考虑其对效率和散热性能的影响和必须取得平衡。在400 kHz对转换器的开关频率进行优化,以足够高的开关频率才可以使用6.5 mm高、4.8 µH的电感器并同时保持低开关损耗,从而保持整体高效和良好的散热性能。 为了使电感器更纤薄,可将开关频率提高到800 kHz,就可以使用3.5 mm高、2.4 µH的电感器,但是功耗和上升温度将因此而更高。 散热管理对于确保器件正确和可靠地运行非常重要。由于eGaN FET采用晶圆级芯片级封装(WLCSP),因此易于冷却。添加散热片或散热器可以显着降低转换器的表面温度。为了添加散热片或散热器,电路板的设计备有三个机械垫片,可容纳M2*0.4 mm螺纹螺钉和可轻松地安装散热片/散热器,如图3所示。只需热界面材料(TIM)、定制形状的散热器/散热器和带有露出的导体(例如电容器、电阻器和螺钉)的元件的绝缘薄层。图2展示出如何安装散热片。 具有较高导热性的热界面材料可以实现较高的散热性能 。热界面材料在安装散热器时被压缩并在FET上施加应力。建议最大压缩率为2:1以实现最佳的散热性能,并需限制可最大化热机械可靠性的机械力。由于eGaN FET的背面连接到电源电位,因此上方的FET将连接到开关节点。 因此,热界面材料必须绝缘以防止上方的FET因为接地而发生短路。我们采用的热界面材料是t-Global的500 µm TG-X。 图2. 如何安组装散热片的示意图。 实验结果 图3所示的同步降压转换器EPC9153带有散热片以验证设计。由于使用数字控制器,因此无需更新任何额外硬件,即可改变开关频率和输出电感器。以上提到的两个电感器都将在转换器中试用。 图3. 采用6.5 mm电感器、44~60 V转到20 V、250 W的同步降压转换器。 左图没有安装散热器,右图安装了散热器。 使用4.8 µH电感器时,元件厚度为6.5 mm。从图4展示在12.5 A输出电流时的开关节点电压VSW波形图,我们可以看到开关是快速且干净的。图5和图6分别显示在不同输入电压和20 V输出,以及在不同输出电压和48 V输入下工作的同步降压转换器的整体功效和功耗。 图4. 在12.5 A输出电流时的开关节点电压VSW波形图。 图5. 整个系统效率,包括20 V输出和不同输入电压下的内部管理功耗。 图6. 整个系统效率,包括在48 V输入和不同输出电压下的内部管理功耗。 图7展示转换器在带有散热片和没有强制风冷的情况下,56 V转到20 V、12.5 A输出电流时的热图像。温度仅上升了37°C。 可以看出,在更高的上升温度或强制通风的情况下,FET能够承载更大的电流。 图7. 工作在56 V~20 V,输出电流为12.5 A、安装了散热片且没有强制空气 的同步降压转换器的热像图,其散热状态稳定。 在800 kHz开关频率时,元件高度减小为3.5 mm,而且功率密度也因电路面积小很多而增加,如图8所示。但是,满载效率降低到96.4%和安装散热片后的温度上升到60°C。为了进行比较,在使用相同电感器的情况下,三电平转换器可以提高满载效率达97.8%。 图8. 安装了3.5 mm电感器和散热片的44~60 V转到20 V、250 W的同步降压转换器的照片。 结论 面向薄型DC/DC功率解决方案,我们设计了基于氮化镓场效应晶体管(eGaN FET)、44~60 V转到20 V并具有12.5 A输出电流的同步降压转换器。如果使用6.5 mm电感器,可实现98.2%的峰值效率和低于40°C的温升。如果使用3.5 mm电感器,可用增加功率密度,但会降低效率和使升温进一步升高。在这两种情况下,都可以将电感器嵌入/沉入PCB中,从而进一步减小电路板的整体厚度。 eGaN FET具备快速开关的优势,可提高整体效率,而且它采用晶圆级芯片级封装,使其易于冷却和减少升温。

    时间:2020-11-16 关键词: 氮化镓 同步降压转换器 晶体管

  • 适合用在互补金属氧化物半导体 (CMOS) 和宽带模拟应用中的光耦合器

    适合用在互补金属氧化物半导体 (CMOS) 和宽带模拟应用中的光耦合器

    随着社会的快速发展,我们的光耦合器也在快速发展,那么你知道光耦合器的详细资料解析吗?接下来让小编带领大家来详细地了解有关的知识。 专注于引入新品并提供海量库存的电子元器件分销商贸泽电子(Mouser Electronics)即日起开始备货Skyworks Solutions的OLI300、OLS300、OLI500和OLS500高速光耦合器。这些光耦合器在输入端和输出端之间具有1500VDC电气隔离,设计用于航空电子、生物医学材料、雷达、航天、监控系统、仪器仪表和军事通信等应用。 光电耦合器是能够很好的隔离输入信号和输出信号,让其不会受到彼此的干扰。光电耦合器在工作的时候,会先后经过光的发射、光的接收、放大信号,从而确保其能够被光探测器接收,实现想要的目的。 OLI300和OLS300光耦合器适用于将晶体管-晶体管逻辑 (TTL) 连接到低功耗肖特基晶体管-晶体管逻辑 (LSTTL)。这两款光耦合器还适合用在互补金属氧化物半导体 (CMOS) 和宽带模拟应用中。OLI300和OLS300光耦合器带有一颗LED并集成了一个光电二极管晶体管检测器。集成的光电二极管晶体管通过减小基极到集电极的电容来实现高于标准光电晶体管的开关速度。 若是想要让光电耦合器能够正常的工作,那么在电流输入的那一端,尽可能提供较大的导通电流,这样才能有效的让二极管发出光来。但是要注意,并不在所有的光电耦合器的导通电流都是一样的,不过最常见的事10mA。 OLI500和OLS500光耦合器适用于高速数字接口应用、接地回路消除以及输入/输出缓冲。这两款光耦合器带有一颗LED并集成了一个高速检测器,该检测器中的光电二极管可接收LED发出的光线,并通过高增益线性放大器进行放大,由该放大器驱动肖特基钳位集电极开路输出晶体管。OLI500和OLS500光耦合器的典型传播延迟为60ns,并通过内部屏蔽将共模瞬变抗扰度提高到最小1000V/μs。 以上就是光耦合器的有关知识的详细解析,需要大家不断在实际中积累经验,这样才能设计出更好的产品,为我们的社会更好地发展。

    时间:2020-11-14 关键词: 仪器仪表 光耦合器 晶体管

  • 性能更高而同时成本更低的两款200 V eGaN FET解析

    性能更高而同时成本更低的两款200 V eGaN FET解析

    人类社会的进步离不开社会上各行各业的努力,各种各样的电子产品的更新换代离不开我们的设计者的努力,其实很多人并不会去了解电子产品的组成,比如氮化镓场效应晶体管。 新一代200 V 氮化镓场效应晶体管(eGaN FET)是48 VOUT同步整流、D类音频放大器、太阳能微型逆变器和功率优化器,以及多电平、高压AC / DC转换器的理想功率器件。 场效应晶体管(英语:field-effecttransistor,缩写:FET)是一种通过电场效应控制电流的电子元件。它依靠电场去控制导电沟道形状,因此能控制半导体材料中某种类型载流子的沟道的导电性。 增强型硅基氮化镓(eGaN)功率场效应晶体管和集成电路的全球领导厂商宜普电源转换公司(EPC)最新推出的两款200 V eGaN FET(EPC2215和EPC2207),性能更高而同时成本更低,目前已有供货。采用这些领先氮化镓器件的应用十分广阔,包括D类音频放大器、同步整流器、太阳能最大功率点跟踪器(MPPT)、DC/DC转换器(硬开关和谐振式),以及多电平高压转换器。 场效应晶体管有时被称为单极性晶体管,以它的单载流子型作用对比双极性晶体管(bipolar junction transistors,缩写:BJT)。 EPC2215(8 mΩ、162 Apulsed)和EPC2207(22 mΩ、54 Apulsed)的尺寸比前代200 V eGaN器件大约缩小50%,而性能却倍增。 与基准硅器件相比,这两款氮化镓器件的性能更高。 EPC2215的导通阻抗降低了33%,但尺寸却缩小了15倍。 其栅极电荷(QG)较基准硅MOSFET器件小十倍,并且与所有eGaN FET一样,没有反向恢复电荷(QRR),从而使得D类音频放大器可以实现更低的失真,以及实现更高效的同步整流器和电机驱动器。 尽管由于半导体材料的限制,以及曾经双极性晶体管比场效应晶体管容易制造,场效应晶体管比双极性晶体管要晚造出,但场效应晶体管的概念却比双极性晶体管早。 EPC首席执行官兼共同创办人Alex Lidow表示:“最新一代的eGaN FET在具备更高效散热的更小型尺寸内,实现更高的性能,而且其成本与传统MOSFET器件相若。氮化镓器件必然可替代逐渐老化的功率MOSFET器件的趋势日益明显。” 场效应管可应用于放大。由于场效应管放大器的输入阻抗很高,因此耦合电容可以容量较小,不必使用电解电容器。 EPC公司与得克萨斯大学奥斯汀分校的半导体功率电子中心(SPEC)合作开发了的400 V、2.5 kW、基于eGaN FET、四电平飞跨电容(FCML)图腾柱无桥整流器,适用于数据中心,它使用了最新的200 V 氮化镓场效应晶体管(EPC2215)。 得克萨斯大学奥斯汀分校的Alex Huang教授说:“ 氮化镓场效应晶体管(eGaN FET)的优越特性使得转换器能够实现高功率密度、超高效率和低谐波失真。” 本文只能带领大家对氮化镓场效应晶体管有了初步的了解,对大家入门会有一定的帮助,同时需要不断总结,这样才能提高专业技能,也欢迎大家来讨论文章的一些知识点。

    时间:2020-11-14 关键词: MOSFET 场效应晶体管 晶体管

  • 你知道场效应晶体管挑选的必要性吗?

    你知道场效应晶体管挑选的必要性吗?

    什么是三极管与场效应管?你知道三极管与场效应管选用方法吗?随着电子设备升级换代的速度,大家对于电子设备性能的标准也愈来愈高,在某些电子设备的电路设计与研发中,不仅是开关电源电路中,也有在携带式电子设备的电路中都是会运用到性能更好的电子元器件——场效应晶体管。 因此正确挑选场效应晶体管是硬件工程师常常碰到的难点之一,也是极其重要的1个环节,场效应晶体管的挑选,有可能直接影响到一整块集成运放的速率和制造费,挑选场效应晶体管,可以从下列六大技巧下手。 1、沟道类型 挑选好场效应晶体管电子元件的第一步是取决选用N沟道或是P沟道场效应晶体管。在典型的功率使用中,当1个场效应晶体管接地,而负载接入到干线电压上时,该场效应晶体管就组成了低压侧开关。在低压侧开关中,应选用N沟道场效应晶体管,它是出自于对关闭或导通电子元件所要电压的考虑。当场效应晶体管接入到总线及负载接地时,就需要用高压侧开关。一般会在这一拓扑中选用P沟道场效应晶体管,这又是出于对电压驱动的考虑。 2、额定电压 明确需用的额定电压,或是电子元件能够承载的最高电压。额定电压越大,电子元件的成本就越高。按照实践证明,额定电压应该高于干线电压或总线电压。这样才可以提供足够的保护,使场效应晶体管不会失灵。 就挑选场效应晶体管来讲,务必明确漏极至源极间将会承载的最高电压,即最大VDS。了解场效应晶体管能承载的最高电压会随温度而变动这点非常关键。我们须在整个操作温度范围内检测电压的变动范围。额定电压一定要有足够的余量覆盖这一变动范围,保障电路不会无效。需要考虑的其它安全因素包含由开关电子产品(如电机或变压器)引起的电压瞬变。不同使用的额定电压也各有不同;一般来说,便携式设备为20V、FPGA电源为20~30V、85~220VAC应用为450~600V。 3、额定电流 该额定电流应是负载在全部状态下可以承载的最高电流。与电压的情形类似,保证选定的场效应晶体管能经受这一额定电流,即便在系统造成尖峰电流时。2个考虑的电流情形是持续模式和脉冲尖峰。在持续导通模式下,场效应晶体管处在稳态,这时电流持续通过电子元件。脉冲尖峰指的是有大量电涌(或尖峰电流)流经电子元件。一旦明确了这些条件下的最高电流,只需直接挑选能承载这个最高电流的电子元件便可。 4、导通损耗 在实际情况下,场效应晶体管并不一定是理想的电子元件,归因于在导电过程中会有电能消耗,这叫做导通损耗。场效应晶体管在“导通”时好比一个可变电阻,由电子元件的RDS(ON)所确认,并随温度而明显变动。电子元件的功率损耗可由Iload2×RDS(ON)估算,因为导通电阻随温度变动,因而功率损耗也会随着按占比变动。对场效应晶体管施加的电压VGS越高,RDS(ON)就会越小;反之RDS(ON)就会越高。注意RDS(ON)电阻会随着电流轻微升高。关于RDS(ON)电阻的各类电气叁数变动可在生产商出示的技术资料表里得知。 5、系统散热 须考虑二种不一样的情况,即最坏情况和具体情况。提议选用针对最坏情况的计算结果,由于这一结论提供更大的安全余量,能确保系统不易失灵。在场效应晶体管的材料表上还有一些必须留意的测量数据;电子元件的结温相当于最大环境温度再加热阻与功率耗散的乘积(结温=最大环境温度+[热阻×功率耗散])。依据这个式子可解出系统的最大功率损耗,即按定义相当于I2×RDS(ON)。我们已即将通过电子元件的最大电流,能够估算出不同溫度下的RDS(ON)。此外,也要搞好电路板以及场效应晶体管的散热。 雪崩击穿指的是半导体器件上的反向电压超出最高值,并产生强电场使电子元件内电流增加。晶片尺寸的增加会增强抗雪崩能力,最后提高电子元件的稳健性。因而挑选更大的封裝件能够有效避免雪崩。 6、开关性能 影响开关性能的叁数有好多,但最关键的是栅极/漏极、栅极/源极及漏极/源极电容。这些电容会在电子元件中产生开关损耗,因为在每一次开关时都要对它们充电。场效应晶体管的开关速度因而被减少,电子元件效率也降低。为计算开关过程中电子元件的总耗损,要计算开通过程中的耗损(Eon)和关闭过程中的耗损(Eoff)。场效应晶体管开关的总功率可用如下方程表达:Psw=(Eon+Eoff)×开关频率。而栅极电荷(Qgd)对开关性能的影响最大。 晶体三极管选用技巧 必须了解晶体管的类型和材料,常用的有NPN和PNP两种,这两种管工作时对电压的极性要求不同,所以是这两种晶体管是不能互相替换的。三极管额材料有锗材料和硅材料,它们之前最大的差异就是其实电压不一样。在放大电路中,假如使用同类型的锗管代替同类型的硅管,反之替换,一般都是可以的,但都要在基极偏置电压上进行必要的调整。因为他们的起始电压不一样,但是在脉冲电路和开关电路中不同材料的三极管是否能互换必须进行具体的分析,切不可盲目代换。 场效应管选用技巧 选取场效应管只要三步: 1.选择须合适的勾道(N沟道还是P沟道) 2.确定场效应管的额定电流,选好额定电流以后,还需计算导通损耗。 3.确定热要求,设计人员在设计时必须考虑到最坏和真实两种情况。一般建议采用针对最坏的结果计算,因为这个结果提供更大的安全余量,能够确保系统不会失效。以上就是三极管与场效应管的选用方法,希望能给大家帮助。

    时间:2020-11-03 关键词: 场效应管 三极管 晶体管

  • 常见的功率放大器的分类及其特点,你了解吗?

    常见的功率放大器的分类及其特点,你了解吗?

    什么是功率放大器?功率放大器(英文名称:power amplifier),简称“功放”,是指在给定失真率条件下,能产生最大功率输出以驱动某一负载(例如扬声器)的放大器。 甲类工作状态:整个工作周期内晶体管的集电极电流始终是流通的,放大器的效率最低,带来的是非线性失真度比较小。一般用于对失真比较敏感的场合,比如HI-FI音响。 乙类工作状态:半个周期工作另半个周期截止,乙类工作状态也称为B类工作状态。两只互补的晶体管推挽工作,效率比甲类功放高,但存在交越失真的问题,一般功率放大器采用这种形式。 甲乙类工作状态:它是介于甲类和乙类之间的工作状态,即晶体管工作周期大于一半,这种功放的特性介于甲类和乙类。 丙类工作状态:这种状态下,晶体管工作的时间小于半个周期,丙类工作状态又称为C类工作状态,丙类功放一般用于高频的谐振功放。 丁类工作状态:把声音信号调制为PWM形式,晶体管工作在开关状态,输出端通过LC滤波器恢复信号波形。效率高,高频特性差,用于小型化电池供电以及要求高效率的场合。 根据工作状态的不同,功率放大器分类如下: 传统线性功率放大器的工作频率很高,但相对频带较窄,射频功率放大器一般都采用选频网络作为负载回路。射频功率放大器可以按照电流导通角的不同,分为甲 (A)、乙(B)、丙(C)三类工作状态。甲类放大器电流的导通角为360°,适用于小信号低功率放大,乙类放大器电流的导通角等于180°,丙类放大器电流的导通角则小于180°。乙类和丙类都适用于大功率工作状态,丙类工作状态的输出功率和效率是三种工作状态中最高的。射频功率放大器大多工作于丙类,但丙类放大器的电流波形失真太大,只能用于采用调谐回路作为负载谐振功率放大。由于调谐回路具有滤波能力,回路电流与电压仍然接近于正弦波形,失真很小。 开关型功率放大器(Switching Mode PA,SMPA),使电子器件工作于开关状态,常见的有丁(D)类放大器和戊(E)类放大器,丁类放大器的效率高于丙类放大器。SMPA将有源晶体管驱动为开关模式,晶体管的工作状态要么是开,要么是关,其电压和电流的时域波形不存在交叠现象,所以是直流功耗为零,理想的效率能达到100%。 传统线性功率放大器具有较高的增益和线性度但效率低,而开关型功率放大器具有很高的效率和高输出功率,但线性度差。具体见下表: 电路组成 放大器有不同类型,简化之,放大器的电路可以由以下几个部分组成:晶体管、偏置及稳定电路、输入输出匹配电路。 1、晶体管 晶体管有很多种,包括当前还有多种结构的晶体管被发明出来。本质上,晶体管的工作都是表现为一个受控的电流源或电压源,其工作机制是将不含内容的直流的能量转化为“有用的”输出。直流能量乃是从外界获得,晶体管加以消耗,并转化成有用的成分。不同的晶体管不同的“能力”,比如其承受功率的能力有区别,这也是因为其能获取的直流能量的能力不同所致;比如其反应速度不同,这决定它能工作在多宽多高的频带上;比如其面向输入、输出端的阻抗不同,及对外的反应能力不同,这决定了给它匹配的难易程度。 2、偏置电路及稳定电路 偏置和稳定电路是两种不同的电路,但因为他们往往很难区分,且设计目标趋同,所以可以放在一起讨论。 晶体管的工作需要在一定的偏置条件下,我们称之为静态工作点。这是晶体管立足的根本,是它自身的“定位”。每个晶体管都给自己进行了一定的定位,其定位不同将决定了它自身的工作模式,在不同的定位上也存在着不同的性能表现。有些定位点上起伏较小,适合于小信号工作;有些定位点上起伏较大,适合于大功率输出;有些定位点上索取较少,释放纯粹,适合于低噪声工作;有些定位点,晶体管总是在饱和和截至之间徘徊,处于开关状态。一个恰当的偏置点,是正常工作的础。在设计宽带功率放大器时,或工作频率较高时,偏置电路对电路性能影响较大,此时应把偏置电路作为匹配电路的一部分考虑。 偏置网络有两大类型,无源网络和有源网络。无源网络(即自偏置网络)通常由电阻网络组成,为晶体管提供合适的工作电压和电流。它的主要缺陷是对晶体管的参数变化十分敏感,并且温度稳定性较差。有源偏置网络能改善静态工作点的稳定性,还能提高良好的温度稳定性,但它也存在一些问题,如增加了电路尺寸、增加了电路排版的难度以及增加了功率消耗。   稳定电路一定要在匹配电路之前,因为晶体管需要将稳定电路作为自身的一部分存在,再与外界接触。在外界看来,加上稳定电路的晶体管,是一个“全新的”晶体管。它做出一定的“牺牲”,获得了稳定性。稳定电路的机制能够保证晶体管顺利而稳定的运转。 3、输入输出匹配电路 匹配电路的目的是在选择一种接受的方式。对于那些想提供更大增益的晶体管来说,其途径是全盘的接受和输出。这意味着通过匹配电路这一个接口,不同的晶体管之间沟通更加顺畅,对于不同种的放大器类型来说,匹配电路并不是只有“全盘接受”一种设计方法。一些直流小、根基浅的小型管,更愿意在接受的时候做一定的阻挡,来获取更好的噪声性能,然而不能阻挡过了头,否则会影响其贡献。而对于一些巨型功率管,则需要在输出时谨小慎微,因为他们更不稳定,同时,一定的保留有助于他们发挥出更多的“不扭曲的”能量。 典型的阻抗匹配网络有L匹配、π形匹配和T形匹配。其中L匹配,其特点就是结构简单且只有两个自由度L和C。一旦确定了阻抗变换比率和谐振频率,网络的Q值(带宽)也就确定了。 π形匹配网络的一个优点就是不管什么样的寄生电容,只要连接到它,都可以被吸到网络中,这也导致了 π形匹配网络的普遍应用,因为在很多的实际情况中,占支配地位的寄生元件是电容。T形匹配,当电源端和负载端的寄生参数主要呈电感性质时,可用T形匹配来把这些寄生参数吸收入网络。以上就是功率放大器的分类以及相应的组成,希望能给大家帮助。

    时间:2020-11-03 关键词: 功率放大器 电路 晶体管

  • 手把手教你用晶体管搭建逻辑门电路

    关注+星标公众号,不错过精彩内容 作者 | 记得诚 转自 | 记得诚电子设计 常见的晶体管有二极管、三极管和MOS管,主要的逻辑门电路:与门、或门、非门、与非门、或非门、异或门等,这篇文章介绍用晶体管搭建常见的逻辑门电路。 废话不多说,直接上图。 1. 二极管 ① 二极管与门 用两个二极管组成的与门,A和B都为高电平时,Y才为高电平。 用1个二极管和1个电阻也可以组成与门。 ② 二极管或门 从下图两个或门电路可以看出,A和B只要有一个为高电平,输出Y就为高电平。 同样的,用1个电阻和1个二极管也可以组成或门。 2. 三极管 ① 三极管非门 A为高电平,T1导通,Y为低电平;A为低电平,T1截止,Y为高电平。 ② 三极管与门 用2个NPN三极管搭建与门;A和B都为高电平时,T2和T3都导通,此时Y为高电平。 用1个NPN和1个PNP搭建的与门,当A和B均为高电平时,T4和T6都导通,Y为高电平。 ③ 三极管或门 在二极管或门基础上,可以加一个NPN三极管,也可以组成或门,A和B只要有一个高电平,T5就会导通,Y会由低电平变为高电平;当A和B都为低电平时,T5才截止,Y为低电平。 ④ 三极管与非门 与非门由与门和非门组成,在三极管与门基础上稍作修改,可以变为三极管与非门。 ⑤ 三极管或非门 用2个PNP三极管搭建的或非门,A和B只要有一个高电平,Y就为低电平;当A和B都为低电平时,T9和T10均导通,Y为高电平。 3. MOS管 ① MOS管非门 用1个NMOS和1个PMOS搭建的非门;当A为高电平时,T1截止,T2导通,Y为低电平;当A为低电平时,T1导通,T2截止,Y为高电平。 ② MOS管与非门 备注:T3和T4为NMOS,T5和T6为PMOS; A=0,B=0时,T5和T6导通,T3和T4截止,Y=1 A=1,B=0时,T3和T6截止,T4和T5导通,Y=1 A=0,B=1时,T3和T6导通,T4和T5截止,Y=1 A=1,B=1时,T5和T6截止,T3和T4导通,Y=0 ③ MOS管或非门 备注:T7和T8为NMOS,T9和T10为PMOS; A=0,B=0时,T9和T10导通,T7和T8截止,Y=1 A=1,B=0时,T7和T9截止,T8和T10导通,Y=0 A=0,B=1时,T7和T9导通,T8和T10截止,Y=0 A=1,B=1时,T9和T10截止,T7和T8导通,Y=0 4. 真值表 通过真值表能反映一个电路的功能,优秀的记得诚给出了如下门电路的真值表,小伙伴门可以巩固下各个门电路的功能。 ① 与门 与门功能:输入都为1,输出才为1,只要有一个0,输出就为0,记作Y=A*B或者Y=AB; A B Y 0 0 0 0 1 0 1 0 0 1 1 1 ② 或门 或门功能:输入只要有一个1,输出就为1,记作Y=A+B; A B Y 0 0 0 0 1 1 1 0 1 1 1 1 ③ 非门 非门:非门也叫反相器,即输入1,输出0,输入0,输出1,记作Y=A'; A Y 0 1 1 0 ④ 与非门 与非门:与非门是与门与非门的结合,先与后非,记作Y=(AB)'; A B Y 0 0 1 0 1 1 1 0 1 1 1 0 ⑤ 或非门 或非门:或非门是或门与非门的结合,先或后非,记作Y=(A+B)'; A B Y 0 0 1 0 1 0 1 0 0 1 1 0 5. 小结一下 用晶体管绘制常见的逻辑门电路,会让我们对晶体管的特性更加熟悉,在电路设计时更加的从容淡定,也常出现在硬件工程师的笔试题中,总之一句话,会了这些,你就是街上最靓的GAI; ------------ END ------------ 推荐阅读: SEGGER的三款RTOS有什么特点? Keil MDK如何将变量存储在指定内存地址 几款优秀的支持C、C++等多种语言的在线编译器 关 注 微信公众号『strongerHuang』,后台回复“1024”查看更多内容,回复“加群”按规则加入技术交流群。 长按前往图中包含的公众号关注 点击“ 阅读原文 ”查看更多分享,欢迎点分享、收藏、点赞、在看。 免责声明:本文内容由21ic获得授权后发布,版权归原作者所有,本平台仅提供信息存储服务。文章仅代表作者个人观点,不代表本平台立场,如有问题,请联系我们,谢谢!

    时间:2020-11-03 关键词: 逻辑门电路 晶体管

  • 为什么晶体管在电路中常被用做开关?

    为什么晶体管在电路中常被用做开关?

    晶体管可以用作开关和放大器,并且在电路中起到很大的作用。那么我们如何连接晶体管,才能使其用作电路中的开关? 首先,为什么晶体管在电路中被用作开关? 有很多不同种类的开关,以下陈列的是各种开关:按钮开关,翘板开关,滑动开关,DIP开关,按键开关,拨动开关,刀开关,它们的功能与晶体管相同,它们在电路中连接到开关输出侧的负载,下面的电路使用单刀开关来打开或关闭负载(LED)。 如果以上这些开关具有相同的用途,那么为什么晶体管经常被用作电路中的开关呢? 原因是晶体管是电气开关。 与上面的机械开关不同,晶体管通过电流来导通或截止。机械开关,例如单刀开关,按钮开关,需要人工进行开关。但是,晶体管的开启和关闭不是通过人为干预,而是通过电流来控制。 两者都有自己的用途。机械开关通常在电子电路的外部使用,在这种情况下,人们需要控制各种功能,例如用于打开或关闭设备的ON-OFF开关,音量控制等。 当我们只想通过晶体管的通断状态来接通或关断器件时,就使用晶体管。作为晶体管完美地用作电气开关的主要示例,我们将在下面介绍。 如何将晶体管作为电路中的开关进行连接? 现在我们知道了为什么将晶体管用作开关,现在我们讨论如何连接晶体管以在电路中用作开关。 晶体管是三引脚器件,由双极结型晶体管(BJT)的基极,集电极和发射极组成。发射极是第一引脚,基极是中间引脚,集电极是第三引脚。 为了将晶体管作为电路中的开关连接,我们将将晶体管导通的设备的输出连接到晶体管的基极。发射极将连接到电路的接地端。集电极将连接到晶体管将导通的负载和电路的电源电压。 该电路中有几个不同的部分。检测运动的部分是PIR运动传感器。当此传感器检测到运动时,它将运动能量转换为电流。许多电子设备都这样做。它们将机械转换为电流。PIR运动传感器可以做到这一点。一旦检测到运动,便将电流输出到其引脚3的输出引脚。由于此输出为电流,因此可用于导通晶体管。 由于PIR运动传感器输出电流,并且晶体管是开关,因此它是与晶体管工作的理想开关。机械开关是人需要按下操作时使用的开关,晶体管是电流接通时的开关。因此,当我们希望电流控制电路中开关的状态时,可以使用晶体管。 当PIR传感器未检测到运动时,它不输出电流,因此晶体管不会导通。当晶体管的基极没有接收到足够的电流时,没有电流可以从发射极流到集电极为负载供电,在这种情况下,负载是电动机。 即使晶体管的集电极需要正电压(对于NPN晶体管)才能工作,它也不会仅仅因为有电压而导通。这是因为当晶体管没有接收到足够的基极电压时,它会充当开路。当晶体管开路时,没有电流可以流到地。因此,提供给直流电动机的+ 9V直流电压没有电势。电动机两端的电压均为+ 9V。只有当晶体管导通并且电流可以流到地时,才有确定的电位。 当运动检测器检测到运动时,它会从其输出引脚输出电流到晶体管的基极。该电流使晶体管导通,因此晶体管现在可以为其负载(即电动机)供电。在该电路中,晶体管充当开关和放大器。如果使用PNP晶体管,则将负电压提供给集电极。

    时间:2020-10-27 关键词: 开关 电路 晶体管

  • 英特尔在芯片业的制造难题无法轻易解决?

    英特尔在芯片业的制造难题无法轻易解决?

    在英特尔最近公布的2020财年第三季度业绩报告中显示,英特尔当季营收183.3亿美元,净利润为42.8亿美元。而台媒MoneyDJ援引MarketWatch的消息称,英特尔未对转型计划过多解释。 不过有分析人士称,英特尔的经营困境恐怕才刚开始,甚至美国银行分析师Vivek Arya认为,英特尔遇到的制造难题恐怕无法轻易解决,尤其是在高度竞争的芯片业。 原因在于,英特尔的庞大规模恐怕会让该公司在寻找晶圆代工伙伴时遭遇挑战。 Vivek Arya说,英特尔究竟要部份还是完全转型为IC设计商,目前仍不清楚。现在也不知道晶圆代工厂是否还有多余产能为英特尔制造晶体管,或愿不愿意在短时间内帮助竞争对手,待后者改善内部制程后撤单,最终留下一座空荡荡的晶圆厂。 另外,Jefferies分析师Mark Lipacis发表研究报告指出,若台积电同意在英特尔积极追赶时、以先进制程为英特尔打造CPU,那么台积电等于是在帮英特尔翻身,最终拱手让出AMD及Nvidia这两个高成长客户的订单。 从战略的角度来看,Mark Lipacis相信只有在英特尔放弃打造先进制程晶体管的前提下,台积电才会为英特尔代工CPU。 英特尔首席执行官鲍勃•斯旺针对延迟上市的7nm芯片指出,公司将在2021年初决定是采用自己的技术还是交由第三方代工生产7纳米芯片。

    时间:2020-10-27 关键词: 英特尔 台积电 晶体管

  • 你了解同步整流式和异步整流式DC/DC转换器的不同点吗?

    你了解同步整流式和异步整流式DC/DC转换器的不同点吗?

    什么是同步整流式和异步整流式DC/DC转换器?它们有什么不同?继开关稳压器的种类和工作原理之后,接着要说明所谓同步整流式和异步整流式DC/DC转换器变压器方式的区别。由于各自有优缺点,故根据电源的要求规格区分使用是一大要点。 电路构造上的区别如下的图的通,不同点在于开关2是二极管或是晶体管。 异步整流式,也称为二极管整流式,通过上侧晶体管的ON/OFF,二极管进行导通/关断,使电流流向或不流向二极管。这在工作原理部分已经说明。异步式是简单且牢固的方式,在工业设备等中有极高的实绩。 另一方面,同步整流的方式虽然基本工作相同,但是下侧开关的ON/OFF也由控制电路进行。如果双方同时为ON,则电流将从VIN直接流向GND,使晶体管有破坏的可能性,故双方必须制造OFF,停滞时间的时序等进行复杂的控制。不过,同步整流式的效率比异步式高,对于延长电池驱动设备的工作时间有极大贡献。 S1为ON的时S2设为OFF S1为OFF的时S2设为ON 电流路径与异步型相同,但S2的ON/OFF 由控制电路进行 下段的电路是实际电路S1、S2使用晶体管 高效率 电路比异步式复杂 S1为ON时电流不流向D1(关断) S1为OFF时电流正向流向D1(导通) 下段的电路是实际电路,S1可使用晶体管,D1可使用肖特基二极管 效率比同步式差 电路比较简单 同步整流式的所以效率高,原因在于将异步整流式的二极管置换成晶体管,故可以将输出段开关的损耗压低。众所周知,二极管的VF会因电流而改变,不过即使VF为低肖特基也有0.3~0.5V。与之相对,例如Nch-MOSFET的ON电阻极低至50mΩ,如果计算电压下降的话则将远比二极管的VF来得低。 有关“开关稳压器的特性和评估方法”这个主题,了解DC/DC转换工作因方式的区别或特征非常重要。 关键要点: ・同步整流式虽然可以获得高效率,但是零件数比异步式稍多,电路也复杂。 ・异步式虽然效率比同步式差,但是电路比较简单。以上激素同步整流式和异步整流式DC/DC转换器解析,希望能给大家帮助。

    时间:2020-10-27 关键词: 二极管 肖特基二极管 晶体管

  • 你知道线性稳压器分类以及相应的使用方法吗?

    你知道线性稳压器分类以及相应的使用方法吗?

    关于线性稳压器分类,你知道吗?系列稳压器、三引脚稳压器、降压器、LDO。这些想必有听过的名称全都是指线性稳压器。除了这些名称,根据其功能或方式可以分成几类。 图 3:线性稳压器的体系 首先,大致分类的话可以分为正电压用和负电压用。另外,负电压用种类并不多。其下可分为固定输出型和可变输出型。固定型有输入、输出、GND等3引脚,以标准型号78xx(正)、79xx(负)型为代表。IC内置设定用的电阻,反馈引脚无须外露。可变型如图1例所示,如果为GND基准型,反馈引脚会露出变成4引脚。可变型还有无GND引脚的浮动工作317(正)、337(负)等类型,这些为3引脚。 固定和可变的又分为标准型和LDO型。LDO是Low Dropout的简称,相对于标准型3V左右的压差电压(可进行稳定工作的最低输出输入电压差),改良的1V以下的LDO,在3.3V电源IC问世时开始普及。在12V转换至5V规格全盛时期,即使压差电压为标准型3V左右也没有什么问题,但如果需3.3V电源时就无法从5V产生3.3V,于是就诞生了LDO。 上述线性稳压器都为内置输出晶体管型,此外还有外置输出晶体管以便处理大电流的线性稳压控制IC。 图 4:各种封装的使用 其他还有按照制造工艺特征来分类。一般双极工艺的线性稳压器多为35V或50V等高耐压品,消耗电流则多以几mA。CMOS类最近也出20V等高耐压品,输入电压多设定在5V。但消耗电流非常小,只有几十μA。 封装方面,线性稳压器注重散热,故使用热阻低的封装。插件型以附散热片的TO-220,表贴型则使用散热片外露于背面的类型为主。关键要点: ・分正电压用和负电压用,各有输出固定型和可变型。 ・LDO为输出输入间电压损耗低的类型,为支持电源电压更低而生。 ・封装仍多使用附有散热片的插件型。以上就是线性稳压器分类解析,希望能给大家帮助。

    时间:2020-10-27 关键词: 线性稳压器 降压器 晶体管

  • 你知道三极晶体管电路设计吗?它有什么特点?

    你知道三极晶体管电路设计吗?它有什么特点?

    什么是三极晶体管电路设计?晶体管的设计是要注意设计的特点的,根据电路设计的原理和理论知识来进行设计。晶体管的电路合计方法比较多,但是都是要注意按照电路设计的理论知识来进行。所以对于电路设计专业的人士来讲,一定要学好专业的知识,对于自己日后的工作和生活都是有很大的帮助的。下面我们来详细的了解一下三极晶体管电路设计的特性和特点有哪些。 三极晶体管电路设计输出特性曲线(共发射极),晶体三极管是由形成二个PN结的三部分半导体组成的,其组成形式有PNP型及NPN型。我国生产的锗三极管多为PNP型,硅三极管多为NPN型,它们的结构原理是相同的。 三极管有三个区、三个电极。其中基区(三极管中间的一层薄半导体)引出基极b;两侧有发射区引出发射极e及集电区引出集电极c。发射区和基区之间的PN结叫发射结,集电区和基区之间的PN结叫集电结。在电路符号上PNP型管发射极箭头向里,NPN型管发射极箭头向外,表示电流方向。 基极电流Ib一定时,晶体三极管的Ic和Uce之间的关系曲线叫做输出特性曲线。曲线以Ic(mA)为纵坐标,以Uce(V)为横坐标给出,图上的点表示了晶体管工作时Ib、Uce、Ic三者的关系,即决定了晶体三极管的工作状态。从曲线上可以看出,晶体管的工作状态可分成三个区域。饱和区:Uce很小,Ic很大。集电极和发射极饱和导通,好像被短路了一样。这时的Uce称作饱和压降。 此时晶体管的发射结、集电结都处于正向偏置。放大区:在此区域中Ib的很小变化就可引起Ic的较大变化,晶体管工作在这一区域才有放大作用。在此区域Ic几乎不受Uce控制,曲线也较为平直,此时管子的发射结处于正向偏置,集电结处于反向偏置。截止区:Ib=0,Ic极小,集电极和发射极好像断路(称截止),管子的发射结、集电结都处于反向偏置。 现在大家对于三极晶体管电路设计的特性和特点有了基本的了解,电路的设计是要注意科学的进行设计的。以上就是三极晶体管电路设计解析,希望能给大家帮助。

    时间:2020-10-27 关键词: 电路设计 三极管 晶体管

  • 关于电子管功放的一些知识点,有多少人都懂?

    关于电子管功放的一些知识点,有多少人都懂?

    什么是晶体管功放?它有什么作用?什么在晶体管功放日益进步与完善的今天,电子管功放仍有它的一席之地?主要原因有:一是电子管功放有其温暖、甜润的音色,重播音乐时比较耐听、不刺耳;二是由于一些商业性的过份地宣传。以下谈谈关于电子管功放的一些误区。 (1) 电子管的音色温暖、甜美 常听见有人说,要想得到柔和、甜美的重播音色,就必须使用电子管功放。还特意把这种甜美的音色称其 为“胆味十足”。其实以上的说法并不准确。电子管功放的“甜”,最主要的原因是甜在了输出变压器上。所以,“胆味十足”的准确说法应该是“T味十足”(T是英文变压器的字头)。 为什么输出变压器能使电子管功放的重播音色变甜、变暖,其原因主要有: 由于变压器铁芯的磁滞作用,导致了电子管功放的瞬态特性有所下降,使得有些细微的、爆发特性很强的、并不十分谐和的细节被吃掉了,得不到充分地反映。所以电子管功放在重播某些原本细节过于丰富而又稍欠甜美的录音制品时,起到了甜化、美化的作用。但在播放原本就有些偏甜、偏暖的音乐制品时,就会有些发肉、发慢。 电子管功放的音色甜而暖的另一个原因,是由于输出变压器的频响特性引起的。在普通的晶体管功放中,由于没有输出变压器的制约,所以它们的频响在20Hz~20kHz的范围内,基本上可以作到平直(图7a)。高档的晶体管功放的频响已可作到从直流到1MHz的范围。 在普通电子管功放中,由于输出变压器自身电感、电容、材料、材质、结构等等的制约,很难把频响曲线作平真(图7b)。既便是高档的电子管功放,其测试曲线平直了之后,在实际上的半功率使用中,频响曲线的劣化相对也比较严重。当然,这不是说电子管功放的频响曲线作不直,假如真的下大力气把它作直了,其制作成本也成了天价,得不偿失。况且只要有输出变压器存在,电子管功放的低频端余量就做不大,永远也达不到直流的范围。当然,这直流的低端是否具有足够的实际意义,将是另外一个话题。 下面仅就一个超低频和高频略有下降,而中低频略有提升的电子管功放频响曲线来分析。为什么图7b的特性会是一种甜而温暖的特性呢?这是因为人耳在听音时的感觉特性与习惯决定的。 当人在听音时,在超低频的范围内,例如50Hz以下,尤其是在20Hz附近时(倍大提琴可以发出低至16Hz的声音),耳朵的听音能力逐渐减弱了,而身体的肌肉、骨骼却明显感受到这个频率,然后再由大脑综合作出判断。这时你所感受到的低音是松驰的,是真实的,扩散的范围很大。这就好比你在马路边上看到一辆缓缓起动的汽车,你既可以感受到发动机轰鸣的低沉有力,又能真正感到这个运动物体带来的风、带来的气压的变化。而这风与气压的变化,恰恰就是超低频、次声的具体体现。所以,在低频性能优秀的大型监听音箱里,可以重播出汽车、火车带有压力的呼啸,而在小型音箱中,汽车永远也不可能“开进”室内,就是这个道理。对于50Hz以下的低频开始衰减、劣化之后,就造成了人体感受的部分减少了,而耳朵所听到的东西相对多了。这时你所听到的声音集中了,味儿浓了,但是声音发紧了,或者说是产生了失真,不真实了。 在频响的高频端,也有相类似的感受。高频特性越好的音响系统,高音的扩散就越好、越活泼。高频的特性不够好,在16kHz以上就开始有所衰减,或者是勉强达到了20kHz以后就开始衰减,仍然会使重播音乐的高频泛音减少。乍一听起来,高音金属打击乐的响度似乎增加了,乐器的形体也大了。但是细节少了,声音有些发死。 美国麦景图厂是一个生产音频功率放大器的老牌工厂。该厂有着生产优质电子管功放的雄厚技术基础。时至今日,该厂某几个型号的电子管功放仍然被视为经典之作继续生产。当该厂的研究人员把设计加工精良的输出变压器应用到晶体管功放中去的时候,一个奇迹发生了:这就是使用普通晶体管作放大元器件的功放,产生了甜美耐听的音色:而且保留了晶体管功放省电、耐用、效率高的特点。 早期的某些音箱生产厂家,在本厂的音箱分频器中,使用了铁芯电感线圈。其原始的出发点主要是为了缩小电感线圈的体积,结果使用了之后,也产生了重播音色甜化的现象。 从大量地科学研究以及在音频各个领域的实践中,专业人士早已懂得了电子管功放不是甜在电子管本身上,而是甜在了输出变压器铁芯上、甜在了输出变压器的频响特性上这样一个基本道理。 (2) 电子管功放的效率高、功率储备大 这是有关电子管功放的另一个误区。 一般人认为,10W的电子管功放,可以产生30W、甚至50W晶体管功放的驱动效果。因此就有人说电子管功放的效率高。其实这是一个十分模糊的概念。 因为在评价一台功放的驱动能力时,有两个标准相当重要。一个是功放本身的电压放大量,另一个是功放的功率储备和带负载能力。说电子管功放效率高的人,实际上是把电子管功放的电压放大量误认为是功放效率的一个错误观点。因为在家用音响器材中,平均的使用功率,一般就是几瓦到几十瓦之间。当在听音量比较平均、起伏不大的音乐时,10W的功率就可以产生相当响的音量。所以使有些人误以为电子管功放的10W远远大于晶体管功放的10W。 电子管功放由于使用了输出变压器,在铁芯磁滞的作用下,电子管功放的失真是软失真,是一种不易察觉,但检测得出的失真。所以电子管功放的功率储备做得都比较小;也容易给人造成一种误解。晶体管功放由于没有变压器这一软化失真的关口,因此晶体管功放在与电子管功放的失真度相同时,重播音色的劣化要明显得多,所以晶体管功放的功率储备相对要比电子管功放大得多,也会造成一些效率不高的假象。 其实不论是电子管功放还是晶体管功放,它们真正的效率只取决于它们自身能耗与输出功率之比。在耗电一样的情况下,谁的输出功率大,谁的效率就高。在这方面,往往是晶体管功放占上风。 (3) 电子管功放的匹配特性好 这是关于电子管功放的又一个误区。 有不少人在看了电子管功放的输出端子后,就感慨地说:“电子管功放的输出匹配分的多细呀,常有4Ω、6Ω和8Ω多组输出端子”。其实对于这种感叹的理解正好相反。电子管功放之所以设立多组输出,恰恰说明只用一组输出不能适应多种阻抗的音箱。而对于晶体管功放,则没有这种担忧。换句话说,用晶体管功放驱动音箱,*作起来更容易。 (4) 电子管功放的继续流行是一个音乐美学的问题。 音乐美学,是一个经常听到又很难准确定义的东西。这是由于艺术的个性所决定的。不同的人,不同素质的人,在音乐美学上的差异是相当大的。 例如大家熟知的多明戈、帕瓦罗蒂和卡雷拉斯三大男高音,他们各自的音色、演唱特点均不相同。因此,就产生了他们各自的崇拜者。由于三个男高音都是优秀的,但他们之间的差异又相当大,所以他们代表着男高音领域中不同的美。这点永远也不会统一。又例如我国已故的京剧艺术大师周信芳先生的嗓子带有一种特殊的沙哑,因此就培养出一大批他所专有的戏迷。 对于电子管功放的重播音色也是如此。虽然它过于甜了一些、暖了一些,但喜爱这种音色的大有人在。再加上电子管功放面世已久,很多中、老年人年轻时都听惯了这种音色,几十年后重温这种音色,很容易使人联想到过去,联想到年轻的时代,具有很浓的怀旧色彩。总之,人们在音色的取向上无可厚非。只要是好的艺术,喜爱哪门哪类都行。只不过不要把技术和艺术的概念混为一谈,因为毕竟在要求最高的音响领域里,早已不使用电子管功放了。以上就是晶体管功放解析,希望能给大家帮助。

    时间:2020-10-25 关键词: 变压器 电子管功放 晶体管

  • 功率电子器件应用要求以及概述

    功率电子器件应用要求以及概述

    尽管电力电子器件发展过程远比我们现在描述的复杂,但是MOSFET和IGBT,特别是IGBT已经成为现代功率电子器件的主流。 一.功率电子器件及其应用要求 功率电子器件大量被应用于电源、伺服驱动、变频器、电机保护器等功率电子设备。这些设备都是自动化系统中必不可少的,因此,我们了解它们是必要的。 近年来,随着应用日益高速发展的需求,推动了功率电子器件的制造工艺的研究和发展,功率电子器件有了飞跃性的进步。器件的类型朝多元化发展,性能也越来越改善。大致来讲,功率器件的发展,体现在如下方面: 1. 器件能够快速恢复,以满足越来越高的速度需要。以开关电源为例,采用双极型晶体管时,速度可以到几十千赫;使用MOSFET和IGBT,可以到几百千赫;而采用了谐振技术的开关电源,则可以达到兆赫以上。 2. 通态压降(正向压降)降低。这可以减少器件损耗,有利于提高速度,减小器件体积。 3. 电流控制能力增大。电流能力的增大和速度的提高是一对矛盾,目前最大电流控制能力,特别是在电力设备方面,还没有器件能完全替代可控硅。 4. 额定电压:耐压高。耐压和电流都是体现驱动能力的重要参数,特别对电力系统,这显得非常重要。 5. 温度与功耗。这是一个综合性的参数,它制约了电流能力、开关速度等能力的提高。目前有两个方向解决这个问题,一是继续提高功率器件的品质,二是改进控制技术来降低器件功耗,比如谐振式开关电源。 总体来讲,从耐压、电流能力看,可控硅目前仍然是最高的,在某些特定场合,仍然要使用大电流、高耐压的可控硅。但一般的工业自动化场合,功率电子器件已越来越多地使用MOSFET和IGBT,特别是IGBT获得了更多的使用,开始全面取代可控硅来做为新型的功率控制器件。 二.功率电子器件概览 (1). 整流二极管: 二极管是功率电子系统中不可或缺的器件,用于整流、续流等。目前比较多地使用如下三种选择: 1. 高效快速恢复二极管。压降0.8-1.2V,适合小功率,12V左右电源。 2. 高效超快速二极管。0.8-1.2V,适合小功率,12V左右电源。 3. 肖特基势垒整流二极管SBD。0.4V,适合5V等低压电源。缺点是其电阻和耐压的平方成正比,所以耐压低(200V以下),反向漏电流较大,易热击穿。但速度比较快,通态压降低。 目前SBD的研究前沿,已经超过1万伏。 (2).大功率晶体管GTR 分为: 单管形式。电流系数:10-30。 双管形式——达林顿管。电流倍数:100-1000。饱和压降大,速度慢。下图虚线部分即是达林顿管。 达林顿管应用 实际比较常用的是达林顿模块,它把GTR、续流二极管、辅助电路做到一个模块内。在较早期的功率电子设备中,比较多地使用了这种器件。图1-2是这种器件的内部典型结构。 达林顿模块电路典型结构 两个二极管左侧是加速二极管,右侧为续流二极管。加速二极管的原理是引进了电流串联正反馈,达到加速的目的。 这种器件的制造水平是1800V/800A/2KHz、600V/3A/100KHz左右(参考)。 (3). 可控硅SCR 可控硅在大电流、高耐压场合还是必须的,但在常规工业控制的低压、中小电流控制中,已逐步被新型器件取代。 目前的研制水平在12KV/8000A左右(参考)。 由于可控硅换流电路复杂,逐步开发了门极关断晶闸管GTO。制造水平达到8KV/8KA,频率为1KHz左右。 无论是SCR还是GTO,控制电路都过于复杂,特别是需要庞大的吸收电路。而且,速度低,因此限制了它的应用范围拓宽。 集成门极换流晶闸管IGCT和MOS关断晶闸管之类的器件在控制门极前使用了MOS栅,从而达到硬关断能力。 (4). 功率MOSFET 又叫功率场效应管或者功率场控晶体管。 其特点是驱动功率小,速度高,安全工作区宽。但高压时,导通电阻与电压的平方成正比,因而提高耐压和降低高压阻抗困难。 适合低压100V以下,是比较理想的器件。 目前的研制水平在1000V/65A左右(参考)。商业化的产品达到60V/200A/2MHz、500V/50A/100KHz。是目前速度最快的功率器件。 (5). IGBT 又叫绝缘栅双极型晶体管。 这种器件的特点是集MOSFET与GTR的优点于一身。输入阻抗高,速度快,热稳定性好。通态电压低,耐压高,电流大。 目前这种器件的两个方向:一是朝大功率,二是朝高速度发展。大功率IGBT模块达到1200-1800A/1800-3300V的水平(参考)。速度在中等电压区域(370-600V),可达到150-180KHz。 它的电流密度比MOSFET大,芯片面积只有MOSFET的40%。但速度比MOSFET低。

    时间:2020-10-21 关键词: 整流二极管 功率电子器件 晶体管

首页  上一页  1 2 3 4 5 6 7 8 9 10 下一页 尾页
发布文章

技术子站

更多

项目外包