当前位置:首页 > 消费电子 > 消费电子
[导读]今天, 5G就像一幅抽象画,每个人都有不同的理解。本文希望通过简述5G首版标准R15,为你展现一个最真实的5G。

今天, 5G就像一幅抽象画,每个人都有不同的理解。本文希望通过简述5G首版标准R15,为你展现一个最真实的5G。

5G定义了增强型移动宽带(eMBB)、超可靠低延迟通信(URLLC)、大规模机器类型通信(mMTC)三大场景。

针对这三大场景,在2018年6月已完成的3GPP R15标准不仅定义了5G NR(新无线)以满足5G用例和需求,还定义了新的5G核心网(5GC),以及扩展增强了LTE / LTE-Advanced功能。

一张图看懂系列之5G R15标准…

5G NR

R15 5G NR主要针对eMBB和URLLC两大场景定义了新规范。

eMBB

针对eMBB场景,NR主要定义了三大类技术:高频/超宽带传输、Massive MIMO、灵活的帧结构和物理信道结构。

高频/超宽带传输

高频: NR指定了两大频段范围FR1和FR2,FR1(450MHz-6GHz),FR2(24.25GHz-52.6GHz)。

超宽带:FR1的信道/单载波带宽高达100MHz,FR2的单载波带宽高达400MHz。

此外,物理层还支持载波聚合(CA)和双连接技术,可聚合多达16个载波,以实现更高速传输。

LTE频段不高于3GHz,单载波带宽仅为20MHz,因此,高频和超宽带是5G与4G的主要区别。

既然NR引入了更高更宽的频段,由于高频信号对多径衰落和相位噪声更敏感,如果像LTE一样,所有频率的OFDM子载波间隔都相同,显然已无法适应,因此,NR还支持15,30,60和120kHz多个OFDM子载波间隔来进行数据传输。

Massive MIMO

Massive MIMO标准化工作定义了诸如参考信号设计、波束管理等技术,以期在基站上支持多达256个天线单元,在终端侧支持多达32个天线单元,以在高频段中实现大规模MIMO传输。

为了实现高速数据传输,下行最高支持单用户8层和多用户12层MIMO传输,上行最高支持单用户4层MIMO传输。

对于高频段,波束赋形是一项关键技术,它可以增强覆盖范围。在4G时代,由于使用频段较低,可采用数字波束赋形技术实现,其波束赋形在数字域中生成,但这种方式无法应对5G高频段Massive MIMO, 5G NR采用了数字和模拟混合实现波束赋形。

灵活的帧结构/物理信道结构

如前所述,NR支持多个子载波间隔,在频域上子载波间隔可更宽,在时域上OFDM符号可更短,比如,LTE的子载波间隔为15KHz,现在5G NR的子载波间隔可达120KHz,相对LTE,OFDM符号长度缩短了八分之一,从而可实现更低时延传输。

5G NR还可灵活改变控制和数据信道的分配单元中的OFDM符号数量,并可根据上下行业务比率灵活改变帧结构中的上下行时隙比。

URLLC

URLLC旨在支持或协助完成一些近实时和高可靠性需求的关键任务型业务,比如自动驾驶、工业机器人和远程医疗等。

如前所述,通过使用更宽的子载波间隔并减少OFDM符号数量可实现更低时延的通信,另一方面,为了实现高可靠性,R15还为URLLC定义了新的CQI(信道质量指示符)和MCS(调制和编码方案)。

增强LTE / LTE-Advanced

4G LTE / LTE-Advanced针对eMBB、mMTC和URLLC三大场景都进行了功能扩展和增强,其中,其中5G mMTC场景主要基于LTE / LTE-Advanced技术扩展,以适应大规模物联网通信

eMBB

针对eMBB场景,LTE / LTE-Advanced功能增强主要包括:

1024QAM支持

为了进一步提高峰值数据速率,R15定义了1024QAM,以及减少了DM-RS(解调参考信号)开销。

增强型CoMP(协同多点传输)

增强型CoMP支持非相干联合传输,两个基站可在不知道彼此的信道状态信息(CSI)的情况下发送不同的数据序列。

8天线技术

终端配置8个接收天线,可扩展小区下行覆盖范围,同时,配合8层MIMO可大幅提升下行速率。

各种干扰抑制技术

R15还定义了多项增强型LTE / LTE-Advanced功能以降低小区间的干扰。其中,有一项功能旨在小区低负荷状态下减少CRS(小区参考信号)传输,以降低干扰、节省基站功耗。此外,还定义了一些基站和终端的干扰抑制技术。

增强载波聚合(CA)功能

早期的载波聚合,由于需测量候选载波质量以及启动RF信道,存在终端处理延迟,为了解决这些问题,R15定义了一种机制,在终端处于空闲态下提前测量候选载波的无线信号质量,并在SCell之前提前初始化RF信道。

上行数据压缩

在TDD模式下,上下行比率通常强调下行链路,因此可用于上行传输的无线资源是有限的,为了提升上行链路频谱利用率,R15定义了上行数据压缩机制,主要对IP层及以上的分组报头进行压缩。

视频QoE测量功能/内容缓存

随着移动视频兴起,在移动通信环境中提升视频体验(QoE)成为运营商重点关注的问题。为了测量现实网络的QoE,R15定义了一种可以直接从终端收集QoE测量值的机制,称为最小化路测(MDT)。

同时,R15还研究了将视频内容缓存至靠近基站的服务器的机制,以减少下载视频时的时延。通过该机制,终端直接从基站或附近的内容服务器下载数据,而不必再经过回传至核心网,从而减少时延。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

西班牙电信集团Telefónica的德国子公司Telefónica Germany日前与AWS达成一项构建5G核心网的协议。

关键字: 西班牙电信 AWS 诺基亚 5G

全球通信技术公司Tata Communications 于今日推出了 Tata Communications CloudLyte,这是一款全自动边缘计算平台,旨在帮助面向未来的企业在数据驱动的世界中蓬勃发展。

关键字: 边缘计算 5G 物联网

在AI需求暴增、5G升级周期和汽车智能电动化等因素的推动下,全球电子市场进入新一轮的增长期,尤其是在通信电子、消费电子和汽车电子等领域。需求增长促使上游产能升级的同时,也带来了制造和设计上更严格的标准,各种电子零部件可以...

关键字: AI 服务器 5G

【2024年4月10日,德国慕尼黑讯】英飞凌科技股份公司(FSE代码:IFX / OTCQX代码:IFNNY)推出了业界首款-48 V宽输入电压数字热插拔控制器XDP700-002,扩展了其XDP™数字功率保护控制器系列...

关键字: 控制器 晶体管 5G

随着科技的不断进步,移动通信技术也迎来了飞速的发展。从最初的2G时代到如今的5G时代,每一次技术的升级都为我们带来了更快捷、更便利的通信体验。作为最新一代的移动通信技术,5G以其超高速率、低时延和大连接数的特点,正逐步改...

关键字: 移动通信 数据传输 5G

一直以来,5G手机都是大家的关注焦点之一。因此针对大家的兴趣点所在,小编将为大家带来5G手机的相关介绍,详细内容请看下文。

关键字: 5G 手机 4G

在下述的内容中,小编将会对5G技术的相关消息予以报道,如果5G技术是您想要了解的焦点之一,不妨和小编共同阅读这篇文章哦。

关键字: 5G 移动通信网络

以下内容中,小编将对5G手机的相关内容进行着重介绍和阐述,希望本文能帮您增进对5G手机的了解,和小编一起来看看吧。

关键字: 5G 4G

本文中,小编将对5G予以介绍,如果你想对它的详细情况有所认识,或者想要增进对5G的了解程度,不妨请看以下内容哦。

关键字: 5G 4G 网速
关闭
关闭