这些通过AEC-Q101认证的器件可为汽车应用节省占板空间并提供高稳定性
这种直插型电感器采用变线绕阻,铁粉合金磁芯技术,可实现低直流电阻(DCR),从而减少功耗,并提高效率
安森美EliteSiC 技术使车辆的续航里程超越同级别车型
在汽车技术飞速发展的当下,尤其是油电混合车和电动车领域,逆变器驱动技术已成为汽车系统的关键组成部分。从空调机、加热系统等低功率应用,到驱动和再生制动系统等高功率应用,逆变器都发挥着不可或缺的作用。其核心功能是将相对较低的直流电池电压转换为交流高电压,为电动机控制电源,而在这一过程中,功率晶体管扮演着调节能量递送的关键角色。因此,如何保护汽车逆变器设计中的功率晶体管,成为延长系统工作寿命、确保汽车稳定运行的重要课题。
全新车规级电流检测电阻符合 AEC-Q200 标准,专为需要小尺寸、高精度阻值及电阻公差应用而设计
Bourns® PF-PVC150R 系列具备提升的电压与电流额定值,符合 UL 248-19 标准中的 gPV 保护规范
整流是将交流电转换为直流电的过程,逆变是将直流电转换为交流电的过程。整流和逆变是电力电子学中两个最基本的电力转换过程。整流器是由晶体管、二极管等元器件组成的电路,通过控制晶体管的开关状态来控制电流的方向,将交流电压转换为直流电压。逆变器是由晶体管、电容、电感等元器件组成的电路,通过控制晶体管的开关状态来改变电流的方向和大小,将直流电压转换为交流电压。
在电动汽车(EV)的发展进程中,牵引逆变器作为消耗电池电量的关键零部件,其效率和性能对车辆单次充电后的行驶里程起着决定性作用。当功率级别可达 150kW 甚至更高时,提升牵引逆变器的效率成为了行业内亟待解决的重要问题。为此,业界广泛采用碳化硅(SiC)场效应晶体管(FET)来构建下一代牵引逆变器系统,旨在实现更高的可靠性、效率和功率密度。而实时可变栅极驱动强度这一新技术的出现,为进一步提高 SiC 牵引逆变器的效率提供了有效途径。
为了解决高速PWM驱动信号在达到功率元件控制极时可能产生的延迟问题,通常会在上下桥臂之间设置一个“死区时间”。死区是指在上半桥关断后延迟一段时间再打开下半桥,或在下半桥关断后延迟一段时间再打开上半桥。这样可以在上下桥臂的元件都关闭的时段内避免同时导通,从而防止功率元件烧毁。
在当今社会,消费者对电动汽车(EV)的需求持续攀升,为了能与传统的内燃机(ICE)汽车竞争,电动汽车必须延长续航里程。解决这一问题主要有两种途径:一是在不显著增加电池尺寸或重量的前提下提升电池容量;二是提高主驱逆变器等关键高功率器件的运行能效。然而,电子元件的导通损耗和开关损耗会造成巨大的功率损耗,为应对这一情况,汽车制造商纷纷选择提高电池电压来增加车辆的续航里程。由此,800V 电池架构越来越普及,并极有可能最终取代目前广泛使用的 400V 技术。
在全球积极寻求可持续能源解决方案的今天,可再生能源的发展已成为应对能源危机和环境挑战的关键。太阳能作为一种清洁、丰富且取之不尽的可再生能源,正逐渐在能源领域占据重要地位。而在太阳能系统中,光伏(PV)逆变器无疑是核心组件,它承担着将太阳能电池板产生的直流电转换为可供家庭、企业及电网使用的交流电这一关键任务。为了实现高效、安全且可靠的电力转换,光伏逆变器严重依赖一系列先进技术,其中隔离栅极驱动器便是一项具有变革性意义的关键技术。
在下述的内容中,小编将会对正弦波逆变器的相关消息予以报道,如果正弦波逆变器是您想要了解的焦点之一,不妨和小编共同阅读这篇文章哦。
在这篇文章中,小编将为大家带来正弦波逆变器的相关报道。如果你对本文即将要讲解的内容存在一定兴趣,不妨继续往下阅读哦。
在这篇文章中,小编将为大家带来正弦波逆变器的相关报道。如果你对本文即将要讲解的内容存在一定兴趣,不妨继续往下阅读哦。
今天,小编将在这篇文章中为大家带来纯正弦波逆变器的有关报道,通过阅读这篇文章,大家可以对它具备清晰的认识,主要内容如下。
正弦波逆变器将是下述内容的主要介绍对象,通过这篇文章,小编希望大家可以对它的相关情况以及信息有所认识和了解,详细内容如下。
在这篇文章中,小编将对正弦波逆变器的相关内容和情况加以介绍以帮助大家增进对它的了解程度,和小编一起来阅读以下内容吧。
一直以来,逆变器都是大家的关注焦点之一。因此针对大家的兴趣点所在,小编将为大家带来逆变器的相关介绍,详细内容请看下文。
以下内容中,小编将对高频逆变器的相关内容进行着重介绍和阐述,希望本文能帮您增进对高频逆变器的了解,和小编一起来看看吧。
本文中,小编将对工频逆变器予以介绍,如果你想对它的详细情况有所认识,或者想要增进对它的了解程度,不妨请看以下内容哦。