防电磁干扰主要有三项措施,即屏蔽、滤波和接地。往往单纯采用屏蔽不能提供完整的电磁干扰防护,因为设备或系统上的电缆是最有效的干扰接收与发射天线。
温度监测对于保障设备安全、提高生产效率、预防事故发生起着至关重要的作用。光纤测温系统凭借其抗电磁干扰、耐腐蚀、长距离监测等优势,成为温度监测的理想选择。然而,不同的应用场景对光纤测温系统的需求各异,如何根据应用场景匹配最佳测温方案,成为选型的关键。
双有源桥(Dual Active Bridge,DAB)DC-DC变换器是一种先进的电力转换技术,具有双向能量流动能力,可以同时实现直流到直流的升压和降压转换。
在电力、交通、化工等众多领域,温度监测对于保障设备安全、提高生产效率至关重要。光纤测温技术凭借其独特的优势,成为温度监测领域的重要手段。其中,拉曼散射与布里渊散射作为光纤测温的核心技术,各自蕴含着独特的测温奥秘。
高海拔地区通常指海拔 3000 米以上区域,其环境与平原地区差异显著。最突出变化是大气压力和氧气含量降低,海拔每升高 1000 米,大气压力约下降 12kPa,氧气含量也相应减少。如青藏高原平均海拔超 4000 米,氧气含量比平原低约 30%。同时,高海拔地区气温低、昼夜温差大,湿度低且紫外线强。
现在有许多PCB不再是单一功能电路(数字或模拟电路),而是由数字电路和模拟电路混合构成的。因此在布线时就需要考虑它们之间互相干扰问题,特别是地线上的噪音干扰。
在新能源汽车动力电池研发过程中,循环寿命测试是验证电池性能的关键环节。传统单通道测试方法受限于设备利用率低、数据同步性差等问题,难以满足多组电池并行测试需求。本文提出一种基于多通道充放电系统的SOC精度校准方案,通过动态电压校准、库仑积分修正与机器学习补偿的三层架构,实现SOC误差控制在±1.5%以内,显著提升测试效率与数据可靠性。
航天器在轨运行期间需承受极端温度环境,其热控系统设计需通过真空热试验验证。在瞬态温度控制过程中,热源功率调节与数据采集的同步性直接影响试验结果的准确性。本文基于PID控制算法与多通道数据采集技术,提出一种面向真空热试验的同步控制方案,并通过Python实现温度-数据协同处理模块。
工业机器人关节作为核心传动部件,其耐久性直接影响整机可靠性。传统单一参数监测方法难以捕捉多物理场耦合作用下的失效机理,尤其在重载、高频启停等工况下,扭矩波动、转速突变与温升异常的协同作用可能加速齿轮磨损、轴承失效等故障。本文提出一种基于多参数协同监测的耐久性测试方案,通过扭矩-转速-温度三维度实时解耦分析,实现故障早期预警与寿命精准预测。
高压绝缘材料的局部放电是导致设备绝缘劣化的关键诱因,传统单一检测方法受限于环境干扰或定位精度不足,难以满足复杂工况下的故障诊断需求。本文提出一种基于超声波(US)与特高频(UHF)联合定位技术,通过多物理场信号融合分析,实现局部放电的毫秒级响应与亚米级定位。在GIS设备、高压电缆接头等场景的试验表明,该技术可将定位误差降低至0.3m以内,误报率控制在2%以下。
车规级芯片作为汽车电子系统的核心部件,其可靠性直接关系到汽车的安全性和性能。HALT(高加速寿命试验)和HASS(高加速应力筛选)测试是提高车规级芯片可靠性的重要手段。然而,在实际应用中,芯片往往受到多种应力的耦合作用,如温度、湿度、振动等。因此,构建多应力耦合加速老化模型对于准确评估车规级芯片的可靠性具有重要意义。
随着数据传输需求的爆炸式增长,PCIe 6.0凭借其64GT/s的传输速率和PAM4调制技术,成为高速互连领域的关键技术。然而,更高的速率和更复杂的PAM4调制方式给信号完整性带来了巨大挑战,信号衰减、噪声干扰等问题导致误码率上升。因此,对PCIe 6.0进行信号完整性测试,尤其是PAM4眼图分析和误码率优化至关重要。
开关电源内部的功率开关管工作在高频开关状态,本身消耗的能量很低,电源效率可达75%~90%,比普通线性稳压电源(线性电源)提高一倍。
白光干涉仪通过分析干涉条纹的变化来测量表面高度信息。当存在环境振动时,干涉仪的光学元件和被测样品会发生微小位移,使得干涉条纹的相位和强度发生变化。这种变化会干扰正常的测量信号,导致测量结果出现偏差。特别是在纳米级测量中,微小的振动都可能引起较大的测量误差。
一、引言 红外热像仪凭借其能非接触式测量物体表面温度分布的优势,在工业检测、安防监控、医疗诊断等领域得到广泛应用。然而,由于制造工艺、环境因素等影响,红外探测器各像素单元的响应特性存在差异,导致成像结果出现非均匀性,严重影响了图像质量和测温精度。非均匀性校正(NUC)技术应运而生,旨在消除这种差异,提高红外热像仪的性能。