温度的测量与控制在工业生产与安全中起着关键性作用[1]。现今市场上温度控制成型的产品大部分以单片机为核心控制器,但是单片机的运算速度和系统处理能力十分有限,并且产品性能也无法继续提高,更重要的是其ROM和RAM空间小,不能运行较大的程序,而基于多任务的操作系统需要的任务堆栈很多,需要的RAM空间很大,故在发展上有很大限制[2]。因此,研究一种嵌入式小型多点温度测量系统十分必要。
本文中,小编将对语音识别技术予以介绍,如果你想对语音识别技术的详细情况有所认识,或者想要增进对它的了解程度,不妨请看以下内容哦。
近年来,电推进技术在汽车、动车等传统运输工具领域得到了较为广泛的应用。而航空飞行器对轻量化、可靠性、能源能量密度、发动机功率等要求较高,因此电推进技术在航空领域的应用仍处于探索阶段[1]。目前,应用于中小型飞行器的分布式螺旋桨推进技术成为航空领域的研究热点。此类飞行器的机翼通常具有大展弦比、柔性大的特点,静气弹变形较大,同时螺旋桨导致的滑流效应引起机翼的气动载荷发生变化,气动弹性和滑流效应的耦合更加复杂[2]。
人工智能是集合众多方向的综合性学科,在诸多应用领域均取得了显著成果[1]。随着航空领域人工智能技术研究的不断深入,面向开放式机载智能交互场景,人工智能的应用可解决诸多问题。例如智能感知、辅助决策等,可利用人工智能算法对多源传感器捕获的海量信息进行快速处理,仅将处理后的感知结果反馈给飞行员,从而降低飞行员的任务负荷;利用人工智能算法开展航路规划、应激决策等多种智能辅助任务,帮助飞行员做出最优决策。基于飞行决策的及时性、实时性要求,大带宽、高性能和高效率特性已经成为智能处理模块的高速数据传输总线的基本要求。
随着网络技术的快速发展,采用B/S架构应用成为企业信息化主流。但网络应用也存在服务无法访问、异常等问题,造成用户体验不佳等。现在应用缺少监测手段,故障发现周期长,进而解决缓慢,甚至有些情况下会导致业务受影响中断,但无告警产生,直到用户投诉大量产生时,系统故障才被发现。
大型变压器是整个供电系统的核心设备,其出现故障将对供电的可靠性和系统的正常运行产生严重影响,及时发现和诊断其内部故障,是保证变压器及系统安全、经济运行的重要手段[1]。瓦斯保护是油浸式变压器的主保护之一,对变压器的匝间和层间短路、铁芯故障及绝缘劣化等故障均能灵敏动作[2]。目前变压器瓦斯气体分析主要采用离线分析方式[3],通过软气路管将瓦斯气体从变压器取出,将样品带回实验室,再通过注射器转移气体至1 mL色谱进样注射器进样,通过实验室色谱仪实现故障气体的成分含量检测分析判断,得出设备的故障类型[4]。传统方法受路程、实验人员操作水平、取样针筒密封效果等因素影响,易导致分析结果失真、时效性差。
在这篇文章中,小编将为大家带来语音识别技术的相关报道。如果你对本文即将要讲解的内容存在一定兴趣,不妨继续往下阅读哦。
今天,小编将在这篇文章中为大家带来语音识别的有关报道,通过阅读这篇文章,大家可以对语音识别具备清晰的认识,主要内容如下。
语音识别技术将是下述内容的主要介绍对象,通过这篇文章,小编希望大家可以对语音识别技术的相关情况以及信息有所认识和了解,详细内容如下。
随着航空发动机控制系统朝全电、多电化方向发展,电液伺服控制装置正逐步取代传统机械液压装置[1-2],其核心部件伺服阀需要通过电流信号驱动,因此在航空发动机控制系统中,对电流驱动电路的需求十分迫切。
我国以煤为主的能源消费格局,导致我国的大气环境污染存在典型的煤烟型特征[1]。据统计,我国有约一半的煤炭用于电力生产,煤炭燃烧过程中会产生大量的SO2、Nox和烟尘,严重污染大气环境[2]。
在这篇文章中,小编将对语音识别模块的相关内容和情况加以介绍以帮助大家增进对语音识别模块的了解程度,和小编一起来阅读以下内容吧。
随着国家对轨道交通发展的重视以及国民生活水平的提高,乘客及建设单位对地铁的行车速度和运营效率的要求也在逐步提高,特别是要提高高峰期的运营效率,设置越行配线车站是一个有效的解决方案。越行配线车站允许在慢车停靠车站时快车从越行轨行驶,理想情况下快车可在不降低速度的情况下越行。纽约、日本、巴黎等城市的地铁均在客流密度较大的车站采用了越行配线方案,而广州市14、18、21、22号线及福州市目前在建的机场线,也陆续开展了越行配线方案的研究并应用于车站建设中,以期提高地铁的输送效率。
随着嵌入式计算设备基础硬件性能的提升,在通信、工业制造、交通运输等领域,嵌入式系统逐渐承担起更加综合化和关键的任务,这也导致嵌入式软件在结构愈加复杂的同时,其安全性问题也越来越受到重视。堆栈是嵌入式软件中的重要存储结构,它用于保存软件运行过程中的关键信息。堆栈的安全也直接影响到嵌入式软件的安全,因此,在一些安全性要求较高的领域,堆栈的使用分析已成为保证软件安全性的必要工作之一,如机载领域DO—178C中要求,在对软件源代码的准确性和一致性评审和分析时需要包含对堆栈使用的分析。本文结合现有技术,说明如何进行嵌入式软件堆栈使用分析[1]。
如今,高参数、大容量火电机组比例不断提高,火电机组运行环境日益复杂,辅机设备数量众多。泵、风机和加热器等重要辅机一旦在运行过程中出现劣化或故障,将对设备性能产生严重影响,甚至引发重大经济损失。其中,引风机的运行状态显得尤为重要。实现引风机运行状态的精准预测有助于实时监测引风机的运行状态,提高机组运行的稳定性和效率,维护和保障火电机组的安全,并为后期维护和升级提供便利[1]。