当前位置:首页 > EDA > 电子设计自动化
[导读]在数字电路设计中,当需要将一输入的窄脉冲信号展宽成具有一定宽度和精度的宽脉冲信号时,往往很快就想到利用54HC123或54HC4538等单稳态集成电路。这一方面是因为这种专用单稳态集成电路简单、方便;另一方面是因为对

在数字电路设计中,当需要将一输入的窄脉冲信号展宽成具有一定宽度和精度的宽脉冲信号时,往往很快就想到利用54HC123或54HC4538等单稳态集成电路。这一方面是因为这种专用单稳态集成电路简单、方便;另一方面是因为对输出的宽脉冲信号的宽度、精度和温度稳定性的要求不是很高。当对输出的宽脉冲信号的宽度、精度和温度稳定性的要求较高时,采用常规的单稳态集成电路可能就比较困难了。众所周知,专用单稳态集成电路中的宽度定时元件R、C是随温度、湿度等因素变化而变化的,在对其进行温度补偿时,调试过程相当繁琐,而且,电路工作的可靠性亦不高。对于从事数字电路设计工作的人员来说,最头痛和最担心的,恐怕就是对单稳态电路的设计和调试了。

随着电子技术特别是数字集成电路技术的迅猛发展,市面上出现了FPGA、CPLD等大规模数字集成电路,并且其工作速度和产品质量不断提高。利用大规模数字集成电路实现常规的单稳态集成电路所实现的功能,容易满足宽度、精度和温度稳定性方面的要求,而且实现起来容易得多。下面,笔者就如何在大规模数字集成电路中将输入的窄脉冲信号展宽成具有一定宽度和精度的宽脉冲信号做一详细介绍。

1 基于CPLD器件的单稳态脉冲展宽电路

在众多的CPLD器件中,Lattice公司在GAL基础上利用isp技术开发出了一系列ispLSI在线可编程逻辑器件(以下简称isp器件),其原理和特点在许多杂志上早有报道,而且国内已有相当多的电路设计人员非常熟悉。Lattice公司的isp器件给笔者印象最深的是其工作的可靠性比较高。图1即是一种将输入的窄脉冲信号展宽成具有一定宽度和精度的宽脉冲信号的电路原理图。

 


图中,TR为输入的窄脉冲雷达信号;CP为输入的系统时钟脉冲信号;Q即是单稳态脉冲展宽电路输出的宽脉冲信号。图中的单元电路符号D1既是展宽脉冲的前沿产生电路,又是展宽脉冲宽度形成电路;D2、D3是二进制计数器,主要用作展宽脉冲的宽度控制电路。根据对脉冲宽度的不同要求,可以采用不同位数的二进制或其它进制的计数器 (这里,脉冲宽度的设计值是3.2μs,而CP脉冲的周期值是0.1μs);D4是展宽脉冲后沿产生电路,当计数器D3的进位输出端NQ为"高",且CP 脉冲的上升沿到达时,D4输出端输出一正向脉冲信号,经D5送至D1的CD"清零"端,从而结束了一个窄脉冲信号的展宽过程,从D1的Q输出端输出一完整的展宽脉冲信号。同时,D5的输出信号还送至D2、D3的CD"清零"端,将其"清零"后,等待下一个窄脉冲的到来。从图1所示的电路原理图中可以看到,通常可以将D3的进位输出信号NQ直接送入D5输入端,作为D1、D2、D3的"清零" 脉冲信号。

但从图2所示的时序仿真波形中可以看到,D3的进位输出NQ波形中,除有正常的进位脉冲信号输出外,在其前面还有宽度和数量不等的干扰窄脉冲。如果将NQ脉冲经D5后直接作为D1的"清零"信号,则展宽脉冲的宽度将受干扰窄脉冲的影响而不稳定,因为isp器件中触发器的"清零"操作过程是异步进行的。采用D4后,只有与计数时钟脉冲具有同步关系的那个进位脉冲,才能在D4的输出端形成"清零"脉冲。这样就完全排除了那些干扰窄脉冲的影响,从而保证了展宽脉冲宽度的稳定性和准确性。图2是这种脉冲展宽的时序仿真波形图。所用的器件是Lattice公司的ispLSI1032/883-64PIN的 PGA封装器件。

 


2 基于CPLD器件脉冲展宽电路的特点

从上面的电路原理图和时序仿真波形图可以看出,利用isp器件构成的脉冲展宽电路具有如下特点:

(1)对输入脉冲信号的宽度适应能力较强。最窄可以到ns量级,因其仅与所采用的CPLD器件的工作速度有关。因此,特别适用于对窄脉冲雷达信号进行展宽。

(2)展宽脉冲的宽度可以根据需要任意设定,亦可改变电路(例如与单片机相结合)?使其做到现场实时自动加载。

(3)展宽脉冲的宽度稳定、准确。因无外接R、C定时元器件,其脉冲宽度仅与所采用的时钟频率和CPLD器件的性能有关。

(4)展宽脉冲的前沿与输入窄脉冲的前沿之间的延迟时间基本恒定,即这个延迟时间是信号从D1的时钟输入端到D1的输出端Q的延迟时间。

(5)电路调试简单。当需要调整展宽脉冲的宽度时,不需更换元器件,只要将重新设计、仿真通过后的JED熔丝图文件,通过加载电缆适时加载到CPLD器件内即可。这在对电路进行高、低温等例行试验时变得极为简单、方便和高效。

从图1还可以看出,这种单稳态脉冲展宽电路产生的脉宽精度是小于"+"或"-"一个CP时钟周期。若要提高展宽脉冲宽度的精度,可以采用图3所示的改进型单稳态脉冲展宽电路,即在图1电路的基础上,将进入isp器件的时钟脉冲信号经反相器反相后,作为另一个相同脉宽控制电路的计数器的时钟脉冲。

 


这样,如果输入的窄脉冲在时钟脉冲的前半周期内到达,则由D6、D7、D8组成的脉宽控制电路先开始计数;如果输入的窄脉冲在时钟脉冲的后半周期内到达,则由D2、D3、D4组成的脉宽控制电路先开始计数。由于上下两个脉宽控制电路的时间计数值是相同的,故先计数则先结束,后计数则后结束。两者之差为半个时钟周期值。展宽脉冲信号的宽度,始于输入窄脉冲的前沿,而止于两个脉宽控制电路中最早结束定时计数的那个计数器的进位脉冲所产生的"清零"脉冲信号。因此,不管输入窄脉冲信号的前沿与时钟脉冲的相对时间关系如何,其输出展宽脉冲的宽度为脉宽控制电路的时间计数值与输入窄脉冲的前沿加上时钟脉冲的前沿或后沿之差。尽管脉宽控制计数电路的时钟脉冲周期没有改变,但由于输入窄脉冲的前沿与控制计数电路时钟脉冲上升沿的最大时差只有半个时钟脉冲周期(注意:时钟脉冲信号的占空比为1:1),故展宽脉冲信号的宽度误差小于"+"或"-"半个时钟脉冲周期。图4是图3所示电路的时序仿真波形图。

 


从时序仿真波形图中可以看到,前、后两个输入窄脉冲的前沿与对应的 展宽脉冲信号的前沿之间的延迟时间是一样的。而展宽脉冲信号的后沿总是与两个脉宽控制计数电路中最先结束计数的那个计数器的进位脉冲所产生的"清零" 脉冲信号相对应的。从而证实了采用图3所示电路所产生的脉冲信号的宽度精确度较图1所示之电路几乎提高一倍。在外部条件不变的情况下,提高展宽脉冲信号精度的方法有多种,这里不再一一例举。

在CPLD器件中,可以将输入的窄脉冲展宽;当然,亦可以将输入的宽脉冲变窄;或使其具有象54HC123单稳态触发器那样的延时和可重触发功能。用CPLD器件可以实现常用单稳态电路的功能;用FPGA器件,同样可以实现上述功能。采用何种器件何种方法,主要看电路设计的技术指标,设计者所具有的设计环境和周围电路中所使用器件的类型。总之,随着大规模集成电路产品性能的不断提高、体积的不断减小和成本的不断降低,基于CPLD器件设计的单稳态电路的性能将大大提高,这种单稳态电路的应用亦将越来越广泛。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在现代电气和电子工程领域,分流器作为一种重要的电气元件,广泛应用于各种电路中。它不仅能够有效地将电流分配到不同的支路,还能实现电路的保护和测量功能。本文将详细介绍分流器的使用方法、应用场景以及实用技巧,帮助读者更好地理解...

关键字: 分流器 电气元件 电路

将测量电流的电极接入电路,注意不要混淆正负极,否则会发生短路,万用表的正负极正确接入电路,然后读取电流值。

关键字: 万用表 电路 正负极

在科技飞速发展的今天,比较器作为一种关键的电路或装置,其在数字系统、模拟电路以及信号处理等领域发挥着至关重要的作用。比较器的主要功能是对两个或多个数据项进行比较,以确定它们是否相等,或确定它们之间的大小关系及排列顺序。本...

关键字: 比较器 电路

为增进大家对混合集成电路的认识,本文将对混合集成电路的相关内容予以介绍。

关键字: 电路 指数 集成电路

为增进大家对集成电路的认识,本文将对集成电路的种类、应用以及芯片的种类、应用予以介绍。

关键字: 电路 指数 集成电路

为增进大家对集成电路的认识,本文将对集成电路、集成电路和芯片的主要差异予以介绍。

关键字: 电路 指数 集成电路

在电子技术领域,单脉冲电源是一种能够产生单一脉冲波形的电源设备。它在众多领域中具有广泛的应用,特别是在需要精确控制时间或幅度的电路中。那么,单脉冲电源究竟输出什么电呢?本文将深入探讨单脉冲电源的工作原理、输出特性及其在各...

关键字: 单脉冲电源 电源设备 电路

本文中,小编将对电容予以介绍,如果你想对它的详细情况有所认识,或者想要增进对电容的了解程度,不妨请看以下内容哦。

关键字: 电容 电容器 电路

反向电压,即在电路中施加与正常工作方向相反的电压,是一个重要的电气概念。本文将从反向电压的定义、产生原因、影响以及应用等方面,对其进行全面深入的探讨,旨在帮助读者更好地理解反向电压的相关知识。

关键字: 反向电压 电子设备 电路

本文旨在深入探讨电压过冲对电子设备、电路及人身安全的潜在危害。文章首先简要介绍了电压过冲的概念和产生原因,随后详细分析了电压过冲对电子设备、电路元件的损害,以及可能引发的人身安全问题。最后,文章提出了预防电压过冲的措施和...

关键字: 电子设备 电路 电源
关闭
关闭