低压差稳压器 (LDO) 因其低噪声和高电源抑制比 (PSRR) 而广受认可。然而,当 LDO 与正确的技术相辅相成时,它们也有助于提高电源效率。您可以通过将低静态电流 LDO 与适当的节能技术(例如动态电压调节 (DVS) 或电源循环)配对来设计低噪声和精益电源。在这篇博文中,我将介绍一些常见的节能技术。
数字成像电子产品变得更加便携,并集成到高质量的解决方案中。高凝聚力-性能和小-相机应用中的尺寸通常受到为互补金属氧化物半导体供电的低压差 (LDO) 稳压器的影响 (CMOS)相机中的图像传感器。图 1 是智能手机中用于摄像头的电路示例。
在为应用处理器设计电源解决方案时,我们首先要考虑的通常是所需的电源轨数量、输出电压和最大负载电流。有快速搜索等工具可以帮助我们为处理器或应用选择合适的电源管理 IC (PMIC),无论是工厂自动化或人机界面 (HMI) 等工业应用,还是信息娱乐或人机界面 (HMI) 等汽车应用。高级驾驶辅助系统 (ADAS)。
作为工程师,每当我们面临为步进电机、LED 和其他外围设备设计控制或电源电路的挑战时,我们都喜欢使系统适应特定的规则和条件。 我们基本上测量了两次,但仅限于那组特定条件。事后的任何更改只会意味着额外的成本和评估时间,这对任何项目来说都是一个巨大的痛苦。
随着越来越多的电子设备采用锂离子 (Li-ion) 电池供电,设计高效且稳健的电源非常重要。使用电池供电的小型设备发展迅速,例如:平板电脑、掌上游戏机、视频播放器、数字相框等。一般而言,这些设备都使用可再充锂离子 (Li-Ion) 电池作为电源。 看看你周围:我相信你至少有两三个电子设备正在关闭电池电源。我最近买了一台新的笔记本电脑,它时尚、紧凑的设计给我留下了深刻的印象,它仍然提供了出色的电池寿命。但是,我们必须记住,锂离子电池会不断充电和放电,这会影响系统内其他集成电路的运行。
所有功率级设计人员都喜欢在开关节点看到完美的方波。快速上升/下降沿可降低开关损耗,而低过冲和振铃可最大限度地减少功率 FET 上的电压应力。
SCHURTER (硕特) 最新的NR020和NR021电源输出插座系列将传统功能与最新功能结合起来,以满足UL498防误插标准中提高了的防火和安全要求,并根据 UL 962和UL 962A 促进家用和商用家具以及家具配电装置的插座合规。NR010和NR020系列提高了额定温度并增加了配置,以应对当今数据通信基础设施的功率需求。
随着包括无线耳机、健身设备、智能手表、水表与燃气表、便携式医疗设备以及各种电池供电的智能物联网设备的爆炸式增长,以锂电池为电源的应用越来越普及。大多数移动设备正常工作都需要一定的恒压电源,以保证系统正常运行。一般标称为3.7V的锂电池电压范围为2.8V-4.2V,随着放电电压下降。如果锂电池输出的电压不适合所需的输入电压,或者电压变化超出所需的容差范围,则需要借助合适的升降压转换芯片。
低iTHD 工作温度:0到50摄氏度 可在海拔5000米以上地区运作 支持OCP、OTP、OVP电路保护 所有输出都有短路保护 可复位电源开关 平均无故障时间:在25摄氏度、100%输出负载下连续运行10万个小时 185毫米的小型尺...
(全球TMT2022年1月12日讯)电源供应器制造商之一全汉(FSP Group)赶在高能计算需求预期激增之前,推出了最新版本的高功率冗余电源FSP2400-20FM。FSP2400-20FM是全汉的第三代旗舰产品,符合CRPS(通用冗余电源)行业标准。最新一代产品的功率从先前...
氮化镓 (GaN) 高电子迁移率晶体管 (HEMT) 提高了转换器效率,与具有相同额定电压的硅 FET 相比,具有更低的栅极电荷、更低的输出电荷和更低的导通电阻。在总线电压大于 380V 的高压 DC/DC 转换器应用中,耗尽型(d 型)GaN HEMT 比增强型(e 型)GaN HEMT 更受欢迎。
USB 充电器正变得越来越普遍,并且似乎正在走向普及。它们已经从只存在于我们的计算机上转变为存在于墙壁插座、墙壁疣、汽车面板、飞机座椅等中。
我敢肯定,在某个时候,我们都同意了我们还没有真正阅读过的条款和条件。为什么要花这么多时间阅读细则?像任何重要的文件一样,数据表也有精美的印刷品——一页华丽的规格,但多达 20 页的精美印刷品。对于电源模块来说尤其如此,因为集成可能会掩盖设备的关键细节。在根据数据表首页评估电源模块时,有一些常见的绊脚石,我将在本文系列中讨论。
服务器、电信和工业系统中使用的大功率转换器需要辅助电源来支持电源单元 (PSU) 的管理需求。由于对更高功率密度的需求不断增长,这些 PSU 使用额外的附加卡来支持其辅助需求。
假设我们正在为内燃机应用(割草机、链锯或汽车)设计降压电源。对于此应用,我们知道我们需要满足 Comité International Spécial des Perturbations Radioélectriques (CISPR)(或联邦通信委员会 [FCC])电磁干扰 (EMI) 规范。有多种减轻 EMI 的方法,包括识别重要的 EMI 干扰源、找出任何耦合路径、仔细设计电路布局以减轻干扰,以及添加滤波器和缓冲器。这些步骤中的每一个都需要时间,并且在不反复试验的情况下很难完成。此外,我们需要专门的设备和环境来测试 EMI。但是对于我们的所有麻烦,除了通过 CISPR 规范之外还有其他好处。
许多工业和汽车应用具有广泛变化的输入电压 (V IN ) 轨,并且通常需要降压-升压 DC/DC 转换器来调节输出电压 (V OUT )。降压-升压 DC/DC 转换器可以是级联降压和升压级或单级。级联降压和升压级会导致双重转换,从而导致更大的尺寸、成本和功率损耗。
我们生活在一个设计师似乎一直在追求更高效率的世界。我们希望以更少的功率输出更多的功率!更高的系统效率是团队的努力,包括(但不限于)性能更好的栅极驱动器、控制器和新的宽带隙技术。
今天,在竞争激烈的时代,产品设计师面临的挑战是保持领先地位,而不仅仅是与时俱进。这提高了系统设计人员通过差异化产品进行创新的赌注。
在创建高性能测试和测量设备时,我们最不关心的是什么为电路板供电。可能难以置信,但电源会对位于电源下游的高精度逐次逼近寄存器 (SAR) 模数转换器 (ADC) 的性能产生巨大影响。
2017年以来,户外蓝牙音箱(包括2寸/4寸喇叭便携式蓝牙音箱及6寸/8寸户外拉杆音箱等产品类型)成为增长最快的音箱品类。这类音箱供电是以单节锂电池为主,一般选用内置升压的音频功放芯片,电荷泵无电感升压的功放芯片最常见升压至6.3V上下功率输出3~5W/4欧,电感Boost升压的功放芯片升压至7V左右功率输出6~8W/3欧,其性能基本满足室内,户外场景的应用。但是更大功率更好音质一直是音箱市场永恒的追求。