孔径大小直接影响高频信号的衰减程度。例如,在28GHz频段,0.3mm孔径的过孔每厘米损耗比0.2mm孔径高2.1dB,这种差异在长距离传输中会被放大。大孔径因孔壁铜层电流路径更长、电磁耦合更强,导致导体损耗和介质损耗均增加。采用0.15mm激光孔可降低1.8dB损耗。
PCB线路板过孔堵上的主要目的是防止波峰焊或回流焊时锡液贯穿孔洞引发短路,同时避免助焊剂残留、锡珠弹出等问题,确保贴装精度和信号完整性。
光通信利用光的传输特性,将信息转换为光信号,通过光纤进行传输,接收端再将光信号转换为电信号进行解码。光通信广泛应用于电信、互联网、数据中心、医疗、广电等领域,为人们的生活和工作带来了更多的方便。
在电子技术领域,我们经常会遇到ADC和DAC这两个术语。那么,ADC和DAC到底属于模拟电子(模电)还是数字电子(数电)呢?实际上,它们并不完全属于这两者中的任何一个,而是横跨模拟和数字两大领域的桥梁。ADC,即模数转换器,它的主要功能是将连续的模拟信号转换为离散的数字信号。而DAC,即数模转换器,则执行相反的操作,将离散的数字信号转换为连续的模拟信号。这两种转换器在电子设备中扮演着很重要的角色,尤其是在需要处理模拟信号和数字信号的系统中。
自举电路(Bootstrap Circuit)是一种在电子电路中广泛应用的升压技术,其核心作用是通过电路自身的工作状态提升某个节点的电压,而无需增加外部电源电压。
EMI屏蔽是指采取措施减少或防止电磁干扰(EMI)的传播。电磁干扰是指由电子设备或系统产生的电磁能量,这些能量可能会影响其他设备的正常工作。EMI屏蔽的目的是保护敏感设备免受外部电磁干扰,同时也防止设备本身发出的电磁干扰影响到其他设备。
开关电源,这一利用现代电力技术调控开关晶体管通断时间比率的电源设备,其核心在于维持稳定输出电压。这种电源通常由脉冲宽度调制(PWM)控制的金氧半场效晶体管构成,是现代电力电子技术的重要一环。
电路保护的意义在于保护电子电路中的元件免受过电压、过电流、浪涌和电磁干扰等有害因素的影响,从而防止设备损坏,确保电子设备的安全和稳定运行。
由于边缘AI是指在边缘设备上部署和运行AI模型,而不是将数据传输到中央服务器进行处理。这种方式具有低延迟、高响应速度、保护隐私和降低数据传输成本等优势。微控制器(MCU)作为电子设备的主控制芯片,在边缘AI的发展中扮演着重要角色,其应用领域也十分广泛。
为确保太阳能路灯的稳定工作,建议使用硅酮密封将太阳能路灯组件的接线固定在支架上。在连接路灯部件的线路时,必须遵循正确的顺序,以防止正负连接颠倒导致的短路问题。此外,太阳能路灯灯杆底部的接线应采用适当的密封装置或硅胶进行密封,并注意美观性。
一个线程只能属于一个进程,而一个进程可以有多个线程,线程是进程的一部分,就像工人是工厂的一部分。资源是分配给进程的,同一进程的所有线程共享该进程的全部资源,就像工厂里的工人共享工厂的设备和场地。处理机(CPU)则是分给线程的,线程在处理机上执行,不同线程轮流使用 CPU 的时间片。由于同一进程内的线程共享资源,所以线程之间的通信和数据共享相对容易,但也需要注意同步问题,以避免数据冲突和不一致,这就好比工厂里的工人在使用共享设备时,需要协调好使用顺序,不然就会出乱子。
电子元器件都有其使用寿命,随着时间推移会出现自然老化现象。电容器电解液干涸、电阻值漂移、半导体器件性能退化等都是典型的老化表现。特别是在高温环境下,元器件老化速度会显著加快。据统计,温度每升高10℃,电子元器件的寿命就会减少一半左右。
随着计算需求的多样化,尤其是随着移动设备、嵌入式系统和云计算的兴起,ARM 和 x86 架构之间的争论变得更加突出。ARM(高级 RISC 机器)和 x86 代表两种不同类型的处理器架构,每种架构都针对不同的工作负载和用例进行了优化。本文将探讨 ARM 和 x86 架构之间的主要区别,重点介绍它们的优势、劣势和典型应用。
电阻的精度影响输出电压的准确性,因此在电源芯片等应用中需要选择高精度的电阻。在某些应用中,电阻的精度至关重要。例如,在电源芯片上,它决定了输出电压的准确性。电阻的精度越高,输出电压的偏差就越小。若选用5%精度的电阻,其将导致输出电源电压的波动范围扩大至10%,显然无法满足设计需求。因此,必须选择1%精度的电阻,即便如此,仅因该电阻的精度偏差,输出电压的偏差便高达2%,满足设计需求。
564456
liqinglong1023
handlike
Coffsfs