据DisplaySearch最新数据调研显示,5寸到10.2寸供迷你笔电和平板电脑所需的触控屏幕的总出货量预计在2010年达到1千950万片,在2016年将达到1亿2千2百万片。在2010年全球触控屏幕的产量将达到790万平方米,且在2011年
全加器是算术运算的基本单元,提高一位全加器的性能是提高运算器性能的重要途径之一。首先提出多数决定逻辑非门的概念和电路设计,然后提出一种基于多数决定逻辑非门的全加器电路设计。该全加器仅由输入电容和CMOS反向器组成,较少的管子、工作于极低电源电压、短路电流的消除是该全加器的三个主要特征。对这种新的全加器,用PSpice进行了晶体管级模拟。结果显示,这种新的全加器能正确完成加法器的逻辑功能。
自激振荡的引起,主要是因为集成运算放大器内部是由多级直流放大器所组成,由于每级放大器的输出及后一级放大器的输入都存在输出阻抗和输入阻抗及分布电容,这样在级间都存在R-C相移网络,当信号每通过一级R-C网络后,就要
机房地线引起的干扰分析及其抑制方法我站机房由微波机房和发射机房组成。发射机所用音视频信号均由微波机房经电缆传输过来,电缆长度约40多米。在信号传输过程中,出现了干扰。具体现象:视频信号同步头受到干扰,造
行预激励电路 行激励管一般也是按开关方式工作的。它对行输出管的激励方式可有两种: 一种是使行输出管导通时, 行激励管也导通 行输出管截止时, 行激励管也截止。 这种工作方式叫做同极性激励。 在这种方式中, 当行激
幅度分离电路 典型的幅度分离电路如图8 - 2所示。它是由一只晶体管和电容C、 电阻RB、 RC构成。输入信号是检波后的视频全电视信号, 通常峰峰值在2V左右。输出的信号是复合同步信号, 为简单起见, 图中只画出了行同步
1、芯片发热 这主要针对内置电源调制器的高压驱动芯片.假如芯片消耗的电流为2mA,300V的电压加在芯片上面,芯片的功耗为0.6W,当然会引起芯片的发热.驱动芯片的最大电流来自于驱动功率mos管的消耗,简单的计算公式为
1、芯片发热 这主要针对内置电源调制器的高压驱动芯片.假如芯片消耗的电流为2mA,300V的电压加在芯片上面,芯片的功耗为0.6W,当然会引起芯片的发热.驱动芯片的最大电流来自于驱动功率mos管的消耗,简单的计算公式为
电源中常常被忽略的一种应力是输入电容RMS电流。若不正确理解它,过电流会使电容过热和过早失效。在降压转换器中,使用下列近似式,根据输出电流 (Io) 和占空比 (D) 可以很轻松地计算出RMS电流: 图1给
陶瓷谐振电路的基本原理和结构 陶瓷谐振的特性 陶瓷谐振器类似于石英晶体,是一个压电器件,可以把电能转换为机械能,也可以把机械能转换为电能。当外加的交流电场的频率和谐振器的谐振频率发生共振时,电
无源器件内置是一个相对较新的概念。为什么要内置它们呢?原因是电路板表面空间的紧张。在典型的装配中,占总价格不到3%的元件可能会占据电路板上40%的空间!而且情况正变得更为糟糕。我们设计的电路板要支持更多的
以反激式变换器的实例为大家讲解关于输出端电容的计算,此实例为RCC拓扑结构,输出功率6W,输出电压5V,输出电压1.2A。在最小输入电压下,占空比为0.5,工作频率100KHz。(为了数据简单取频率为整数) 原理分析
分。B18,A20是对应《电世界》1983年第6期第40页图2中的数字电子钟原理图,也就是要将母钟的印刷线路板C8的正极与J1的4脚断开,串入图4中的D2。负载两端并联电容C,起到电源转换时不丢失秒脉冲的作用。
摘要:通过分析设计,提出了一种新型结构的叠栅MOSFET,它的栅电容是由两个电容混联组成,所以它有较小的栅电容和显著的抑制短沟道效应的作用。模拟软件MEDICI仿真结果验证了理论分析的预言,从而表明该结构可用作射
市场最近传出,由于多点触控面板良率提升不易,恐导致苹果平板计算机iPad出货受到限制;预期iPad触控面板供货商如宸鸿、胜华,触控面板感应器(Sensor)代工厂和鑫等,将受到冲击。面板业者2日表示,iPad供货不顺,并
日立显示器开发出即使不用手指直接触摸、用合成树脂材料的笔或带着手套也能够输入的投影型静电容量方式触摸面板。由此可以实现多种多样的输入方式,比如多个手指同时触摸操作的多点触控功能、用合成树脂笔进行更细微
O 引言 电路中的功率消耗源主要有以下几种:由逻辑转换引起的逻辑门对负载电容充、放电引起的功率消耗;由逻辑门中瞬时短路电流引起的功率消耗;由器件的漏电流引起的消耗,并且每引进一次新的制造技术会导致漏